Container seal with removal tab and security ring seal

Information

  • Patent Grant
  • 9624008
  • Patent Number
    9,624,008
  • Date Filed
    Wednesday, April 16, 2014
    10 years ago
  • Date Issued
    Tuesday, April 18, 2017
    7 years ago
Abstract
A holographic sealing member for a container comprises a heat actuated sealant or adhesive layer that secures the sealing member to a container, a metal foil sealing layer over and covering and adhesively bonded to the heat actuated sealant or adhesive layer, a holographic layer over and covering and adhesively bonding to the metal foil layer having an upper plastic layer and a lower embossed image layer, and a tab over and covering and adhesively bonded to the upper plastic layer that may be pulled to remove the tab and the plastic layer from a container, thereby exposing the lower embossed image layer which must then be perforated to gain access to the contents of the container.
Description
FIELD

The invention relates generally to a laminated sealing member for closing the mouth of a container, the sealing member having a graspable tab on its upper surface to expedite its removal from the container, and the sealing member also having a holographic security seal layer.


DESCRIPTION OF THE RELATED ART

In the figures, the first digit of the reference numbers correspond to the figure number. The remaining two digits of the reference numbers for elements within the various figures that correspond to each other always match. Hence, the bottom hot melt adhesive layer, which is essentially same in all of the figures, is assigned the reference number 122 in FIG. 1, 222 in FIG. 2, 322 in FIGS. 3, and 422 in FIG. 4.


It is often desirable to seal a bottle, jar, or other container having a screw-on cap by providing a sealing member that attaches across the mouth of the container before the cap is screwed down onto the container for the first time. When the cap is later removed after purchase, the purchaser must penetrate, break, or otherwise remove the sealing member before the contents of the container may be accessed. The cap may then be screwed back into place to keep the contents fresh and to keep the contents from spilling out. If the sealing member is not present when the container is first opened, or if it is damaged, then the purchaser knows that the contents of the container may have been tampered with. And as an anti-counterfeiting measure, such a sealing member may include a hologram visible to the purchaser after the cap is removed, the pattern of the hologram being a unique identifier of a particular manufacturer.


Many sealing members are known which have tabs attached to their upper surface to facilitate their removal. One simply grasps the tab and pulls it to one side, and the entire sealing member is removed from the container in a single motion.


U.S. Pat. No. 5,514,442, which issued to Michael P. Gaida, et al. on May 7, 1996 discloses the sealing member 100 shown, in a side cross-sectional view, in FIG. 1 (which is derived from FIG. 4 of the '442 patent). (For clarity, the cross sectioning lines have been omitted from the layers 102, 104, and 110 in FIG. 1 and are shown in the urethane adhesive layers 114 and 116 and hot melt bonding material or adhesive layer 122.) The sealing member 100 is a laminated structure the lower half of which is formed from an aluminum foil layer 110 the underside of which is bonded to a hot melt bonding material or adhesive layer 122. The upper half of the sealing member 100 is formed from a sheet of bleached craft paper 102 the lower half of which is glued to a polyester layer 104 (most likely a sheet or film of PET, or Polyethylene Terephthalate). As shown, the upper and lower halves of the sealing member 100 are joined by means of an adhesive layer 116 which extends only halfway (left-to-center) and which joins the aluminum foil layer 110 to the polyester layer 104, leaving a gap 124 to the right. The sealing member 100 is circular and is die-cut from a much larger sheet of laminated materials, the cutting being positioned to cause the gap 124 to be present in each sealing member 100, thereby forming a removal tab that comprises the craft paper 102 and the polyester 104 layer above the gap 124 to the right in FIG. 1. The '442 patent teaches that this circular sealing member 100 is inserted deep into a screw-on cap (not shown) which is then screwed onto a container (not shown). Induction heating applied to the neck of the container then heats up the aluminum foil layer 110, causing the hot melt bonding material or adhesive layer 122 to melt and thereby seal the sealing member 100 to the top of the container. After the container is purchased, the purchaser removes the cap and then grasps and pulls on the removal tab and thereby removes the sealing member 100 from the container.


U.S. Pat. No. 6,866,926, which issued to Joe Smelko et al on Mar. 15, 2005, teaches the design of an improved sealing member 200 which is shown, in a side cross-sectional view, in FIG. 2 ((which corresponds to FIG. 3 of the '926 patent). (For clarity, the cross-sectional lines have been omitted from the layers 202, 204, 206, 208, 210, and 212 in FIG. 2 and are shown in the urethane adhesive layers 218 and 220 and hot melt bonding material or adhesive layer 222.) The upper layers of the sealing member 200 comprise an upper PET layer 202 bonded to a lower EVA (ethylene-vinyl acetate) layer 204. The lower layers comprise an aluminum foil layer 210 which is bonded to a PET layer 212 which in turn is bonded to a hot melt bonding material or adhesive layer 322. This design adds a PE (polyethylene) foam layer 208 over the upper surface of the aluminum foil layer 210, as is illustrated in FIG. 2 (which corresponds to FIG. 3 of the '926 patent). The EVA layer 204 is heat bonded to the new PE foam layer 208 in the left half of the sealing member 200, as is shown. To the right, a release strip 206, made of PET, is coated on its underside with a silicon release coating to prevent the strip 406 from sticking to the PE foam layer 208. The PET release strip 206 and the PET upper layer 202 sandwich the left half of the EVA layer 204 to a release tab. The EVA layer 204 and the PE foam layer 208 are heat bonded together.


