The invention relates generally to a laminated sealing member for closing the mouth of a container, the sealing member having a graspable tab on its upper surface to expedite its removal from the container, and the sealing member also having a holographic security seal layer.
In the figures, the first digit of the reference numbers correspond to the figure number. The remaining two digits of the reference numbers for elements within the various figures that correspond to each other always match. Hence, the bottom hot melt adhesive layer, which is essentially same in all of the figures, is assigned the reference number 122 in
It is often desirable to seal a bottle, jar, or other container having a screw-on cap by providing a sealing member that attaches across the mouth of the container before the cap is screwed down onto the container for the first time. When the cap is later removed after purchase, the purchaser must penetrate, break, or otherwise remove the sealing member before the contents of the container may be accessed. The cap may then be screwed back into place to keep the contents fresh and to keep the contents from spilling out. If the sealing member is not present when the container is first opened, or if it is damaged, then the purchaser knows that the contents of the container may have been tampered with. And as an anti-counterfeiting measure, such a sealing member may include a hologram visible to the purchaser after the cap is removed, the pattern of the hologram being a unique identifier of a particular manufacturer.
Many sealing members are known which have tabs attached to their upper surface to facilitate their removal. One simply grasps the tab and pulls it to one side, and the entire sealing member is removed from the container in a single motion.
U.S. Pat. No. 5,514,442, which issued to Michael P. Gaida, et al. on May 7, 1996 discloses the sealing member 100 shown, in a side cross-sectional view, in
U.S. Pat. No. 6,866,926, which issued to Joe Smelko et al on Mar. 15, 2005, teaches the design of an improved sealing member 200 which is shown, in a side cross-sectional view, in
Several patents teach the incorporation of holographic film into various types of seals for packages and containers. Such holographic sealing members enable counterfeit products to be identified and also signal, by their condition when the seals have previously been tampered with.
Once such Holographic seal is disclosed in U.S. Pat. No. 5,319,475, which issued to Ralph Kay, et al. on Jun. 7, 1994. This patent discloses a package sealing tape having a layered structure. Its upper layer is a removable layer formed from polypropylene or polyester film, smooth and transparent. This upper layer is loosely adhered (by means of wax or corona discharge treatment) to a much thinner, transparent polymer layer. The polymer layer is bonded to an embossable lacquer layer formed from non-cross-linkable polyurethane or polyester. This layer is embossed to define a hologram, and then a metallic film, such as aluminum, is deposited upon this layer and is optionally coated with a polymeric coating. The lowest layer is a pressure sensitive transfer adhesive bound to release paper. In use, the release paper is removed, and then the tape is used to seal a container. The upper layer is scuff resistant, so it may be left on during transit to protect the hologram. It may also be removed. In the face of solvents or heat, the embossable layer and its hologram is quickly and irreversibly damaged, thus making a permanent record of the attempt at tampering with the package. A similar arrangement is disclosed in U.S. Pat. No. 6,659,507, issued to Michael Banahan, et al. on Dec. 9, 2003, which also provides an additional fluorescent pattern visible only under ultraviolet light and a mechanism that breaks up the hologram if the layers are separated.
U.S. Pat. No. 7,012,032, which issued to Steven R. Consentino, et al. on Mar. 14, 2006, discloses in FIG. 3 of the '302 patent a holographic image (col. 7, lines 20-34 of the '032 patent) applied as the top layer in a laminated sealing member for a “bottle type container” with an upper PET layer, an intermediate thermal bonding polymer layer (a co polyester resin), and a lower woven or non-woven reinforcing scrim polymer layer (polyester such as PET) beneath which is an adhesive layer. In its “Background” portion, the '302 patent says: “seals and lids can be constructed to have a tab that extends outwardly from the periphery of the seal so that a user can grasp the tap to aid in removing the seal from the container.” ('032 patent, col. 1, lines 37-40) FIG. 3 of the '032 patent discloses a tab 33 that is somehow attached to, and extending outwards from, the periphery of the lowest adhesive layer. The text accompanying this figure says: “Preferably the seal contains a small tab to facilitate removal.” Nothing more is said about this tab.
