This invention relates generally to a container structure that allows for the removal of vacuum pressure. This is achieved by inverting a transversely oriented vacuum pressure panel located in the lower end-wall, or base region of the container.
So called “hot-fill” containers are well known in the prior art, whereby manufacturers supply PET containers for various liquids which are filled into the containers while the liquid product is at an elevated temperature, typically at or around 85 degrees C. (185 degrees F.). The container is typically manufactured to withstand the thermal shock of holding a heated liquid, resulting in a “heat-set” plastic container. This thermal shock is a result of either introducing the liquid hot at filling, or heating the liquid after it is introduced into the container.
Once the liquid cools down in a capped container, however, the volume of the liquid in the container reduces, creating a vacuum within the container. This liquid shrinkage results in vacuum pressures that pull inwardly on the side and end walls of the container. This in turn leads to deformation in the walls of plastic bottles if they are not constructed rigidly enough to resist such forces.
Typically, vacuum pressures have been accommodated by the use of vacuum panels, which distort inwardly under vacuum pressure. Prior art reveals many vertically oriented vacuum panels that allow containers to withstand the rigors of a hot-fill procedure. Such vertically oriented vacuum panels generally lie parallel to the longitudinal axis of a container and flex inwardly under vacuum pressure toward this longitudinal axis. In addition to the vertically oriented vacuum panels, many prior art containers also have flexible base regions to provide additional vacuum compensation. Many prior art containers designed for hot-filling have various modifications to their end-walls, or base regions, to allow for as much inward flexure as possible to accommodate at least some of the vacuum pressure generated within the container.
All such prior art, however, provides for flat or inwardly inclined, or recessed base surfaces. These have been modified to be susceptible to as much further inward deflection as possible. As the base region yields to the force, it is drawn into a more inclined position than prior to having vacuum force applied.
Unfortunately, however, the force generated under vacuum to pull longitudinally on the base region is only half that force generated in the transverse direction at the same time. Therefore, vertically oriented vacuum panels are able to react to force more easily than a panel placed in the base. Further, there is a lot more surface area available around the circumference of a container than in the end-wall. Therefore, adequate vacuum compensation can only be achieved by placing vertically-oriented vacuum panels over a substantial portion of the circumferential wall area of a container, typically 60% of the available area. Even with such substantial displacement of vertically-oriented panels, however, the container requires further strengthening to prevent distortion under the vacuum force.
The liquid shrinkage derived from liquid cooling causes a build up of vacuum pressure. Vacuum panels deflect toward this negative pressure, to a degree lessening the vacuum force, by effectively creating a smaller container to better accommodate the smaller volume of contents. However, this smaller shape is held in place by the generating vacuum force. The more difficult the structure is to deflect inwardly, the more vacuum force will be generated.
In prior art, a substantial amount of vacuum is still present in the container and this tends to distort the overall shape unless a large, annular strengthening ring is provided in horizontal, or transverse, orientation at least one-third of the distance from an end to the container. Considering this, it has become accepted knowledge to believe that it is impossible to provide for full vacuum compensation through modification to the end-wall or base region alone. The base region offers very little surface area, compared to the side walls, and reacts to force at half the rate of the side walls.
Therefore it has become accepted practice to only expect partial assistance to the overall vacuum compensation to be generated through the base area. Further, even if the base region could provide for enough flexure to accommodate all liquid shrinkage within the container, there would be a significant vacuum force present, and significant stress on the base standing ring. This would place force on the sidewalls also, and to prevent distortion, the smooth sidewalls would have to be much thicker in material distribution, be strengthened by ribbing or the like, or be placed into shapes more compatible to mechanical distortion (for example, be square instead of circular).
For this reason it has not been possible to provide container designs in plastic that do not have typical prior art vacuum panels that are vertically oriented on the sidewall. Many manufacturers have therefore been unable to commercialize plastic designs that are the same as their glass bottle designs with smooth sidewalls.
U.S. Pat. No. 6,595,380 to Silvers claims to provide for full vacuum compensation through the base region without requiring positioning of vertically oriented vacuum panels on the smooth sidewalls. This is suggested by combining techniques well-known and practiced in the prior art. Silvers provides for a slightly inwardly domed, and recessed base region to provide further inward movement under vacuum pressure. However, the technique disclosed, and the stated percentage areas required for efficiency, are not considered by the present applicant to provide a viable solution to the problem. In fact, flexure in the base region is recognized to be greatest in a horizontally flat base region, and maximizing such flat portions on the base has been well practiced and found to be unable to provide enough vacuum compensation to avoid also employing vertically oriented vacuum panels.