Several patents teach the incorporation of holographic film into various types of seals for packages and containers. Such holographic sealing members enable counterfeit products to be identified and also signal, by their condition when the seals have previously been tampered with.


Once such Holographic seal is disclosed in U.S. Pat. No. 5,319,475, which issued to Ralph Kay, et al. on Jun. 7, 1994. This patent discloses a package sealing tape having a layered structure. Its upper layer is a removable layer formed from polypropylene or polyester film, smooth and transparent. This upper layer is loosely adhered (by means of wax or corona discharge treatment) to a much thinner, transparent polymer layer. The polymer layer is bonded to an embossable lacquer layer formed from non-cross-linkable polyurethane or polyester. This layer is embossed to define a hologram, and then a metallic film, such as aluminum, is deposited upon this layer and is optionally coated with a polymeric coating. The lowest layer is a pressure sensitive transfer adhesive bound to release paper. In use, the release paper is removed, and then the tape is used to seal a container. The upper layer is scuff resistant, so it may be left on during transit to protect the hologram. It may also be removed. In the face of solvents or heat, the embossable layer and its hologram is quickly and irreversibly damaged, thus making a permanent record of the attempt at tampering with the package. A similar arrangement is disclosed in U.S. Pat. No. 6,659,507, issued to Michael Banahan, et al. on Dec. 9, 2003, which also provides an additional fluorescent pattern visible only under ultraviolet light and a mechanism that breaks up the hologram if the layers are separated.


U.S. Pat. No. 7,012,032, which issued to Steven R. Consentino, et al. on Mar. 14, 2006, discloses in FIG. 3 of the '302 patent a holographic image (col. 7, lines 20-34 of the '032 patent) applied as the top layer in a laminated sealing member for a “bottle type container” with an upper PET layer, an intermediate thermal bonding polymer layer (a co polyester resin), and a lower woven or non-woven reinforcing scrim polymer layer (polyester such as PET) beneath which is an adhesive layer. In its “Background” portion, the '302 patent says: “seals and lids can be constructed to have a tab that extends outwardly from the periphery of the seal so that a user can grasp the tap to aid in removing the seal from the container.” ('032 patent, col. 1, lines 37-40) FIG. 3 of the '032 patent discloses a tab 33 that is somehow attached to, and extending outwards from, the periphery of the lowest adhesive layer. The text accompanying this figure says: “Preferably the seal contains a small tab to facilitate removal.” Nothing more is said about this tab.


U.S. Pat. No. 4,892,209, which issued to Jan L. Dorfman, et al. on Jan. 9, 1990, discloses a liquor bottle capping assembly which includes a sealing member that comprises two parts: First, a lower circular disk, made of aluminum or “high durometer plastic” or some other material sufficiently strong to resist and/or provide evidence of penetration by a hypodermic needle; and second, an upper circular sheet member 26 that is adhesively laminated to the lower circular disk 60. The upper circular sheet member may be made of metal foil and may carry a laser-imprinted hologram obtained from American Bank Note Holographics, Inc. Alternatively, the circular disk 80 may be constructed from plastic film, metallised plastic, or some other material that will provide evidence of any tampering. The upper circular sheet member initially has a figure-8 shape, and it is folded back upon itself to form joined upper and lower circular portions, the lower circular portion forming the circular sheet member itself, and the upper circular portion forming a removal tab of slightly smaller diameter, as is illustrated in FIGS. 1 and 2 of the '209 patent.


SUMMARY

An embodiment of the present invention can be found in a holographic sealing member for a container that comprises a heat actuated sealant or adhesive layer that secures the sealing member to a container, a metal foil sealing layer over and covering and adhesively bonded to the heat actuated sealant or adhesive layer means, a holographic layer over and covering and adhesively bonding to the metal foil layer having an upper plastic layer and a lower embossed image layer, and a tab over and covering and adhesively bonded to the upper plastic layer that may be pulled to remove the tab and the plastic layer from a container, thereby exposing the lower embossed image layer which must then be perforated to gain access to the contents of the container.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 each present a cross-sectional side view of a prior-art laminated sealing member having a removable tab structure facing to the right. The vertical dimensions are exaggerated and are not drawn in proportion to the actual vertical dimensions of each layer of the sealing member. (Cross-sectioning lines are omitted from some layers for clarity.)