U.S. Pat. No. 4,892,209, which issued to Jan L. Dorfman, et al. on Jan. 9, 1990, discloses a liquor bottle capping assembly which includes a sealing member that comprises two parts: First, a lower circular disk, made of aluminum or “high durometer plastic” or some other material sufficiently strong to resist and/or provide evidence of penetration by a hypodermic needle; and second, an upper circular sheet member 26 that is adhesively laminated to the lower circular disk 60. The upper circular sheet member may be made of metal foil and may carry a laser-imprinted hologram obtained from American Bank Note Holographics, Inc. Alternatively, the circular disk 80 may be constructed from plastic film, metallised plastic, or some other material that will provide evidence of any tampering. The upper circular sheet member initially has a figure-8 shape, and it is folded back upon itself to form joined upper and lower circular portions, the lower circular portion forming the circular sheet member itself, and the upper circular portion forming a removal tab of slightly smaller diameter, as is illustrated in FIGS. 1 and 2 of the '209 patent.
An embodiment of the present invention can be found in a holographic sealing member for a container that comprises a heat actuated sealant or adhesive layer that secures the sealing member to a container, a metal foil sealing layer over and covering and adhesively bonded to the heat actuated sealant or adhesive layer means, a holographic layer over and covering and adhesively bonding to the metal foil layer having an upper plastic layer and a lower embossed image layer, and a tab over and covering and adhesively bonded to the upper plastic layer that may be pulled to remove the tab and the plastic layer from a container, thereby exposing the lower embossed image layer which must then be perforated to gain access to the contents of the container.
A sealing member 500, designed in accordance with a first embodiment of the present invention, is illustrated in
The structure of the sealing member 300 (
Accordingly, when the tab formed by the layers 302, 304, and 306 is pulled, all of the uppermost layers 302, 304, 308, 310, and 307 of the sealing member 300 are pulled away along with all save a thin peripheral ring of the embossed image layer 309, leaving only a thin peripheral ring 309A (see
Accordingly, a circular ring of the embossed image layer 309A remains bonded to the land area of the container 324 after the sealing member 300 is removed. Thus, a thin ring of the hologram which the embossed image layer 309A carries remains attached to the upper lip of the container 324, while the remainder of the embossed image layer 309 is peeled away and is removed from the container 324 and is separated from the circular ring portion 309A of the layer 309. Hence, removal of the tab (formed by the layers 302, 304, and 306) necessarily produces destruction of the hologram such that the holographic seal borne by the embossed image layer 309 is tom through and can never be reassembled and reattached to the container 324.
The sealing member 300 is thus entirely removed in a single motion, but the ring portion 309A of the embossed image layer 309 remains behind, attached to the land area of the container 324, tom away from the remainder of the embossed image layer 309 in a way that destroys the hologram and makes it impossible to re-seal the sealing member 300 back onto the container 324. After the sealing member 300 is removed from the container 324, the holographic image is visible on the top side of the rim of the container 324. It is not possible to reseal the container.
The bonding of the PET layer 307 to the embossed image layer 309 is carefully controlled to set the amount of adhesion that exists between the PET layer 307 and the embossed image layer 309. This bonding strength must be low enough so that when force is applied to the tab formed by layers 302, 304, and 306, the sealing member 300 splits at the splitting point 311 around the periphery of the sealing member 300 but only above the land area of the container 324, thus permitting most of the embossed image layer 309 to be ripped away still attached to the layers 302, 304, 306, and 307 but leaving behind the ring portion 309A of the embossed image layer 309 attached to the land area of the container 324, as is shown in
The PET layer 307, the embossed image layer 309, and the bond between them are preferably chosen to be relatively heat insensitive so that overheating by inductive heating of the hot melt bonding material or adhesive layer 322 does not adversely affect the amount of effort that is required to remove the sealing member 300. In conventional designs, such as that shown in
In another embodiment of the invention illustrated in
The heat activated hot melt bonding material or adhesive layer 322 in
With reference to
The sealing member 500 is similar to the sealing member 200 shown in
The strength of the bond between the layers 507 and 509 is chosen to cause the sealing member 500 to split apart at 511 when the tab formed by the layers 506, 504, and 502 is pulled upwards and to the side. Accordingly, when the tab formed by the layers 506, 504, and 502 is pulled, the sealing member 500 splits apart at the splitting point 511, uncovering the hologram which is visible in the embossed image layer 509 and leaving in place the seal formed by the aluminum layer 510 that is bonded to the embossed image layer 509.