Silvers does provide for the base region to be strengthened by coupling it to the standing ring of the container, in order to assist preventing unwanted outward movement of the inwardly inclined or flat portion when a heated liquid builds up initial internal pressure in a newly filled and capped container. This coupling is achieved by rib structures, which also serve to strengthen the flat region. Whilst this may strengthen the region in order to allow more vacuum force to be applied to it, the ribs conversely further reduce flexibility within the base region, and therefore reduce flexibility. It is believed by the present applicant that the specific “ribbed” method proposed by Silvers could only provide for approximately 35% of the vacuum compensation that is required, as the modified end-wall is not considered capable of sufficient inward flexure to fully account for the liquid shrinkage that would occur. Therefore a strong maintenance of vacuum pressure is expected to occur. Containers employing such base structure therefore still require significant thickening of the sidewalls, and as this is done the base region also becomes thicker during manufacturing. The result is a less flexible base region, which in turn also reduces the efficiency of the vacuum compensation achieved. The present invention relates to a hot-fill container which is a development of the hot-fill container described in our International Publication No. WO 2002/0018213 (the “PCT Application”), which is incorporated herein by reference in its entirety. The PCT Application describes the background of hot-fill containers and the problems with the designs that were overcome or at least ameliorated by the design disclosed in the PCT Application.
In the PCT Application, a semi-rigid container was provided that had a substantially vertically folding vacuum panel portion. Such a transversely oriented vacuum panel portion included an initiator portion and a control portion which generally resisted being expanded from the collapsed state. Further described in the PCT Application is the inclusion of vacuum panels at various positions along the container wall.
A problem exists when locating such a panel in the end-wall or base region, whereby stability may be compromised if the panel does not move far enough into the container to no longer form part of the container touching the surface the container stands on. A further problem exists when utilizing a transverse panel in the base end-wall due to the potential for shock deflection of the inverted panel when a full and capped container is dropped. This may occur on a container with soft and unstructured walls that is dropped directly on its side. The shock deflection of the sidewalls causes a shock-wave of internal pressure that acts on the panel. In such cases improved panel configurations are desired that further prevent panel roll-out, or initiator region configurations utilized that optimize for resistance to such reversion displacement.
According to one exemplary embodiment, the present invention relates to a container having a longitudinal axis, and comprising: an upper portion including an opening into the container; a sidewall portion extending from the upper portion to a lower portion, the lower portion including a base; and a pressure panel located in the lower portion substantially transversely to the longitudinal axis, the pressure panel being movable substantially along the longitudinal axis between an initial position and an inverted position to compensate for a change of pressure induced within the container; wherein the pressure panel comprises an initiator portion and a control portion, the initiator portion adapted to move in response to the change of pressure prior to the control portion.
According to another exemplary embodiment, the present invention relates to a container having a longitudinal axis, and comprising: an upper portion including an opening into the container; a sidewall portion extending from the upper portion to a lower portion, the lower portion including a base; a pressure panel located in the lower portion substantially transversely to the longitudinal axis, the pressure panel being movable substantially along the longitudinal axis between an initial position and an inverted position to compensate for a change of pressure induced within the container; wherein when in the initial position, at least a portion of the pressure panel defines an angle of inclination with respect to a plane orthogonal to the longitudinal axis that is greater than about 15 degrees.
According to yet another exemplary embodiment, the present invention relates to a container having a longitudinal axis, and comprising: an upper portion including an opening into the container; a sidewall portion extending from the upper portion to a lower portion, the lower portion including a base; a pressure panel located in the lower portion substantially transversely to the longitudinal axis, the pressure panel being movable substantially along the longitudinal axis between an initial position and an inverted position to compensate for a change of pressure induced within the container; and a hinge structure connecting the pressure panel to the lower portion; wherein the pressure panel moves from the initial position to the inverted position in response to internal vacuum forces developed within the container as a result of cooling of liquid contents within the container.