FIG. 3 presents a cross-sectional side view of a laminated sealing member having a removable tab structure facing to the right, the sealing member shown attached to the mouth of a container. The vertical dimensions are exaggerated and are not drawn in proportion to the actual vertical dimensions of each layer of the sealing member. (Cross-sectioning lines are omitted from some layers for clarity.)



FIG. 4 presents a cross-sectional side view of the laminated sealing member shown in FIG. 3 following removal of the tab and the layers attached to the tab, the lowermost layers of the sealing member shown still attached to the mouth of the container.



FIG. 5 presents a cross-sectional side view of a laminated sealing member in accordance with an embodiment of the invention having a removable tab structure facing to the right. The vertical dimensions are exaggerated and are not drawn in proportion to the actual vertical dimensions of each layer of the sealing member. (Cross-sectioning lines are omitted from some layers for clarity.)





DETAILED DESCRIPTION

A sealing member 500, designed in accordance with a first embodiment of the present invention, is illustrated in FIG. 5. FIG. 5 is described in several later paragraphs. The immediately following paragraphs describe FIGS. 3 and 4, which describe a related invention.



FIG. 3 presents a side, cross-sectional view of the sealing member 300 and of the upper, circular rim of a PET container 324 to which the sealing member 300 is sealed by induction heating of an aluminum layer 310, which melts the hot melt bonding material or adhesive layer 322 and binds the sealing member 300 to the circular rim of the container 324. (Note that the cross sectioning lines have been omitted from the layers 302, 304, 308, 310, 307, and 309 in FIG. 3 and are shown in the urethane adhesive layers 318 and 320 and hot melt bonding material or adhesive layer 322.)


The structure of the sealing member 300 (FIG. 3) is essentially the same as that of the sealing member 200 (FIG. 2 described above) except that the lower PET layer 212 in FIG. 2 has been replaced in FIG. 3 with a holographic film comprising a PET layer 307 bonded to a embossed image layer 309 which bears a holographic image and which has an aluminum substrate. The layer 309 in its turn is bonded by the hot melt bonding material or adhesive layer 322 to the land area of the container 324 (the land area of the container 324 is the uppermost, ring-shaped upper surface of the circular upper rim of the container 324). The PET layer 307 and the embossed image layer 309 are bonded together in such a manner, and with such a bonding strength, that the layers 307 and 309 are separable along their periphery—the bond at a splitting point 311 is not as strong as the bond formed by the layer 322 between the layer 309 and the container 324.


Accordingly, when the tab formed by the layers 302, 304, and 306 is pulled, all of the uppermost layers 302, 304, 308, 310, and 307 of the sealing member 300 are pulled away along with all save a thin peripheral ring of the embossed image layer 309, leaving only a thin peripheral ring 309A (see FIG. 4) of the embossed image layer 309 sealed by means of a thin ring of the hot melt bonding material or sealing layer 322A to the land area of the container 324.


Accordingly, a circular ring of the embossed image layer 309A remains bonded to the land area of the container 324 after the sealing member 300 is removed. Thus, a thin ring of the hologram which the embossed image layer 309A carries remains attached to the upper lip of the container 324, while the remainder of the embossed image layer 309 is peeled away and is removed from the container 324 and is separated from the circular ring portion 309A of the layer 309. Hence, removal of the tab (formed by the layers 302, 304, and 306) necessarily produces destruction of the hologram such that the holographic seal borne by the embossed image layer 309 is tom through and can never be reassembled and reattached to the container 324.


The sealing member 300 is thus entirely removed in a single motion, but the ring portion 309A of the embossed image layer 309 remains behind, attached to the land area of the container 324, tom away from the remainder of the embossed image layer 309 in a way that destroys the hologram and makes it impossible to re-seal the sealing member 300 back onto the container 324. After the sealing member 300 is removed from the container 324, the holographic image is visible on the top side of the rim of the container 324. It is not possible to reseal the container.


The bonding of the PET layer 307 to the embossed image layer 309 is carefully controlled to set the amount of adhesion that exists between the PET layer 307 and the embossed image layer 309. This bonding strength must be low enough so that when force is applied to the tab formed by layers 302, 304, and 306, the sealing member 300 splits at the splitting point 311 around the periphery of the sealing member 300 but only above the land area of the container 324, thus permitting most of the embossed image layer 309 to be ripped away still attached to the layers 302, 304, 306, and 307 but leaving behind the ring portion 309A of the embossed image layer 309 attached to the land area of the container 324, as is shown in FIG. 4. PET holographic film produced by American Bank Note Holographics (ABNH) works well in this application. A product could be designed that would function in the same manner if the holographic film was modified to contain some type of release layer between the PET film layer 307 and the embossed image layer 309. The PET film produced by ABNH has proved (in its normal, unmodified form) to have a structure that functions properly.