After removing the upper layers 502, 504, 506, 508, and 507 of the sealing member 500 by pulling on the tab formed by the layers 506, 504, and 502, an individual wishing to access the container (not shown) must then pierce the remaining layers 509 and 510, thus breaking the holographic seal over the container. Hence, the seal on the container cannot be broken without the simultaneous destruction of the hologram.
This design again uses ABNH PET holographic film. The chemistry of the image layer of this product supports heat resistance for the image. The image layer is highly cross-linked, and this gives the film superior heat resistance and also explains why the bond between the layers within the holographic film tend to be relatively weaker. Many holographic films do not have this heat resistance, especially if the image is cast on a polypropylene film. Since induction container sealing can produce temperatures that can be in the range of 350 to 450 degrees Fahrenheit, if the holographic film technology does not possess adequate heat resistance, then the image or film or both would become distorted during induction heating, particularly when excessive heating is applied.
By removing, separating, or splitting the PET layer away from the image layer, the image of the hologram remains undisturbed and completely legible above only an easily pierced layer of foil and sealant and can be destroyed by simply puncturing it with a finger. If the PET layer were not stripped away when the tab layers were pulled away, then the PET layer would need to have sufficient heat stability, and it would also have to maintain the integrity of the image layer. It would be difficult to puncture through the lining of such a structure.
An alternative arrangement omits the white PET layer 508 and the bonding material 516 and has the EVA layer 504 bonded directly to the PET layer 507.
While several embodiments of the invention have been described, numerous alternatives will occur to those skilled in the art. The claims appended to and forming a part of this patent application are intended to cover all such alternatives that fall within the true scope of the invention.
This application is a continuation of prior application Ser. No. 12/026,723, filed Feb. 6, 2008, which claims priority pursuant to 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/896,816, filed on Mar. 23, 2007, which are both incorporated herein by reference in their entirety. This application also claims benefit of U.S. Provisional Application No. 61/936,218, filed Feb. 5, 2014, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2768762 | Eugene | Oct 1956 | A |
3235165 | Jackson | Feb 1966 | A |
3292828 | Stuart | Dec 1966 | A |
3302818 | Balocca et al. | Feb 1967 | A |
3460310 | Adcock et al. | Aug 1969 | A |
3990603 | Brochman | Nov 1976 | A |
4013188 | Ray | Mar 1977 | A |
4133796 | Bullman | Jan 1979 | A |
4206165 | Dukess | Jun 1980 | A |
4266687 | Cummings | May 1981 | A |
4438850 | Kahn | Mar 1984 | A |
