This disclosure relates generally to a container rinsing system and method, and more specifically to air rinsing of containers such as beverage bottles without the use of water or other elements that come into direct contact with the containers.
Empty containers, such as PET (polyethylene terephthalate) bottles, are typically used for storing a liquid beverage before the liquid is consumed. Such containers may become contaminated with foreign material, such as paper, wood dust, or plastic debris during shipping, even when they are stored in boxes or other carrying receptacles. The bottles can also become contaminated as they are being processed prior to filling. Moreover, during processing, contact between the containers and the surfaces of articles, such as conveyors or carriers, used to convey the containers, cause the containers to pick up a small amount of net electrostatic charge, thereby rendering the containers capable of attracting fine particles to the containers' internal and external walls. Additionally, the electrostatic charges on the bottles may cause the bottles to cling to one another, thus causing the bottles to move at an angle. This leads to bottles falling off of the conveying system, particularly when using a belt or rope conveying system. Thus, the need to rinse or otherwise clean the containers prior to filling is necessary to ensure that the contents of the beverage within the container are acceptable to the ultimate consumer.
Typical dust particles contaminating these containers are extremely small, often measuring less than 10 microns in diameter. Any electrostatic charges on the containers induce opposite charges on the particles to attract and hold the particles on the container walls. To remove particles adhering to the walls, these opposite charges must be neutralized. Neutralizing the charges is difficult, however, because the charges holding each dust particle to a container wall are shielded by the dust particle itself. Moreover, once the electrostatic forces have been momentarily abated, the freed dust particles must be removed immediately before they re-attach themselves to the container.
Several methods have been implemented to rinse the inside of a container or bottle. The methods include spraying the containers with cold or hot water, utilizing ozone or ozonated water as a sanitizing agent, using ionized gas streams to rinse containers, and using combinations of air and water for rinsing.
Examples of utilizing ionized gas streams systems for rinsing containers are disclosed in U.S. Pat. No. 7,621,301 to Wu et al. and U.S. Publication No. 2009/0101178 to Wu et al., which are fully incorporated by reference. These systems can have many applications in cleaning unwanted particles from containers. For example, these systems can be used in conjunction with a hot fill, ambient fill, cold fill, or aseptic fill applications.
In one embodiment a container rinsing system is provided, such as for beverage containers wherein unwanted foreign particles are evacuated from the containers prior to being filled with a liquid beverage.
In another exemplary embodiment, a container rinsing system has an air nozzle adapted to be positioned proximate an opening of the container and adapted to direct a supply of air to the container. The air can be ionized prior to the air entering into the nozzle. A vacuum member is adapted to be in communication with a vacuum source. The vacuum member is positioned around the air nozzle and is adapted to vacuum foreign particles away from the container.
According to another embodiment, the air nozzle has a nozzle central axis and the vacuum member has a vacuum central axis that is concentric with the nozzle central axis.
According to another embodiment, the air nozzle is positioned to direct the supply of air in any orientation (e.g. downward or upward) depending on the orientation of the container.
According to another embodiment, the system has a plurality of air nozzles and a plurality of vacuum members. Each vacuum member has an air nozzle positioned therein. In another exemplary embodiment, a first air nozzle is an ionizing air nozzle and the remaining air nozzles are high velocity air nozzles. In a further exemplary embodiment, the plurality of nozzles includes a first ionizing air nozzle and the remaining nozzles comprise between 5 and 7 high velocity air nozzles. Alternatively, however, the air can be ionized prior to entering the manifold such that all of the nozzles are ionizing nozzles.
According to another embodiment, the container rinsing system further has a guide positioned adjacent the air nozzle. The guide is adapted to engage a neck of the container for vertical alignment of the container in relation to the air nozzle.
According to another embodiment, the container rinsing system has a conveyor adapted to move the container past the air nozzle and vacuum member. The conveyor has a first moving gripping member and a second moving gripping member, the gripping members are configured to collectively grip the container. In an exemplary embodiment, the first moving gripping member moves at a rate of speed different from the second moving gripping member wherein the conveyor is adapted to rotate the container while moving the container through the rinsing system.
According to another exemplary embodiment, the conveyor may be in the form of an air conveyor. The air conveyor has a track assembly and an air source. Containers are movably supported by the track assembly and the air source moves the containers along the track and past the air nozzles and vacuum members.
