1. Field
Certain embodiments disclosed herein relate generally to container systems. In particular, the container systems can be collapsible containers used for many different purposes including storage and/or shipping.
2. Description of the Related Art
Collapsible containers are commonly used in the shipping industry. Collapsible containers may be reused and the collapsibility of shipping containers can help reduce storage and/or waste disposal costs for those receiving shipments. Collapsibility can also increase the customizability of shipping containers.
Accordingly, there is a continued need for improved containers, such as collapsible shipping containers, and container assembly/disassembly methods, among other things.
Preferably, a container includes a plurality of wall portions. The wall portions can fit together and be can secured via clips that engage with adjacent wall portions. The wall portions can include one or more inserts that each fits within a groove or notch in a wall portion. In such embodiments, the clips can have engagement portions (e.g., crimped ends, protrusions, hooks, etc.) that connect to and/or fit within the inserts.
In some embodiments a collapsible container assembly can include a plurality of sides, a plurality of inserts, and at least one clip. The plurality of sides can be configured to connect and disconnect to form a collapsible container. Each side has an internal surface and an external surface. At least two of the sides can have at least one groove in their external surfaces. Each insert can be configured for placement within one of the grooves. Each insert can have a base portion and a flange portion, the base portion having a mating surface and at least one internal surface, the mating surface configured to engage with the grooves, the flange portion extending outwardly from at least a portion of a periphery of the base portion, the flange portion having an outer periphery, the outer periphery positioned outside the groove when the insert is installed within the groove. The at least one clip can have a general L-shape with two ends, each of the two ends having an engagement feature configured to engage with and to be received into the at least one internal surface of an insert.
According to some embodiments, collapsible container assembly can include a plurality of sides configured to connect and disconnect to form a collapsible container, each side having an internal surface and an external surface, at least two of the sides having at least one slot on their external surfaces. The container can also include a plurality of inserts and at least one clip. Each insert can be configured to fit within one of the plurality of slots and can have a base portion and a flange portion. The base portion can fit within one of the slots and the flange portion can extend from the base portion, being configured to be positioned outside of the slot. The at least one clip can have a first end and a second end, each end having an engagement feature configured to engage with at least one of the plurality of inserts positioned within one of the slots of the plurality of sides.
A method of assembling a collapsible container assembly can include: selecting a first side member having a plurality of first side edges and a plurality of first side slots, each first side slot positioned on an outwardly-facing surface of the first side member and adjacent a first side edge, at least one of the first side slots including an insert installed within the at least one first side slot; selecting a second side member having a plurality of second side edges and a plurality of second side slots, each second side slot positioned on an outwardly-facing surface of the second side member and adjacent a second side edge, at least one of the second side slots including an insert installed within the at least one second side slot; positioning the second side member perpendicular to the first side member with one of the first side edges adjoining one of the second side edges; and connecting a clip to the insert installed within the at least one first side slot and to the insert installed within the at least one second side slot.
Certain embodiments of the method may include: installing at least one insert into at least one of the at least one first side slot and the at least one second side slot.
Certain embodiments of the method may include: selecting a third side member having a plurality of third side edges and a plurality of third side slots, each third side slot positioned on an outwardly-facing surface of the third side member and adjacent a third side edge, at least one of the third side slots including an insert installed within the at least one third side slot; positioning the third side member perpendicular to both the first side member and the second side member one of the first side edges adjoining one the third side edges and one of the second side edges adjoining one of the third side edges; and connecting a clip to the insert installed within the at least one third side slot and to the insert installed within the at least one second side slot.
These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments.
In various embodiments, the container has a generally cubic shape, has a generally cylindrical shape, is a rectangular prism, or has any other shape. Each wall of the container can comprise a single side portion or a plurality of side portions. Additionally, each wall can comprise a single groove, a plurality of grooves, or no grooves. Other configurations are also possible for the container. In some embodiments, the container includes one or more handles or other features for assisting with transport of the container.
In some configurations, the container assembly 100 comprises a collapsible container. The collapsible container can be assembled and disassembled without the use of fasteners (e.g., nails, tacks, screws, bolts, etc.) or adhesives (e.g., glue, tape, epoxy, welding, etc.). The collapsible container can be reusable. For example, the collapsible container can be put together, shipped, disassembled, stored, put back together, and shipped again. Of course these steps are not required, but offer an example of how a collapsible container may be used. Non-collapsible containers and non-collapsible components of the container are also anticipated, such containers and components being assembled using adhesive and/or fasteners.