4514248 | Cummings | Apr 1985 | A |
4579240 | Ou-Yang | Apr 1986 | A |
4582735 | Smith | Apr 1986 | A |
4588099 | Diez | May 1986 | A |
4596338 | Yousif | Jun 1986 | A |
4636273 | Wolfersperger | Jan 1987 | A |
4650082 | Paciorek | Mar 1987 | A |
4666052 | Ou-Yang | May 1987 | A |
4735335 | Torterotot | Apr 1988 | A |
4741791 | Howard | May 1988 | A |
4767016 | Cook et al. | Aug 1988 | A |
4770325 | Gordon | Sep 1988 | A |
4801647 | Wolfe, Jr. | Jan 1989 | A |
4811856 | Fischman | Mar 1989 | A |
4837061 | Smits | Jun 1989 | A |
4856857 | Takeuchi | Aug 1989 | A |
4863061 | Moore | Sep 1989 | A |
4892209 | Dorfman | Jan 1990 | A |
4934544 | Han | Jun 1990 | A |
4938390 | Markva | Jul 1990 | A |
4960216 | Giles | Oct 1990 | A |
4961986 | Galda | Oct 1990 | A |
4980222 | Rivera et al. | Dec 1990 | A |
4994314 | Rosenfeld et al. | Feb 1991 | A |
5004111 | McCarthy | Apr 1991 | A |
5015318 | Smits | May 1991 | A |
5055150 | Rosenfeld | Oct 1991 | A |
5057365 | Finkelstein | Oct 1991 | A |
5071710 | Smits | Dec 1991 | A |
5084143 | Smith | Jan 1992 | A |
5098495 | Smits | Mar 1992 | A |
RE33893 | Elias | Apr 1992 | E |
5125529 | Torterotot | Jun 1992 | A |
5128779 | Mallik | Jul 1992 | A |
5135262 | Smith | Aug 1992 | A |
5149386 | Smits | Sep 1992 | A |
5153042 | Indrelie | Oct 1992 | A |
5160767 | Genske | Nov 1992 | A |
5169707 | Faykish | Dec 1992 | A |
5178967 | Rosenfeld | Jan 1993 | A |
5197618 | Goth | Mar 1993 | A |
5218472 | Jozefowicz | Jun 1993 | A |
5226281 | Han | Jul 1993 | A |
5265745 | Pereyra | Nov 1993 | A |
5319475 | Kay | Jun 1994 | A |
5433992 | Galda | Jul 1995 | A |
5510171 | Faykish | Apr 1996 | A |
5513781 | Ullrich | May 1996 | A |
5514442 | Galada et al. | May 1996 | A |
5544770 | Travisano | Aug 1996 | A |
5598940 | Finkelstein | Feb 1997 | A |
5601200 | Finkelstein | Feb 1997 | A |
5615789 | Finkelstein | Apr 1997 | A |
5656360 | Faykish | Aug 1997 | A |
5669521 | Wiening | Sep 1997 | A |
5702015 | Giles | Dec 1997 | A |
5860544 | Brucker | Jan 1999 | A |
5871112 | Giles | Feb 1999 | A |
5915577 | Levine | Jun 1999 | A |
5975304 | Cain | Nov 1999 | A |
6082566 | Yousif | Jul 2000 | A |
6096358 | Murdick | Aug 2000 | A |
6120882 | Faykish | Sep 2000 | A |
6131754 | Smelko | Oct 2000 | A |
6139931 | Finkelstein | Oct 2000 | A |
6158632 | Ekkert | Dec 2000 | A |
6194042 | Finkelstein | Feb 2001 | B1 |
6197396 | Haas | Mar 2001 | B1 |
6258425 | Parmentier | Jul 2001 | B1 |
6284337 | Lorimor | Sep 2001 | B1 |
6312776 | Finkelstein | Nov 2001 | B1 |
6351537 | Dovgodko | Feb 2002 | B1 |
6378715 | Finkelstein | Apr 2002 | B1 |
6458302 | Shifflet | Oct 2002 | B1 |
6494491 | Zeiter et al. | Dec 2002 | B1 |
6531230 | Weber | Mar 2003 | B1 |
6548302 | Mao | Apr 2003 | B1 |
6578723 | Tyner | Jun 2003 | B1 |
6602309 | Vizulis | Aug 2003 | B2 |
6627273 | Wolf | Sep 2003 | B2 |
6659507 | Banahan | Dec 2003 | B2 |
6699566 | Zeiter | Mar 2004 | B2 |
6705467 | Kancsar | Mar 2004 | B1 |
6722272 | Jud | Apr 2004 | B2 |
6737154 | Jonza et al. | May 2004 | B2 |