In another exemplary embodiment, a method for assembling an air rinsing system for containers is disclosed. The method comprises providing an air source for use in rinsing the containers and connecting a manifold to the air source. The manifold comprises a manifold inlet, an ionization unit, and a manifold outlet. The method further comprises placing the ionization unit within the manifold, such that during operation, air is ionized before exiting the manifold outlet.
In another exemplary embodiment, a method for air rinsing bottles is disclosed. The method comprises providing an air source, receiving air from the air source at a manifold connected to the air source, the manifold comprising a manifold inlet, an ionization unit, and a plurality of manifold outlets, ionizing the air within the manifold with the ionization unit before the air exits the manifold outlets, expelling ionized air from the manifold through the plurality of manifold outlets, and passing a bottle over or under the plurality of manifold outlets, and the ionized air from the plurality of manifold outlets assists in removing particles from the bottle.
It will be appreciated by those skilled in the art, given the benefit of the following description of certain exemplary embodiments of the container rinsing system disclosed herein, that at least certain embodiments disclosed herein have improved or alternative configurations suitable to provide enhanced benefits. These and other aspects, features and advantages of this disclosure or of certain embodiments of the disclosure will be further understood by those skilled in the art from the following description of exemplary embodiments taken in conjunction with the following drawings.
It will be appreciated by those skilled in the art, given the benefit of the following description of certain exemplary embodiments of the container rinsing system disclosed herein, that at least certain embodiments of the invention have improved or alternative configurations suitable to provide enhanced benefits. These and other aspects, features and advantages of the invention or of certain embodiments of the invention will be further understood by those skilled in the art from the following description of exemplary embodiments taken in conjunction with the following drawings.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
While this invention is susceptible of embodiments in many different forms, there are shown in the drawings and will herein be described in detail exemplary embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.
It is understood that the container rinsing system 10 is used in conjunction with a larger container processing assembly line 1 (not completely shown), or container handling system 1. It is understood the container processing assembly line 1 includes various known conveyor assemblies and other handling apparatuses for preparing containers such as beverage bottles, optional additional rinsing of the containers, filling the containers with a beverage or liquid and capping the containers for subsequent shipment for consumption. It is further understood that the assembly line 1 including the container rinsing system 10 transports containers at a high rate of speed, typically in the range of 600-800 bottles per minute.
As shown in
As will be explained in greater detail below, the nozzle assembly 12 has a plurality of nozzles and the vacuum assembly 14 has a plurality of vacuum members. In one simple form, a respective nozzle is operably associated with a respective vacuum member to form a rinsing module 24. In particular, the nozzle 12 is positioned within the vacuum member 14 wherein the vacuum member 14 generally surrounds the nozzle 12. The rinsing system 10 utilizes a plurality of rinsing modules 24 arranged in series in one exemplary embodiment of the invention.
The housing 34 has a front wall 40, a rear wall 42, a first end wall 44, a second end wall 46, a top wall 48 and a bottom wall 50. The walls 40-50 are connected together to form an inner cavity 52. As shown in
As shown in
As shown in
As discussed, the nozzle assembly 12 is operably associated with the vacuum assembly 14. As further shown in FIGS. 2 and 5-7, the nozzle manifold 26 is positioned within the housing inner cavity 52. The inlet 32 of the nozzle manifold 26 is positioned in the aperture of the rear wall 42. Each nozzle 28 is in communication with and extends from the nozzle manifold 26. Each nozzle 28 extends in a respective vacuum member 70 and in a generally vertical orientation wherein the nozzle 28 is directed in a downward direction. The vacuum member 70 is thus positioned around the nozzle 28. Furthermore, it is understood that the vacuum member 70 defines an outer periphery wherein the nozzle 28 is positioned within the outer periphery of the vacuum member 70. The nozzle 28 extends in the first segment 70a of the vacuum member 70. A distal end 29 of each nozzle 28 is positioned proximate the bottom openings 64 at the respective inlets 72 of each vacuum member 70. In addition, in an exemplary embodiment, the nozzle 28 is positioned generally at a center of the vacuum inlets 72. Thus, the nozzle central axis N is generally coincident or concentric with the vacuum member central axis V. In this configuration, the nozzle 28 is considered to be generally concentric or coincident with the vacuum member 70. The nozzle 28 and vacuum member 70 are considered to have a common central axis in an exemplary embodiment. Other configurations are possible wherein the central axes may be offset while the vacuum member 70 still surrounds or is placed around the nozzle 28. In embodiments where the bottom opening 64 may have other shapes such as square or rectangular, the nozzle 28 is positioned to be generally centered in such a bottom opening. This may also be considered a concentric-type configuration. These structures may be considered to share a common center.