The PET layer 307, the embossed image layer 309, and the bond between them are preferably chosen to be relatively heat insensitive so that overheating by inductive heating of the hot melt bonding material or adhesive layer 322 does not adversely affect the amount of effort that is required to remove the sealing member 300. In conventional designs, such as that shown in FIG. 2, it is the seal between the container (not shown in FIG. 2) and the entire sealing member 200 that must be broken, and the amount of effort that is required to remove the sealing member 200 can be adversely affected by overheating during the inductive heat sealing of the sealing member 200 to a container. The ABNH PET holographic film is relatively insensitive to heat variations, as is explained more fully in a later paragraph.


In another embodiment of the invention illustrated in FIGS. 3 and 4, two American Bank Note Holographics, Inc. films are included in the same structure. The structure is the same as described in FIGS. 3 and 4 with the addition of a second holographic film that is laminated between the aluminum foil layer 310 and the holographic film layer (layers 307 and 309) which is coated with the heat actuated coating (the layer 322). In addition, gold pigmentation is added to the adhesive layer between the two holographic film layers. When separation of the layer 322 and the metal and holographic embossed image layer 309 from the PET layer is invoked upon removal of the sealing member 300, the holographic ring 309A from the primary holographic layer remains on the rim of the PET container 324, and the uncovering of the area where this ring separates from the primary seal exposes the secondary holographic film that appears in gold because of the added pigmentation. This leaves a portion of a holographic image on the container rim and another portion on the removed sealing member 300 components.


The heat activated hot melt bonding material or adhesive layer 322 in FIG. 3 is a polyester heat seal coating 40-3 obtainable from Rohm and Haas. This heat actuated coating is applied to the metallic side of metallised holographic film (comprising the PET layer 307 and the embossed image layer 309 which includes a metal layer formed from aluminum). The PET side (307) of the holographic film is laminated and adhered to an aluminum foil layer 310. Above this foil layer 310 an optional insulating layer 308 (polyethylene foam in FIG. 3, for example) can be applied, and polyethylene, polypropylene, or polyester may be applied above this insulating layer, or these materials may be applied directly to the foil layer if the optional insulating layer 308 is absent. A tab defining PET release strip 306 is placed over and covers at least a portion of the foil layer 310 or insulating layer 308. An EVA or adhesive layer 304 lies above the PET release strip 206 and is covered by a PET layer 302 to form the tab that is used to remove the sealing member 300 from the rim of the container 324. The splitting or separation point 311 occurs within the holographic film layer. Because the embossed image layer 309 is thin and is bonded firmly to the rim of the container 324, in this case a PET container 324 to coincide with the PET heat seal coating (the hot melt bonding material or adhesive layer 322), the upper liner is completely removed from the rim, leaving the PET heat seal coating layer 322A and the metal and image layer 309A only on the rim of the container 324. A strong bond is desired between the layer 322 and the upper lip of the container 324 to firmly attach the ring of embossed image layer 309A to the upper lip of the container 324. Some other heat seal coating can be selected that can provide a seal to other types of containers—for example, a polypropylene heat seal coating or a polyethylene heat seal coating can be used with a container made of those materials. It may also prove feasible to extrusion coat the metal side of the holographic film with a suitable polymer film as thin as 0.5 mils that would provide the desired splitting and adhesion in the rim area of the container 324.


With reference to FIG. 5, the present invention is illustrated embodied in a sealing member 500. (Once again, the cross sectional lines are omitted from the layers 502, 504, 506, 508, 507, 509, and 510 in FIG. 5 for clarity and are shown in the urethane adhesive layers 516, and 518 and hot melt bonding material or adhesive layer 522.)


The sealing member 500 is similar to the sealing member 200 shown in FIG. 2, but the polyester foam layer 208 shown in FIG. 2 is replaced by a white PET layer 508 that is bonded to a holographic film formed by the combination of a PET layer 507 with an embossed image layer 509 that includes a metal (aluminum) layer, the layers 507 and 509 being bonded together in a manner such as to form a splitting point 511 that gives way then the layers 502, 504, and 506 are pulled. The splitting point 511 is thus within the holographic film structure, between the image layer 509 and the PET layer 507. The urethane adhesive layer 518 binds the metal and embossed image layer 509 to the upper surface of the adhesive coated (adhesive layer 522) aluminum foil layer 510. The adhesive layer 522 is an easily punctured film such as MDPE (medium density polyethylene) 1.5 mils in thickness, obtainable from Covalence Specialty Materials Corporation. This design allows the holographic embossed image layer 509 and aluminum film layer 510 to be destroyed easily by puncturing through these two layers. In this design, there is no PET acid barrier layer beneath the two layers 509 and 510, since such a layer would be difficult to penetrate with a finger. Other easily-punctured films, such as a NEX (a trademark of New England Extrusion, Inc.) sealant having an EVA content or SURL YN (a trademark of DuPont for a particular DuPont thermoplastic ionomer resin product), etc., may be used to form the layer 522.