Further aspects of the invention which should be considered in all its novel aspects will become apparent from the following description.
a: shows an alternative container configuration;
a shows a cross-sectional view of a hot-fill container according to an alternative embodiment of the invention in its pre-collapsed condition;
b: shows a cross-sectional view of the container shown in
a-d: show cross-sectional views of the container according to an alternative embodiment of the invention incorporating a pusher to provide panel folding;
a-d: show cross-sectional views of the container according to a further alternative embodiment of the invention incorporating a pusher to provide panel folding;
a: shows the base of an alternative embodiment of the invention before collapsing;
b: shows the
c: shows the
a-b: show side and cross-sectional views of the container shown in
c: shows a bottom view of the base of the container of
d: shows a perspective view of the base of the container of
a: shows a side view of a container of
b: shows a cross-sectional view of the base of the container of
c: shows a bottom view of the base of the container of
d: shows a perspective view of the base of the container of
a-d: show side, side perspective, end perspective, and end views respectively of the container of
a-d: show side, side perspective, end perspective, and end views respectively of the container of
The following description of preferred embodiments is merely exemplary in nature, and is in no way intended to limit the invention or its application or uses. As discussed above, to accommodate vacuum forces during cooling of the contents within a heat set container, containers have typically been provided with a series of vacuum panels around their sidewalls and an optimized base portion. The vacuum panels deform inwardly, and the base deforms upwardly, under the influence of the vacuum forces. This prevents unwanted distortion elsewhere in the container. However, the container is still subjected to internal vacuum force. The panels and base merely provide a suitably resistant structure against that force. The more resistant the structure is, the more vacuum force will be present. Additionally, end users can feel the vacuum panels when holding the containers.
Typically at a bottling plant, the containers will be filled with a hot liquid and then capped before being subjected to a cold water spray resulting in the formation of a vacuum within the container which the container structure needs to be able to cope with. The present invention relates to hot-fill containers and a structure that provides for the substantial removal or substantial negation of vacuum pressure. This allows much greater design freedom and light weighting opportunities as there is no longer any requirement for the structure to be resistant to vacuum forces which would otherwise mechanically distort the container. As mentioned above and in the PCT Application, various proposals for hot-fill container designs have been put forward.
Further development of the hot-fill container of the PCT Application has positioned an outwardly inclined and transversely oriented vacuum panel between the lower portion of the side wall and the inwardly domed base region. In this position, the container has poor stability, insofar as the base region is very narrow in diameter and does not allow for a good standing ring support. Additionally, there is preferably provided a decoupling structure that provides a hinge joint to the juncture of the vacuum panel and the lower sidewall. This decoupling structure provides for a larger range of longitudinal movement of the vacuum panel than would occur if the panel was coupled to the side wall by way of ribs, for example. One side of the decoupling structure remains adjacent the sidewall, allowing the opposite side of the decoupling structure adjacent to an initiator portion to bend inwardly and upwardly. The decoupling structure therefore provides for increased deflection of the initiator portion, allowing increased movement of the panel portion longitudinally away from the previously outwardly inclined position, enabling the panel portion to fold inwardly relative to the container and upwardly relative to the initial base position. The lower sidewall is therefore subjected to lower force during such inversion. During this action, the base portion is translated longitudinally upward and into the container.
Further, as the panel portion folds inwardly and upwardly, the decoupling structure allows for the vacuum panel to now form part of the container base portion. This development has at least two important advantages. Firstly, by providing the vacuum panel so as to form part of the base after folding, a mechanical force can now be provided immediately against the panel in order to apply inverting force. This allows much greater control Over the action, which may, for example, be applied by a mechanical pusher, which would engage with the container base in resetting the container shape. This allows increased design options for the Initiator portion. Secondly, the transversely oriented vacuum panel is effectively completely removed from view as it is forced from an outward position to an inward position. This means that there are no visible design features being imposed on the major portion of the side wall of the container in order to incorporate vacuum compensation. If required therefore, the major portion of the side wall of the present invention could have no structural features and the container could, if required, replicate a clear wall glass container. Alternatively, as there will be little or no vacuum remaining in the container after the panel is inverted, any design or shape can now be utilized, without regard for integrity against vacuum forces found in other hot-fill packages. Such a maneuver allows for a wide standing ring to be obtained. The decoupling structure provides for the panel to become displaced longitudinally so that there is no contact between any part of the panel or upwardly domed base portion with the contact surface below. A standing ring is then provided by the lower sidewall immediately 20 adjacent the decoupling structure. Further, by gaining greater control over the inverting motion and forces, it is possible to allow the initiator portion to share the same steep angle as the control portion. This allows for increased volume displacement during inversion and increased resistance to any reversion back to the original position.