It is understood that the inner walls 36 have appropriate access openings to accommodate the nozzle manifold 26 and nozzles 28 which are sealed to maintain separation between the vacuum members 70. As further shown in
Each respective nozzle 28 and vacuum member 70 is considered to define the rinsing module 24. In one exemplary embodiment, the rinsing system 10 has eight rinsing modules 24 wherein eight nozzles 28 are positioned in eight vacuum members 70. While in an exemplary embodiment, the nozzles 28 and vacuum members 70 lead to a common communication conduit (nozzle manifold 26, vacuum outlet 54), it is understood that each nozzle 28 and vacuum member 70 can be separate from one another and be connected to a separate air and vacuum source.
As further shown in
As discussed, the conveyor 16 is operably associated with the rinsing system 10 as well as other components of the overall container handling system 1. In the exemplary embodiment shown in
As shown in
In any of the above embodiments, the unit can be provided with automatic shut-off switches. The switches can be arranged with sensors for detecting whether air is being supplied to the system from the nozzles or whether the vacuum members are providing suction.
Operation of the container rinsing system will now be described. With the handling system 1 and conveyor 16 energized, a container C is conveyed to the inlet 20 of the rinsing system 10 wherein the neck ring on the container finish CF rides along the track members 94, 96. The track members 94, 96 serve as a guide to engage the neck of the container C for vertical alignment of the container C in relation to the nozzle 28 and vacuum member 70. The container C is conveyed in an upright fashion wherein the container opening CO faces upwards. It is understood that a plurality of adjacent containers C are conveyed one after another by the conveyor 16. The container C passes through the channel 66 (
It is understood that the containers C move at considerable speeds through the system 10. The system 10 is capable of rinsing containers at 600-800 containers per minute wherein the container C is at each rinsing module 24 for fractions of a second. The pressurized filtered air can be provided at various pressures and in one exemplary embodiment, the pressurized air is at 40-70 psi. As discussed the predetermined spacing S can be varied as desired and can be ⅛ in. in one embodiment. By loosening the adjustment bolts 82, the housing 34 can be vertically adjusted via the slots 84 to vary the spacing S. The knobs 86 can also be used to tilt the housing 34 when cleaning or servicing the system 10. The access door 60 also provides easy access into the housing 34 to adjust the nozzle assembly 12, perform maintenance or clean the nozzle assembly 12 or vacuum assembly 14. The vacuum hose 56 and air supply hose 35 are also easily removable. Generally, the rinsing system 10 can be easily and rapidly adjusted as desired. In other variations, rinsing modules 24 can be set up to travel with the containers C for rinsing.
In this embodiment the container rinsing system 10 is generally the same as the container rinsing system 10 shown in
The conveyor 216 generally includes a first gripper member 291, a second gripper member 293 and a motor 295. These components are generally supported by a frame 297 that may rest on a floor or other support surface. Each gripper member 291, 293 have a rotatable belt and other supporting structure as is known. The first gripper member 291 is spaced from the second gripper member 293 a predetermined distance to accommodate the containers C. As shown in
In operation, the first and second gripper members 291, 293 are rotated by the motor. Containers C are received from the container handling system 1 wherein the gripper members 291, 293 grip the containers C and convey the containers C through the rinsing system 200. The rinsing system 200 rinses the containers C as described above. The gripper members 291, 293 convey the containers C to other portions of the container handling system 1 for further processing. It is understood that the operable connections between the motor 295 and first gripper member 291 and second gripper member 293 can be such that one gripper member rotates at a greater speed relative to the other gripper member. In this fashion, the container C is also rotated about its center point as the container C moves linearly through the rinsing system 200. This can assist in the rinsing process.