The strength of the bond between the layers 507 and 509 is chosen to cause the sealing member 500 to split apart at 511 when the tab formed by the layers 506, 504, and 502 is pulled upwards and to the side. Accordingly, when the tab formed by the layers 506, 504, and 502 is pulled, the sealing member 500 splits apart at the splitting point 511, uncovering the hologram which is visible in the embossed image layer 509 and leaving in place the seal formed by the aluminum layer 510 that is bonded to the embossed image layer 509.


After removing the upper layers 502, 504, 506, 508, and 507 of the sealing member 500 by pulling on the tab formed by the layers 506, 504, and 502, an individual wishing to access the container (not shown) must then pierce the remaining layers 509 and 510, thus breaking the holographic seal over the container. Hence, the seal on the container cannot be broken without the simultaneous destruction of the hologram.


This design again uses ABNH PET holographic film. The chemistry of the image layer of this product supports heat resistance for the image. The image layer is highly cross-linked, and this gives the film superior heat resistance and also explains why the bond between the layers within the holographic film tend to be relatively weaker. Many holographic films do not have this heat resistance, especially if the image is cast on a polypropylene film. Since induction container sealing can produce temperatures that can be in the range of 350 to 450 degrees Fahrenheit, if the holographic film technology does not possess adequate heat resistance, then the image or film or both would become distorted during induction heating, particularly when excessive heating is applied.


By removing, separating, or splitting the PET layer away from the image layer, the image of the hologram remains undisturbed and completely legible above only an easily pierced layer of foil and sealant and can be destroyed by simply puncturing it with a finger. If the PET layer were not stripped away when the tab layers were pulled away, then the PET layer would need to have sufficient heat stability, and it would also have to maintain the integrity of the image layer. It would be difficult to puncture through the lining of such a structure.


An alternative arrangement omits the white PET layer 508 and the bonding material 516 and has the EVA layer 504 bonded directly to the PET layer 507.


While several embodiments of the invention have been described, numerous alternatives will occur to those skilled in the art. The claims appended to and forming a part of this patent application are intended to cover all such alternatives that fall within the true scope of the invention.

Claims
  • 1. A tamper-evident, tabbed sealing member for a container configured, upon sealing member removal, to leave a ring of material that remains bonded to a land area of a container rim, the tamper-evident, tabbed sealing member comprising: a heat actuated sealant or adhesive layer for securing the tamper-evident, tabbed sealing member to a land area of a container rim;a sealing layer bonded to the heat actuated sealant or adhesive layer, the sealing layer including a metal foil;a separation film between the sealing layer and the heat actuated sealant or adhesive layer, the separation film bonded to a lower surface of the sealing layer metal foil and including an upper polymer layer and a lower metal substrate;a splitting point for the tamper-evident, tabbed sealing member between the upper polymer layer and the lower metal substrate within the separation film so that the upper polymer layer can be separated from the lower metal substrate to form a tamper-evident peripheral ring of the lower metal substrate and the heat actuated sealant or adhesive layer that remains bonded to a land area of a container rim upon removal of the tamper-evident, tabbed sealing member from a container;a polyethylene or polypropylene or polyester foam or film layer bonded to an upper surface of the sealing layer; anda tab extending over at least a first portion of, but not bonded to the first portion of, the polyethylene or polypropylene or polyester foam or film layer where upward pulling of the tab, with the placement of the separation film below the sealing layer metal foil, causes the tamper-evident, tabbed sealing member to separate at the splitting point leaving a ring of the heat actuated sealant or adhesive layer and a ring of the lower metal substrate secured to a land area of a container rim to form the tamper-evident peripheral ring.
  • 2. The tamper-evident, tabbed sealing member in accordance with claim 1, wherein the lower metal substrate of the separation film is aluminum.
  • 3. The tamper-evident, tabbed sealing member in accordance with claim 1, wherein the heat actuated sealant or adhesive layer for securing the tamper-evident, tabbed sealing member to a container includes a medium density polyethylene.
  • 4. The tamper-evident, tabbed sealing member in accordance with claim 1, wherein the tab is formed by a PET tab defining layer bonded to the tab but not bonded to the first portion of the polyethylene or polypropylene or polyester foam or film layer.
  • 5. The tamper-evident, tabbed sealing member in accordance with claim 4, comprising an EVA film or foam layer bonded to both a second portion of the polyethylene or polypropylene or polyester foam or film layer not covered by the PET tab defining layer and also to the PET tab defining layer itself.
  • 6. The tamper-evident, tabbed sealing member in accordance with claim 5, comprising a PET layer over and covering and bonded to the EVA film or foam layer.
  • 7. The tamper-evident, tabbed sealing member in accordance with claim 6, wherein the polyethylene or polypropylene or polyester foam or film layer comprises a PET layer.
  • 8. The tamper-evident, tabbed sealing member in accordance with claim 7, wherein the PET layer of the polyethylene or polypropylene or polyester foam or film layer is white.
  • 9. A tamper-evident, tabbed sealing member for a container having a rim surrounding a container opening, the tamper-evident, tabbed sealing member comprising: a sealing portion having a periphery thereabout including a foil layer and a separation film bonded to a lower surface of the foil layer, the separation film including an upper polymer layer and a lower substrate; anda tab structure bonded to the sealing portion and comprising a tab such that the tab may be pulled to remove the tab structure and, with the placement of the separation film below the foil layer, the upper polymer layer of the separation film from a container rim while leaving peripheral ring portions of the lower substrate bonded to a land area of a container rim so that a tamper-evident ring of the lower substrate is undisturbed by the removal of the tab structure and the upper polymer layer.
  • 10. The tamper-evident, tabbed sealing member of claim 9, wherein the tab lies wholly within the periphery of the sealing portion.
  • 11. The tamper-evident, tabbed sealing member of claim 9, wherein the separation film has a splitting point between the upper polymer layer and the lower substrate such that upon pulling of the tab, the separation film separates at the splitting point corresponding to a land area of a container rim.
  • 12. The tamper-evident, tabbed sealing member of claim 9, wherein the tamper-evident, tabbed sealing member includes a heat actuated sealant or adhesive layer for bonding to a rim of a container.
  • 13. The tamper-evident, tabbed sealing member of claim 9, wherein the strength of a bond between the tab structure and the upper polymer layer of the separation film is greater than the strength of a bond between the upper polymer layer and the lower substrate of the separation film.
  • 14. The tamper-evident, tabbed sealing member of claim 9, wherein the sealing portion further includes a polyethylene or polypropylene or polyester foam or film layer covering the foil layer.
  • 15. The tamper-evident, tabbed sealing member of claim 9, wherein the sealing portion further includes a foam layer covering the foil layer and a polyethylene, polypropylene or polyester film layer above the foam layer.
  • 16. The tamper-evident, tabbed sealing member of claim 9, wherein the lower substrate includes a metal substrate.
CROSS-REFERENCE To RELATED APPLICATIONS