Referring to the accompanying drawings,
In
To assist this occurring, and as will be seen particularly in
Referring now particularly to
To allow for increased evacuation of vacuum it will be appreciated that it is preferable for at least a portion of the pressure panel 11 (e.g., the control portion 5) to have a steep angle of inclination. For example, as shown in the exemplary embodiment of
Referring to
Referring to
Referring specifically to
Referring to
The inwardly-directed or outwardly-projecting flutes or projections can function as ribs to increase the force required to invert the panel. It will be appreciated by one of ordinary skill in the art, that the forces applied to invert the panel will be sufficient to overcome any flute- or rib-strengthened panel, and that once the panel is inverted, the panel will be very resistant to reversion to the initial position, for example, if the container is dropped or shocked.
Referring to
Referring to the exemplary embodiment of
Due to the inversion of the panel, any deformation of the container shape due to the internal vacuum can be restored as a result of the internal volume reduction in the container. The vacuum within the container is removed as the inversion of the panel causes a rise in pressure. Such a rise in pressure can reduce vacuum pressure until ambient pressure is reached or even a slightly positive pressure is achieved.
It will be appreciate that in another exemplary embodiment of the invention, the panel may be inverted in the manner shown in
Referring again to
Although particular structures for the bottom portion of the side wall 9 are shown in the accompanying drawings it will be appreciated that alternative structures could be provided. For example, a plurality of folding portions could be incorporated about the base 2 in an alternative embodiment.
There may also be provided many different decoupling or hinge structures 13 without departing from the scope of the invention. With particular reference to
Referring to
Alternatively, the initiator portion can be located closer to the longitudinal axis A than the control portion. For example, referring to
Where in the foregoing description, reference has been made to specific components or to integers of the invention having known equivalents then such equivalents are herein incorporated as if individually set forth. Although this invention has been described by way of example and with reference to possible embodiments thereof, it is to be understood that modifications or improvements may be made thereto without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
506684 | Aug 2000 | NZ | national |
512423 | Jun 2001 | NZ | national |
521694 | Sep 2002 | NZ | national |