6767425 | Meier | Jul 2004 | B2 |
6775036 | Cox | Aug 2004 | B2 |
6790508 | Razeti | Sep 2004 | B2 |
6866926 | Smelko | Mar 2005 | B1 |
6902075 | OBrien | Jun 2005 | B2 |
6916516 | Gerber | Jul 2005 | B1 |
6955736 | Rosenberger | Oct 2005 | B2 |
6974045 | Trombach | Dec 2005 | B1 |
7005178 | Bonkowski | Feb 2006 | B2 |
7012032 | Cosentino | Mar 2006 | B2 |
7029745 | Bonkowski | Apr 2006 | B2 |
7064897 | Hebrink | Jun 2006 | B2 |
7128210 | Razeti | Oct 2006 | B2 |
7144617 | Schilling | Dec 2006 | B2 |
7182475 | Kramer | Feb 2007 | B2 |
7217454 | Smelko | May 2007 | B2 |
7224528 | Phillips | May 2007 | B2 |
RE39790 | Fuchs | Aug 2007 | E |
7316760 | Nageli | Jan 2008 | B2 |
7448153 | Maliner | Nov 2008 | B2 |
7531228 | Perre | May 2009 | B2 |
7648764 | Yousif | Jan 2010 | B2 |
7713605 | Yousif | May 2010 | B2 |
7740730 | Schedl | Jun 2010 | B2 |
7740927 | Yousif | Jun 2010 | B2 |
7789262 | Niederer | Sep 2010 | B2 |
7798359 | Marsella | Sep 2010 | B1 |
7819266 | Ross | Oct 2010 | B2 |
7838109 | Declerck | Nov 2010 | B2 |
7850033 | Thorstensen-Woll | Dec 2010 | B2 |
8057896 | Smelko | Nov 2011 | B2 |
2006789 | Daffner | Mar 2012 | A1 |
8329288 | Allegaert | Dec 2012 | B2 |
8348082 | Cain | Jan 2013 | B2 |
20020068140 | Finkelstein | Jun 2002 | A1 |
20030168423 | Williams | Sep 2003 | A1 |
20040043238 | Wuest | Mar 2004 | A1 |
20040109963 | Zaggia | Jun 2004 | A1 |
20040209028 | Gosselin | Oct 2004 | A1 |
20050048307 | Schubert | Mar 2005 | A1 |
20050208242 | Smelko | Sep 2005 | A1 |
20050218143 | Niederer | Oct 2005 | A1 |
20060000545 | Nageli | Jan 2006 | A1 |
20060003120 | Nageli | Jan 2006 | A1 |
20060003122 | Nageli | Jan 2006 | A1 |
20060151415 | Smelko | Jul 2006 | A1 |
20060278665 | Bennett | Dec 2006 | A1 |
20070003725 | Yousif | Jan 2007 | A1 |
20070058227 | Raksha | Mar 2007 | A1 |
20070065609 | Korson | Mar 2007 | A1 |
20070183047 | Phillips et al. | Aug 2007 | A1 |
20070195392 | Phillips et al. | Aug 2007 | A1 |
20070206249 | Phillips et al. | Sep 2007 | A1 |
20070267304 | Portier | Nov 2007 | A1 |
20070298273 | Thies | Dec 2007 | A1 |
20080026171 | Gullick | Jan 2008 | A1 |
20080073308 | Yousif | Mar 2008 | A1 |
20080103262 | Haschke | May 2008 | A1 |
20080156443 | Schaefer | Jul 2008 | A1 |
20080169286 | McLean | Jul 2008 | A1 |
20080231922 | Thorstensen-Woll | Sep 2008 | A1 |
20080233339 | Thorstensen-Woll | Sep 2008 | A1 |
20080233424 | Thorstensen-Woll | Sep 2008 | A1 |
20080257850 | OKeefe-Broadbent | Oct 2008 | A1 |
20090078671 | Triquet | Mar 2009 | A1 |
20090208729 | Allegaert | Aug 2009 | A1 |
20090304964 | Sachs | Dec 2009 | A1 |
20100009162 | Rothweiler | Jan 2010 | A1 |
20100030180 | Declerck | Feb 2010 | A1 |
20100047552 | McLean | Feb 2010 | A1 |
20100059942 | Rothweiler | Mar 2010 | A1 |
20100116410 | Yousif | May 2010 | A1 |
20100155288 | Harper | Jun 2010 | A1 |
20100170820 | Leplatois | Jul 2010 | A1 |
20100193463 | OBrien | Aug 2010 | A1 |
20100213193 | Helmlinger | Aug 2010 | A1 |
20100221483 | GonzalezCarro | Sep 2010 | A1 |
20100290663 | Trassl | Nov 2010 | A1 |