This application is a continuation of prior application Ser. No. 12/026,723, filed Feb. 6, 2008, which claims priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/896,816, filed on Mar. 23, 2007, which are both incorporated herein by reference in their entirety. This application also claims benefit of U.S. Provisional Application No. 61/936,218, filed Feb. 5, 2014, which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (192)
Number Name Date Kind
2768762 Eugene Oct 1956 A
3235165 Jackson Feb 1966 A
3292828 Stuart Dec 1966 A
3302818 Balocca et al. Feb 1967 A
3460310 Adcock et al. Aug 1969 A
3990603 Brochman Nov 1976 A
4013188 Ray Mar 1977 A
4133796 Bullman Jan 1979 A
4206165 Dukess Jun 1980 A
4266687 Cummings May 1981 A
4438850 Kahn Mar 1984 A
4514248 Cummings Apr 1985 A
4579240 Ou-Yang Apr 1986 A
4582735 Smith Apr 1986 A
4588099 Diez May 1986 A
4596338 Yousif Jun 1986 A
4636273 Wolfersperger Jan 1987 A
4650082 Paciorek Mar 1987 A
4666052 Ou-Yang May 1987 A
4735335 Torterotot Apr 1988 A
4741791 Howard May 1988 A
4767016 Cook et al. Aug 1988 A
4770325 Gordon Sep 1988 A
4801647 Wolfe, Jr. Jan 1989 A
4811856 Fischman Mar 1989 A
4837061 Smits Jun 1989 A
4856857 Takeuchi Aug 1989 A
4863061 Moore Sep 1989 A
4892209 Dorfman Jan 1990 A
4934544 Han Jun 1990 A
4938390 Markva Jul 1990 A
4960216 Giles Oct 1990 A
4961986 Galda Oct 1990 A
4980222 Rivera et al. Dec 1990 A
4994314 Rosenfeld et al. Feb 1991 A
5004111 McCarthy Apr 1991 A
5015318 Smits May 1991 A
5055150 Rosenfeld Oct 1991 A
5057365 Finkelstein Oct 1991 A
5071710 Smits Dec 1991 A
5084143 Smith Jan 1992 A
5098495 Smits Mar 1992 A
RE33893 Elias Apr 1992 E
5125529 Torterotot Jun 1992 A
5128779 Mallik Jul 1992 A
5135262 Smith Aug 1992 A
5149386 Smits Sep 1992 A
5153042 Indrelie Oct 1992 A
5160767 Genske Nov 1992 A
5169707 Faykish Dec 1992 A
5178967 Rosenfeld Jan 1993 A
5197618 Goth Mar 1993 A
5218472 Jozefowicz Jun 1993 A
5226281 Han Jul 1993 A
5265745 Pereyra Nov 1993 A
5319475 Kay Jun 1994 A
5433992 Galda Jul 1995 A
5510171 Faykish Apr 1996 A
5513781 Ullrich May 1996 A
5514442 Galada et al. May 1996 A
5544770 Travisano Aug 1996 A
5598940 Finkelstein Feb 1997 A
5601200 Finkelstein Feb 1997 A
5615789 Finkelstein Apr 1997 A
5656360 Faykish Aug 1997 A
5669521 Wiening Sep 1997 A
5702015 Giles Dec 1997 A
5860544 Brucker Jan 1999 A
5871112 Giles Feb 1999 A
5915577 Levine Jun 1999 A
5975304 Cain Nov 1999 A
6082566 Yousif Jul 2000 A
6096358 Murdick Aug 2000 A
6120882 Faykish Sep 2000 A
6131754 Smelko Oct 2000 A
6139931 Finkelstein Oct 2000 A
6158632 Ekkert Dec 2000 A
6194042 Finkelstein Feb 2001 B1
6197396 Haas Mar 2001 B1
6258425 Parmentier Jul 2001 B1