The present application is a continuation of U.S. patent application Ser. No. 11/704,338, filed Feb. 9, 2007, now U.S. Pat. No. 8,127,955, which is a continuation-in-part of U.S. patent application Ser. No. 10/529,198, filed Dec. 15, 2005, now U.S. Pat. No. 8,152,010, which claims priority of International Application No. PCT/NZ2003/000220, filed Sep. 30, 2003, which in turn claims priority of New Zealand Patent Application No. 521694, filed Sep. 30, 2002. U.S. patent application Ser. No. 11/704,338, is also a continuation-in-part of U.S. patent application Ser. No. 11/432,715, filed on May 12, 2006, now U.S. Pat. No. 7,717,282, which is a continuation of U.S. patent application Ser. No. 10/363,400, filed on Feb. 26, 2003, now U.S. Pat. No. 7,077,279, which is the U.S National Phase of PCT/NZ01/00176, filed on Aug. 29, 2001, which in turn claims priority to New Zealand Patent Application No. 506684, filed on Aug. 31, 2000, and New Zealand Patent Application No. 512423, filed on Jun. 15, 2001. The entire contents of the aforementioned applications, patents and publications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1499239 | Malmquist | Jun 1924 | A |
D110624 | Mekeel, Jr. | Jul 1938 | S |
2124959 | Vogel | Jul 1938 | A |
2378324 | Ray et al. | Jun 1945 | A |
2880902 | Owsen | Apr 1959 | A |
2960248 | Kuhlman | Nov 1960 | A |
2971671 | Shakman | Feb 1961 | A |
2982440 | Harrison | May 1961 | A |
3043461 | Glassco | Jul 1962 | A |
3081002 | Tauschinski et al. | Mar 1963 | A |
3174655 | Hurschman | Mar 1965 | A |
3301293 | Santelli | Jan 1967 | A |
3397724 | Bolen et al. | Aug 1968 | A |
3409167 | Blanchard | Nov 1968 | A |
3426939 | Young | Feb 1969 | A |
3468443 | Marcus | Sep 1969 | A |
3483908 | Donovan | Dec 1969 | A |
3485355 | Stewart | Dec 1969 | A |
3693828 | Kneusel et al. | Sep 1972 | A |
3704140 | Petit et al. | Nov 1972 | A |
3727783 | Carmichael | Apr 1973 | A |
3819789 | Parker | Jun 1974 | A |
3883033 | Brown | May 1975 | A |
3904069 | Toukmanian | Sep 1975 | A |
3918920 | Barber | Nov 1975 | A |
3935955 | Das | Feb 1976 | A |
3941237 | MacGregor | Mar 1976 | A |
3942673 | Lyu et al. | Mar 1976 | A |
3949033 | Uhlig | Apr 1976 | A |
4036926 | Chang | Jul 1977 | A |
4037752 | Dulmaine et al. | Jul 1977 | A |
4117062 | Uhlig | Sep 1978 | A |
4125632 | Vosti et al. | Nov 1978 | A |
4134510 | Chang | Jan 1979 | A |
4170622 | Uhlig | Oct 1979 | A |
4174782 | Obsomer | Nov 1979 | A |
4219137 | Hutchens | Aug 1980 | A |
4231483 | Dechenne et al. | Nov 1980 | A |
4247012 | Alberghini | Jan 1981 | A |
4301933 | Yoshino et al. | Nov 1981 | A |
4318489 | Snyder et al. | Mar 1982 | A |
4318882 | Agrawal et al. | Mar 1982 | A |
4321483 | Dugan | Mar 1982 | A |
4338765 | Ohmori et al. | Jul 1982 | A |
4355728 | Ota et al. | Oct 1982 | A |
4377191 | Yamaguchi | Mar 1983 | A |
4378328 | Przytulla | Mar 1983 | A |
4381061 | Cerny et al. | Apr 1983 | A |
D269158 | Gaunt et al. | May 1983 | S |
4386701 | Galer | Jun 1983 | A |
4412866 | Schoenrock et al. | Nov 1983 | A |
4436216 | Chang | Mar 1984 | A |
4444308 | MacEwen | Apr 1984 | A |
4450878 | Takada et al. | May 1984 | A |
4465199 | Aoki | Aug 1984 | A |
4497855 | Agrawal et al. | Feb 1985 | A |
4542029 | Caner et al. | Sep 1985 | A |
4610366 | Estes et al. | Sep 1986 | A |
4628669 | Herron et al. | Dec 1986 | A |
4642968 | McHenry et al. | Feb 1987 | A |
4645078 | Reyner | Feb 1987 | A |
4667454 | McHenry et al. | May 1987 | A |
4684025 | Copland et al. | Aug 1987 | A |
4685273 | Caner et al. | Aug 1987 | A |
D292378 | Brandt et al. | Oct 1987 | S |