In this embodiment, the conveyor 316 is generally the same in the embodiment of
In operation, containers C are conveyed through the rinsing system 300 by the conveyor 316 operating in similar fashion to the conveyor of
The cleaning system 1020 is provided for cleaning the inside of the bottles 1040 as they are transported through the system 1010. The container rinsing system 1010 can include a series of guards 1024, shown in phantom in
A conveyor arrangement 1012 and a large pulley wheel 1014 are provided for transferring the bottles 1040 through the cleaning system 1020. The bottle flow path follows the direction of the arrows depicted in
The air cleaning system 1020 is essentially enclosed by housing 1022 providing an enclosure to maintain substantial equilibrium of air flow within the system 1020. Two openings, one of which is shown in
The rinsing system 1010 can be provided with an air source to provide air to the containers 1040. HEPA filters can be placed at the air source inlet and outlet for filtering any unwanted particles from the air. A 0.3μ (99.9% efficiency) HEPA filter or pre-filtering assembly can be added to the air source inlet to screen off microorganisms from the supply air and a 0.5μ (99% efficiency) HEPA filter can be added to the outlet of the air source as a preventative measure for any unforeseeable debris from the air source. The embodiments disclosed herein could be implemented with any air source known in the art.
The nozzles 1301 can be provided with internal ionization units within a nozzle manifold 1303, which can be configured to ionize the air before the air exits the nozzles. The nozzle array 1300 can be mounted on the nozzle manifold 1303. As shown in
Air from the air source is exposed to the air ionizing units, which ionize the air for assisting with removing particles from the passing containers. After the air is ionized it is directed into the nozzles. As can be observed from this arrangement, the air is ionized before reaching and exiting the nozzles. This enhances cleaning, creates a reliable and durable source for ionized air, and creates a system that is easy to maintain.
Referring again to
The vacuum duct 1104 is connected to the duct 1019, (shown in
In one embodiment, the vacuum system 1100 can form part of a closed loop system in that the air extracted by the vacuum can be filtered by a HEPA filter and recycled back to the air source and then provided to the nozzle array 1300 for use in rinsing the bottles 1040 in the cleaning process. In another exemplary embodiment a separate vacuum source can be used, such as a Dayton model 2C940 blower. In either instance, the inlet of the source is attached to the vacuum duct 1019.
An electrical control panel interacts with plant PLC, which enables the air source to run at an optimal fan rate depending on the particular bottle size and conveyor speed. Additionally, the electrical control panel (not shown) is electrically connected to the nozzles disposed on the nozzle array 1300 within the bottle cleaning station 1020 to provide operator control.
The rinsing system 1010 is also equipped with sensors at key locations for ensuring cleaning performance. Upon detection of an error in the system, for example, low air pressure, improper filtration, or a non-functioning ionizer, the system can be configured to give a warning signal to the operator and can be configured to shut down operation. In any of the above embodiments, if any of the sensors connected to the vacuum members or the nozzles senses a lack of suction or a lack of air pressure respectively, the system is automatically shut down via an automatic shut-off switch.
During operation, the cleaning system 1020 cleans the inside of the bottles 1040 as they are transported through the rinsing system 1010. The bottles 1040 are transported through the rinsing system 1010 so that each bottle 1040 traverses the various stations, for example, the bottle gripping station (not shown) and the bottle cleaning system 1020. The conveyor arrangement 1012 transfers the bottles 1040 so the bottle flow path follows the direction of the arrows, and as a result of the bottle path passing around a large pulley rotating wheel 1014, the bottles 1040 become inverted in a generally upside down position with the opening being downwardly directed, as shown by bottle 1040 in
The vacuum system 1100, which continually evacuates the air within the housing 1022, evacuates any floating ionized dust or other particles that have been removed from the bottles 1040. Consequently, tiny particles that have been displaced from the bottle surfaces that remain entrained in the air within housing 1022 are evacuated from the bottle environment and are no longer available to re-adhere to the surface again in the event they become de-ionized. Additionally, the vacuum can be applied such that a negative pressure is maintained across the system. This helps prevent dirty air from being blown into the environment surrounding the system and prevents the dirty air from contaminating the surrounding environment and equipment.
The container rinsing system of the present disclosure provides several advantages. The container rinsing system utilizes much less electric energy than traditional air systems (less than half of the electric energy) to air rinse empty bottles. It is robust, leads to less down time of the bottling operation, and requires less maintenance than preexisting systems.