6284337 Lorimor Sep 2001 B1
6312776 Finkelstein Nov 2001 B1
6351537 Dovgodko Feb 2002 B1
6378715 Finkelstein Apr 2002 B1
6458302 Shifflet Oct 2002 B1
6494491 Zeiter et al. Dec 2002 B1
6531230 Weber Mar 2003 B1
6548302 Mao Apr 2003 B1
6578723 Tyner Jun 2003 B1
6602309 Vizulis Aug 2003 B2
6627273 Wolf Sep 2003 B2
6659507 Banahan Dec 2003 B2
6699566 Zeiter Mar 2004 B2
6705467 Kancsar Mar 2004 B1
6722272 Jud Apr 2004 B2
6737154 Jonza et al. May 2004 B2
6767425 Meier Jul 2004 B2
6775036 Cox Aug 2004 B2
6790508 Razeti Sep 2004 B2
6866926 Smelko Mar 2005 B1
6902075 OBrien Jun 2005 B2
6916516 Gerber Jul 2005 B1
6955736 Rosenberger Oct 2005 B2
6974045 Trombach Dec 2005 B1
7005178 Bonkowski Feb 2006 B2
7012032 Cosentino Mar 2006 B2
7029745 Bonkowski Apr 2006 B2
7064897 Hebrink Jun 2006 B2
7128210 Razeti Oct 2006 B2
7144617 Schilling Dec 2006 B2
7182475 Kramer Feb 2007 B2
7217454 Smelko May 2007 B2
7224528 Phillips May 2007 B2
RE39790 Fuchs Aug 2007 E
7316760 Nageli Jan 2008 B2
7448153 Maliner Nov 2008 B2
7531228 Perre May 2009 B2
7648764 Yousif Jan 2010 B2
7713605 Yousif May 2010 B2
7740730 Schedl Jun 2010 B2
7740927 Yousif Jun 2010 B2
7789262 Niederer Sep 2010 B2
7798359 Marsella Sep 2010 B1
7819266 Ross Oct 2010 B2
7838109 Declerck Nov 2010 B2
7850033 Thorstensen-Woll Dec 2010 B2
8057896 Smelko Nov 2011 B2
2006789 Daffner Mar 2012 A1
8329288 Allegaert Dec 2012 B2
8348082 Cain Jan 2013 B2
20020068140 Finkelstein Jun 2002 A1
20030168423 Williams Sep 2003 A1
20040043238 Wuest Mar 2004 A1
20040109963 Zaggia Jun 2004 A1
20040209028 Gosselin Oct 2004 A1
20050048307 Schubert Mar 2005 A1
20050208242 Smelko Sep 2005 A1
20050218143 Niederer Oct 2005 A1
20060000545 Nageli Jan 2006 A1
20060003120 Nageli Jan 2006 A1
20060003122 Nageli Jan 2006 A1
20060151415 Smelko Jul 2006 A1
20060278665 Bennett Dec 2006 A1
20070003725 Yousif Jan 2007 A1
20070058227 Raksha Mar 2007 A1
20070065609 Korson Mar 2007 A1
20070183047 Phillips et al. Aug 2007 A1
20070195392 Phillips et al. Aug 2007 A1
20070206249 Phillips et al. Sep 2007 A1
20070267304 Portier Nov 2007 A1
20070298273 Thies Dec 2007 A1
20080026171 Gullick Jan 2008 A1
20080073308 Yousif Mar 2008 A1
20080103262 Haschke May 2008 A1
20080156443 Schaefer Jul 2008 A1
20080169286 McLean Jul 2008 A1
20080231922 Thorstensen-Woll Sep 2008 A1
20080233339 Thorstensen-Woll Sep 2008 A1
20080233424 Thorstensen-Woll Sep 2008 A1
20080257850 OKeefe-Broadbent Oct 2008 A1
20090078671 Triquet Mar 2009 A1
20090208729 Allegaert Aug 2009 A1
20090304964 Sachs Dec 2009 A1
20100009162 Rothweiler Jan 2010 A1
20100030180 Declerck Feb 2010 A1
20100047552 McLean Feb 2010 A1
20100059942 Rothweiler Mar 2010 A1
20100116410 Yousif May 2010 A1