4749092 | Sugiura et al. | Jun 1988 | A |
4773458 | Touzani | Sep 1988 | A |
4785949 | Krishnakumar et al. | Nov 1988 | A |
4785950 | Miller et al. | Nov 1988 | A |
4807424 | Robinson et al. | Feb 1989 | A |
4813556 | Lawrence | Mar 1989 | A |
4831050 | Cassidy et al. | May 1989 | A |
4836398 | Leftault, Jr. et al. | Jun 1989 | A |
4840289 | Fait et al. | Jun 1989 | A |
4850493 | Howard, Jr. | Jul 1989 | A |
4850494 | Howard, Jr. | Jul 1989 | A |
4865206 | Behm et al. | Sep 1989 | A |
4867323 | Powers | Sep 1989 | A |
4880129 | McHenry et al. | Nov 1989 | A |
4887730 | Touzani | Dec 1989 | A |
4892205 | Powers et al. | Jan 1990 | A |
4896205 | Weber | Jan 1990 | A |
4921147 | Poirier | May 1990 | A |
4967538 | Leftault et al. | Nov 1990 | A |
4976538 | Ake | Dec 1990 | A |
4978015 | Walker | Dec 1990 | A |
4997692 | Yoshino | Mar 1991 | A |
5004109 | Bartley | Apr 1991 | A |
5005716 | Eberle | Apr 1991 | A |
5014868 | Wittig et al. | May 1991 | A |
5024340 | Alberghini et al. | Jun 1991 | A |
5060453 | Alberghini et al. | Oct 1991 | A |
5067622 | Garver et al. | Nov 1991 | A |
5090180 | Sorensen | Feb 1992 | A |
5092474 | Leigner | Mar 1992 | A |
5133468 | Brunson et al. | Jul 1992 | A |
5141121 | Brown et al. | Aug 1992 | A |
5178290 | Ota et al. | Jan 1993 | A |
5199587 | Ota et al. | Apr 1993 | A |
5199588 | Hayashi | Apr 1993 | A |
5201438 | Norwood et al. | Apr 1993 | A |
5217737 | Gygax et al. | Jun 1993 | A |
5234126 | Jonas et al. | Aug 1993 | A |
5244106 | Takacs | Sep 1993 | A |
5251424 | Zenger et al. | Oct 1993 | A |
5255889 | Collette et al. | Oct 1993 | A |
5261544 | Weaver, Jr. | Nov 1993 | A |
5279433 | Krishnakumar et al. | Jan 1994 | A |
5281387 | Collette et al. | Jan 1994 | A |
5333761 | Davis et al. | Aug 1994 | A |
5341946 | Vailliencourt et al. | Aug 1994 | A |
5392937 | Prevot | Feb 1995 | A |
5411699 | Collette et al. | May 1995 | A |
5454481 | Hsu | Oct 1995 | A |
5472105 | Krishnakumar et al. | Dec 1995 | A |
5472181 | Lowell | Dec 1995 | A |
RE35140 | Powers, Jr. | Jan 1996 | E |
5484052 | Pawloski et al. | Jan 1996 | A |
5503283 | Semersky | Apr 1996 | A |
5593063 | Claydon et al. | Jan 1997 | A |
5598941 | Semersky | Feb 1997 | A |
5632397 | Fandeux et al. | May 1997 | A |
5642826 | Melrose | Jul 1997 | A |
5672730 | Cottman | Sep 1997 | A |
5690244 | Darr | Nov 1997 | A |
5704504 | Bueno | Jan 1998 | A |
5713480 | Petre et al. | Feb 1998 | A |
5730314 | Wiemann et al. | Mar 1998 | A |
5730914 | Ruppmann, Sr. | Mar 1998 | A |
5737827 | Kuse et al. | Apr 1998 | A |
5758802 | Wallays | Jun 1998 | A |
5762221 | Tobias et al. | Jun 1998 | A |
5780130 | Hansen et al. | Jul 1998 | A |
5785197 | Slat | Jul 1998 | A |
5819507 | Kaneko et al. | Oct 1998 | A |
5829614 | Collette et al. | Nov 1998 | A |
5858300 | Shimizu et al. | Jan 1999 | A |
5860556 | Robbins, III | Jan 1999 | A |
5887739 | Prevot et al. | Mar 1999 | A |
5888598 | Brewster et al. | Mar 1999 | A |
5897090 | Smith et al. | Apr 1999 | A |
5906286 | Matsuno et al. | May 1999 | A |
5908128 | Krishnakumar et al. | Jun 1999 | A |
D415030 | Searle | Oct 1999 | S |
5976653 | Collette et al. | Nov 1999 | A |