Additionally, because the system is an air-only system as opposed to a water-based system or combination air/water system, the system uses fewer natural resources such as water and electricity. The rinsing system also has a small footprint saving on facility space. Previous designs required a larger footprint and more structure and components. The design also allows the nozzles to be positioned closer to the bottle finish enhancing rinsing capabilities. Because the system components, including the housing and conveyor, can be easily adjusted, rapid change-over of the system is achieved for differently-sized bottles. Use of the ionizing air nozzle neutralizes electrostatic charges both on inside and outside surfaces of the containers. Overall, because of its simplified structure and operation, the rinsing system is less expensive to fabricate, operate and maintain.
In any of the above embodiments, if either of the sensors connected to the vacuum members or the nozzles senses a lack of suction or a lack of air pressure respectively, the system is automatically shut down via an automatic shut-off switch.
Given the benefit of the above disclosure and description of exemplary embodiments, it will be apparent to those skilled in the art that numerous alternative and different embodiments are possible in keeping with the general principles of the invention disclosed here. Those skilled in this art will recognize that all such various modifications and alternative embodiments are within the true scope and spirit of the invention. The appended claims are intended to cover all such modifications and alternative embodiments. It should be understood that the use of a singular indefinite or definite article (e.g., “a,” “an,” “the,” etc.) in this disclosure and in the following claims follows the traditional approach in patents of meaning “at least one” unless in a particular instance it is clear from context that the term is intended in that particular instance to mean specifically one and only one. Likewise, the term “comprising” is open ended, not excluding additional items, features, components, etc.
The following clauses are offered as further description of the disclosed invention.
1. A method for assembling an air rinsing system for containers comprising:
2. The method of clause 1 further comprising providing a vacuum system for the removal of particles.
3. The method of clause 2 further comprising providing the vacuum system to maintain a negative pressure in the container rinsing system.
4. The method of clause 2 wherein the container rinsing system is configured to recycle air from the vacuum system to the air source.
5. A method for rinsing containers comprising:
6. The method of clause 5 further comprising vacuuming the unwanted particles with a vacuuming system.
7. The method of clause 6 wherein the vacuuming system maintains a negative pressure near the manifold.
8. The method of clause 6 further comprising recycling air from the vacuum system to the air source.
9. A container rinsing system comprising:
10. The container rinsing system of clause 9 further comprising a vacuum system for removal of particles.
11. The container rinsing system of clause 10 wherein the vacuum system is configured to maintain a negative pressure in the container rinsing system.
12. The container rinsing system of clause 11 wherein the container rinsing system is configured to recycle air from the vacuum system to the air source.
13. A container rinsing system comprising:
14. The container rinsing system of clause 13 wherein the air nozzle is positioned to direct the supply of air in a downward direction into a right-side-up container.
15. The container rinsing system of clause 13 further comprising a second air nozzle positioned generally adjacent the air nozzle.
16. The container rinsing system of clause 15 further comprising a second vacuum member positioned around the second air nozzle.
17. The container rinsing system of clause 13 further comprising a plurality of air nozzles, wherein each of the plurality of nozzles expels ionized air.
18. The container rinsing system of clause 17 further comprising a plurality of vacuum members, wherein each vacuum member is positioned around a respective air nozzle.
19. The container rinsing system of clause 18 wherein the plurality of vacuum members converge with one another and are adapted to be collectively in communication with the vacuum source.
20. A method of rinsing containers passing through a container rinsing system comprising:
21. The method of clause 20 further comprising providing a plurality of nozzles and ionizing the air prior to the air being expelled from the plurality of nozzles.
22. The method of clause 21 further comprising providing a plurality of vacuum members and wherein each vacuum member defines a vacuum central axis and the plurality of nozzles each have a nozzle central axis and positioning each nozzle central axis concentric with each vacuum central axis.
This application is a divisional application of U.S. application Ser. No. 13/417,944, filed Mar. 12, 2012 entitled “Container Rinsing System and Method,” which is a continuation-in-part of U.S. application Ser. No. 12/255,153, filed Oct. 21, 2008 entitled “Container Rinsing System and Method,” which claims priority to and the benefit of U.S. application Ser. No. 60/981,571 filed on Oct. 22, 2007 entitled “Container Rinsing System and Method,” all of which are incorporated herein by reference and made a part hereof by their entirety.
Number | Date | Country | |
---|---|---|---|
60981571 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13417944 | Mar 2012 | US |
Child | 14880773 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12255153 | Oct 2008 | US |
Child | 13417944 | US |