20100155288 Harper Jun 2010 A1
20100170820 Leplatois Jul 2010 A1
20100193463 OBrien Aug 2010 A1
20100213193 Helmlinger Aug 2010 A1
20100221483 GonzalezCarro Sep 2010 A1
20100290663 Trassl Nov 2010 A1
20100314278 Fonteyne Dec 2010 A1
20110000917 Wolters Jan 2011 A1
20110005961 Leplatois Jan 2011 A1
20110089177 Thorstensen-Woll Apr 2011 A1
20110091715 Rakutt Apr 2011 A1
20110100949 Grayer May 2011 A1
20110100989 Cain May 2011 A1
20110138742 McLean Jun 2011 A1
20110147353 Kornfeld Jun 2011 A1
20120000910 Ekkert Jan 2012 A1
20120043330 McLean Feb 2012 A1
20120103988 Wiening May 2012 A1
20120111758 Lo May 2012 A1
20120241449 Frischmann Sep 2012 A1
20130020324 Thorstensen-Woll Jan 2013 A1
20140001185 McLean Jan 2014 A1
20140061196 Thorstensen-Woll Mar 2014 A1
20140186589 Chang Jul 2014 A1
Foreign Referenced Citations (73)
Number Date Country
501393 Aug 2006 AT
11738 Apr 2011 AT
2015992 Jan 1991 CA
2203744 Oct 1997 CA
102006030118 May 2007 DE
10204281 Aug 2007 DE
102007022935 Apr 2009 DE
202009000245 Apr 2009 DE
0668221 Aug 1995 EP
0826598 Mar 1998 EP
0826599 Mar 1998 EP
0717710 Apr 1999 EP
0915026 May 1999 EP
0706473 Aug 1999 EP
1075921 Feb 2001 EP
0803445 Nov 2003 EP
1462381 Sep 2004 EP
1199253 Mar 2005 EP
1577226 Sep 2005 EP
1814744 Aug 2007 EP
1834893 Sep 2007 EP
1837288 Sep 2007 EP
1839898 Oct 2007 EP
1839899 Oct 2007 EP
1857275 Nov 2007 EP
1873078 Jan 2008 EP
1445209 May 2008 EP
1918094 May 2008 EP
1935636 Jun 2008 EP
1968020 Sep 2008 EP
1992476 Nov 2008 EP
2230190 Sep 2010 EP
2292524 Mar 2011 EP
2754375 Apr 1998 FR
2916157 Nov 2008 FR
2943322 Sep 2010 FR
2241230 Aug 1991 GB
2273492 Aug 1991 GB
2298391 Sep 1996 GB
2004315035 Nov 2004 JP
2000255621 Sep 2009 JP
100711073 Apr 2007 KR
100840926 Jun 2008 KR
100886955 Mar 2009 KR
05002905 Feb 2006 MX
2010001867 Apr 2010 MX
194965 Jan 1997 TW
8902402 Mar 1989 WO
9308084 Apr 1993 WO
9702997 Jan 1997 WO
9905041 Feb 1999 WO
0066450 Nov 2000 WO
2005100186 Oct 2005 WO
2006018556 Feb 2006 WO
2006021291 Mar 2006 WO
2006073777 Jul 2006 WO
2006099260 Sep 2006 WO
2006108853 Oct 2006 WO
2006108853 Oct 2006 WO
2007109113 Sep 2007 WO
2008027029 Mar 2008 WO
2008027036 Mar 2008 WO
2008039350 Apr 2008 WO
2008125784 Oct 2008 WO
2008125785 Oct 2008 WO
2008148176 Dec 2008 WO
2009092066 Jul 2009 WO
2010115811 Oct 2010 WO
2011039067 Apr 2011 WO
2012079971 Jun 2012 WO
2012113530 Aug 2012 WO
2012152622 Nov 2012 WO
2012172029 Dec 2012 WO
Related Publications (1)
Number Date Country
20140224800 A1 Aug 2014 US
Provisional Applications (2)
Number Date Country
60896816 Mar 2007 US
61936218 Feb 2014 US
Continuations (1)
Number Date Country
Parent 12026723 Feb 2008 US
Child 14253901 US