RE36639 | Okhai | Apr 2000 | E |
6065624 | Steinke | May 2000 | A |
6077554 | Wiemann et al. | Jun 2000 | A |
6105815 | Mazda et al. | Aug 2000 | A |
6176382 | Bazlur Rashid | Jan 2001 | B1 |
6213325 | Cheng et al. | Apr 2001 | B1 |
6228317 | Smith et al. | May 2001 | B1 |
6230912 | Rashid | May 2001 | B1 |
6277321 | Vailliencourt et al. | Aug 2001 | B1 |
6290094 | Arnold et al. | Sep 2001 | B1 |
6298638 | Bettle | Oct 2001 | B1 |
6375025 | Mooney | Apr 2002 | B1 |
6390316 | Mooney | May 2002 | B1 |
6413466 | Boyd et al. | Jul 2002 | B1 |
6439413 | Prevot | Aug 2002 | B1 |
6467639 | Mooney | Oct 2002 | B2 |
6485669 | Boyd et al. | Nov 2002 | B1 |
6502369 | Andison et al. | Jan 2003 | B1 |
6514451 | Boyd et al. | Feb 2003 | B1 |
6585124 | Boyd et al. | Jul 2003 | B2 |
6595380 | Silvers | Jul 2003 | B2 |
6612451 | Tobias et al. | Sep 2003 | B2 |
6662960 | Hong et al. | Dec 2003 | B2 |
6749780 | Tobias | Jun 2004 | B2 |
6763968 | Boyd et al. | Jul 2004 | B1 |
6769561 | Futral et al. | Aug 2004 | B2 |
6779673 | Melrose et al. | Aug 2004 | B2 |
6923334 | Melrose et al. | Aug 2005 | B2 |
6942116 | Lisch et al. | Sep 2005 | B2 |
6983858 | Slat et al. | Jan 2006 | B2 |
7051889 | Boukobza | May 2006 | B2 |
7077279 | Melrose | Jul 2006 | B2 |
7137520 | Melrose | Nov 2006 | B1 |
7150372 | Lisch et al. | Dec 2006 | B2 |
7159374 | Abercrombie, III et al. | Jan 2007 | B2 |
7520400 | Young et al. | Apr 2009 | B2 |
7717282 | Melrose | May 2010 | B2 |
8127955 | Denner et al. | Mar 2012 | B2 |
8152010 | Melrose | Apr 2012 | B2 |
20010035391 | Young et al. | Nov 2001 | A1 |
20020074336 | Silvers | Jun 2002 | A1 |
20020096486 | Bourque et al. | Jul 2002 | A1 |
20020153343 | Tobias et al. | Oct 2002 | A1 |
20020158038 | Heisel et al. | Oct 2002 | A1 |
20030015491 | Melrose et al. | Jan 2003 | A1 |
20030186006 | Schmidt et al. | Oct 2003 | A1 |
20030196926 | Tobias et al. | Oct 2003 | A1 |
20030217947 | Ishikawa et al. | Nov 2003 | A1 |
20040016716 | Melrose et al. | Jan 2004 | A1 |
20040074864 | Melrose et al. | Apr 2004 | A1 |
20040149677 | Slat et al. | Aug 2004 | A1 |
20040173565 | Semersky et al. | Sep 2004 | A1 |
20040173656 | Seong | Sep 2004 | A1 |
20040211746 | Trude | Oct 2004 | A1 |
20040232103 | Lisch et al. | Nov 2004 | A1 |
20060006133 | Lisch et al. | Jan 2006 | A1 |
20060138074 | Melrose | Jun 2006 | A1 |
20060231985 | Kelley | Oct 2006 | A1 |
20060243698 | Melrose | Nov 2006 | A1 |
20060255005 | Melrose et al. | Nov 2006 | A1 |
20060261031 | Melrose | Nov 2006 | A1 |
20070017892 | Melrose | Jan 2007 | A1 |
20070045312 | Abercrombie, III et al. | Mar 2007 | A1 |
20070051073 | Kelley et al. | Mar 2007 | A1 |
20070084821 | Bysick et al. | Apr 2007 | A1 |
20070125743 | Pritchett et al. | Jun 2007 | A1 |
20070181403 | Sheets et al. | Aug 2007 | A1 |
20070199915 | Denner et al. | Aug 2007 | A1 |
20070199916 | Denner et al. | Aug 2007 | A1 |
20070215571 | Trude | Sep 2007 | A1 |
20070235905 | Trude et al. | Oct 2007 | A1 |
20080047964 | Denner et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
2077717 | Mar 1993 | CA |
1302048 | Oct 1969 | DE |
17 61 753 | Jan 1972 | DE |
1761753 | Jan 1972 | DE |
21 02 319 | Aug 1972 | DE |