20100314278 | Fonteyne | Dec 2010 | A1 |
20110000917 | Wolters | Jan 2011 | A1 |
20110005961 | Leplatois | Jan 2011 | A1 |
20110089177 | Thorstensen-Woll | Apr 2011 | A1 |
20110091715 | Rakutt | Apr 2011 | A1 |
20110100949 | Grayer | May 2011 | A1 |
20110100989 | Cain | May 2011 | A1 |
20110138742 | McLean | Jun 2011 | A1 |
20110147353 | Kornfeld | Jun 2011 | A1 |
20120000910 | Ekkert | Jan 2012 | A1 |
20120043330 | McLean | Feb 2012 | A1 |
20120103988 | Wiening | May 2012 | A1 |
20120111758 | Lo | May 2012 | A1 |
20120241449 | Frischmann | Sep 2012 | A1 |
20130020324 | Thorstensen-Woll | Jan 2013 | A1 |
20140001185 | McLean | Jan 2014 | A1 |
20140061196 | Thorstensen-Woll | Mar 2014 | A1 |
20140186589 | Chang | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
501393 | Aug 2006 | AT |
11738 | Apr 2011 | AT |
2015992 | Jan 1991 | CA |
2203744 | Oct 1997 | CA |
102006030118 | May 2007 | DE |
10204281 | Aug 2007 | DE |
102007022935 | Apr 2009 | DE |
202009000245 | Apr 2009 | DE |
0668221 | Aug 1995 | EP |
0826598 | Mar 1998 | EP |
0826599 | Mar 1998 | EP |
0717710 | Apr 1999 | EP |
0915026 | May 1999 | EP |
0706473 | Aug 1999 | EP |
1075921 | Feb 2001 | EP |
0803445 | Nov 2003 | EP |
1462381 | Sep 2004 | EP |
1199253 | Mar 2005 | EP |
1577226 | Sep 2005 | EP |
1814744 | Aug 2007 | EP |
1834893 | Sep 2007 | EP |
1837288 | Sep 2007 | EP |
1839898 | Oct 2007 | EP |
1839899 | Oct 2007 | EP |
1857275 | Nov 2007 | EP |
1873078 | Jan 2008 | EP |
1445209 | May 2008 | EP |
1918094 | May 2008 | EP |
1935636 | Jun 2008 | EP |
1968020 | Sep 2008 | EP |
1992476 | Nov 2008 | EP |
2230190 | Sep 2010 | EP |
2292524 | Mar 2011 | EP |
2754375 | Apr 1998 | FR |
2916157 | Nov 2008 | FR |
2943322 | Sep 2010 | FR |
2241230 | Aug 1991 | GB |
2273492 | Aug 1991 | GB |
2298391 | Sep 1996 | GB |
2004315035 | Nov 2004 | JP |
2000255621 | Sep 2009 | JP |
100711073 | Apr 2007 | KR |
100840926 | Jun 2008 | KR |
100886955 | Mar 2009 | KR |
05002905 | Feb 2006 | MX |
2010001867 | Apr 2010 | MX |
194965 | Jan 1997 | TW |
8902402 | Mar 1989 | WO |
9308084 | Apr 1993 | WO |
9702997 | Jan 1997 | WO |
9905041 | Feb 1999 | WO |
0066450 | Nov 2000 | WO |
2005100186 | Oct 2005 | WO |
2006018556 | Feb 2006 | WO |
2006021291 | Mar 2006 | WO |
2006073777 | Jul 2006 | WO |
2006099260 | Sep 2006 | WO |
2006108853 | Oct 2006 | WO |
2006108853 | Oct 2006 | WO |
2007109113 | Sep 2007 | WO |
2008027029 | Mar 2008 | WO |
2008027036 | Mar 2008 | WO |
2008039350 | Apr 2008 | WO |
2008125784 | Oct 2008 | WO |
2008125785 | Oct 2008 | WO |
2008148176 | Dec 2008 | WO |
2009092066 | Jul 2009 | WO |
2010115811 | Oct 2010 | WO |
2011039067 | Apr 2011 | WO |
2012079971 | Jun 2012 | WO |
2012113530 | Aug 2012 | WO |
2012152622 | Nov 2012 | WO |
2012172029 | Dec 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20140224800 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
60896816 | Mar 2007 | US | |
61936218 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12026723 | Feb 2008 | US |
Child | 14253901 | US |