32 15 866 | Nov 1983 | DE |
0 521 642 | Jan 1993 | EP |
0 551 788 | Jul 1993 | EP |
0 666 222 | Aug 1995 | EP |
0 609 348 | Jan 1997 | EP |
0 916 406 | May 1999 | EP |
0 957 030 | Nov 1999 | EP |
1 063 076 | Dec 2000 | EP |
1565381 | Aug 2005 | EP |
1571499 | Jun 1969 | FR |
2607109 | May 1988 | FR |
781103 | Aug 1957 | GB |
1113988 | May 1968 | GB |
2050919 | Jan 1981 | GB |
2372977 | Sep 2002 | GB |
2000-677 | Aug 2000 | GE |
48-31050 | Sep 1973 | JP |
49-28628 | Jul 1974 | JP |
54-72181 | Jun 1979 | JP |
56-72730 | Jun 1981 | JP |
55-114717 | Feb 1982 | JP |
63-189224 | Aug 1988 | JP |
64-009146 | Jan 1989 | JP |
03-043342 | Feb 1991 | JP |
03-076625 | Apr 1991 | JP |
05-193694 | Aug 1993 | JP |
06-336238 | Dec 1994 | JP |
07-300121 | Nov 1995 | JP |
8053115 | Feb 1996 | JP |
08-253220 | Oct 1996 | JP |
09-039934 | Feb 1997 | JP |
09-110045 | Apr 1997 | JP |
10-167226 | Jun 1998 | JP |
10-181734 | Jul 1998 | JP |
10-230919 | Sep 1998 | JP |
2000-168756 | Jun 2000 | JP |
2000-229615 | Aug 2000 | JP |
2002-127237 | May 2002 | JP |
2006-501109 | Jan 2006 | JP |
240448 | Jun 1995 | NZ |
296014 | Oct 1998 | NZ |
335565 | Oct 1999 | NZ |
506684 | Aug 2000 | NZ |
512423 | Jun 2001 | NZ |
521694 | Oct 2003 | NZ |
2021956 | Oct 1994 | RU |
2096288 | Nov 1997 | RU |
WO 9309031 | May 1993 | WO |
WO 9312975 | Jul 1993 | WO |
WO 9405555 | Mar 1994 | WO |
WO 9703885 | Feb 1997 | WO |
WO 9714617 | Apr 1997 | WO |
WO 9734808 | Sep 1997 | WO |
WO 9921770 | May 1999 | WO |
WO 0051895 | Sep 2000 | WO |
WO 0140081 | Sep 2001 | WO |
WO 0202418 | Jan 2002 | WO |
WO 0218213 | Mar 2002 | WO |
WO 02085755 | Oct 2002 | WO |
WO 2004028910 | Apr 2004 | WO |
WO 2004106175 | Dec 2004 | WO |
WO 2004106176 | Dec 2004 | WO |
WO 2005012091 | Feb 2005 | WO |
WO 2006113428 | Oct 2006 | WO |
WO 2007127337 | Nov 2007 | WO |
Entry |
---|
European Search Report (suppl.) of EP 03748817, dated Jul. 9, 2007. |
IPRP for PCT/NZ03/00220, completed Jan. 11, 2005. |
ISR for PCT/NZ01/000176 (WO 02/018213), mailed Nov. 8, 2001. |
ISR for PCT/NZ03/00220, mailed Nov. 27, 2003. |
Notice of Rejection of Japanese Patent Application No. 2002-523347, dated May 24, 2011. |
Notice of Rejection of Japanese Patent Application No. 2002-523347, dated May 29, 2012. |
National Intellectual Property Center of Georgia “SAKPATENTI”, Search Report in Filing No. 8770/01, Application No. AP2003 008770, GE19049, Mar. 1, 2006. |
IPRP with Written Opinion for PCT/US2004/024581, dated Jan. 30, 2006. |
IPRP with Written Opinion for PCT/US2007/010182, Oct. 28, 2008. |
IPRP with Written Opinion for PCT/US2004/016405; completed Nov. 25, 2005. |
ISR for PCT/US2004/024581, Jul. 25, 2005. |
ISR for PCT/US2007/010182, Oct. 19, 2007. |
Article 94(3) EPC Communication for EP2354018, dated Oct. 30, 2014, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130043208 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11704338 | Feb 2007 | US |
Child | 13412572 | US | |
Parent | 10363400 | US | |
Child | 11432715 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10529198 | US | |
Child | 11704338 | US | |
Parent | 11432715 | May 2006 | US |
Child | 10529198 | US |