In certain embodiments, the container assembly 100 comprises a plurality of sides 110. Each side 110 can comprise a single side portion, as illustrated in
Continuing to refer to
In certain embodiments, each of the sides 110 has the same shape and size as each other side 110. In such embodiments, the container assembly 100 can have a cubic shape. In other embodiments, the shapes, lengths, and/or widths of the plurality of sides 110 can vary from one another and, in some configurations, the plurality of sides 110 can be assembled to produce containers 100 with shapes other than cubes and rectangular prisms. For example, without limitation, the container assembly 100 can have a cylindrical shape, a triangular prism shape, or any other similar shape.
Each insert 130 can include a base 132 and a flange portion 134. The base 132 can be configured to engage with and receive the first and/or second engagement features 152, 154 of the clip 150. Furthermore, the base 132 can be configured to fixedly and/or releasably engage with the grooves 112 in the exterior surface 114 of the sides 110 of the container assembly 100.
In some applications, the bend 155 can have a small (e.g., 5-10% of L1 and/or L2) radius of curvature, as illustrated, a negligible radius of curvature (e.g., a kink in the clip 150), or a large (e.g., 10-30% of L1 and/or L2) radius of curvature. In some embodiments, the clip 150 has a generally curved shape (e.g., the radius of curvature is equal to at least one of L1 and L2). Bends with certain radii of curvature can be appropriate for certain container assemblies 100. For example, a generally curved-shape clip 150 could be useful and appropriate for connecting two curved sides 110 of a container assembly 100 to each other as the shape of the clip 150 can be generally aligned with the shape of the container assembly 100. Similarly, bends 155 with a small or negligible radius of curvature may be useful and appropriate for connecting two perpendicular sides 110 of a container assembly 100.
An angle θ between the first clip portion 151 and the second clip portion 153 can be greater than about 45° and/or less than about 135° when the clip 150 is in a disconnected state (e.g., not engaged with inserts 130 or grooves 112). In some embodiments, the angle θ is approximately 75° when the clip 150 is in the disconnected state. As illustrated in
The first and second engagement features 152, 154 can comprise many different and/or alternative means for engaging with a groove 112 and/or an insert 130 in the exterior surface 114 of a side 110 of a container assembly 100. For example, as illustrated in
With reference again to
One or both of the first engagement feature 152 and second engagement feature 154 can include one or more clip release features 156. In some embodiments, the clip release feature 156 comprises one or more protrusions, tongues, or lips, which may include flat unbent portions on the end of the first and/or second clip portions 152, 153 opposite the bend 155. The clip release feature 156 can be used to assist with the removal of the subject clip 150 and/or with removing other clips 150 from an assembled container assembly 100, as explained below. The clip release feature 156 is shown extending from the end of the clip, between the two U- or V-shaped engagement features 154. The clip release feature 156 can be one a side of the clip and may be at the end or at an intermediary position. The clip release feature 156 can have one of many different shapes. As shown, the clip release feature 156 has a low profile and extends over the groove 112 and/or over the inner cavity of the insert 130. As can be seen with reference to
Each of the features discussed with respect to the first and/or second engagement features 152, 154 could apply to the other engagement feature or to both the first and second engagement features 152, 154.
In some embodiments, as illustrated, the clips 150 can include one or more surface features 157. The surface features 157 can comprise through holes, as illustrated. In some embodiments, the surface features 157 comprise channels or groove in the surfaces of the clips 150. For example, grooves could be manufactured into the surfaces of the clips 150 to provide for improved grip. Furthermore, one or more ridges 159 can be manufactured onto the surfaces of the clips 150, as illustrated in FIGS. 3A and 4A-4B. Such ridges 159, for example, could extend along the lengths L1, L2 of the first and second clip portions 151, 153 between the first engagement feature 152 and the second engagement feature 154. In some such embodiments, the ridges 159 could extend only along a portion of one or more of the lengths L1 and L2.
As illustrated in
The clips 150 can be constructed from a range of materials, including plastics, polymers, steel, tin, aluminum, or any other appropriate material or combination of materials. The clips 150 can be manufactured using injection molding, forging, or any other method known in the art. For example, a clip 150 can be manufactured from a single sheet of metal (301 stainless steel, tin, aluminum, etc.). The sheet can be bent to an angle θ to create the bend 155 and the two clip portions 151, 153. One or both of the ends of the sheet can be bent to form, for example, U-shaped engagement features 152, 154. Furthermore one or both of the ends of the sheet can be milled or otherwise processed to separate the end into a plurality of end portions. One or more of the plurality of end portions can be bent to form, for example, U-shaped engagement features 154, as illustrated in
The base 132 can be sized and shaped to fit within one or more of the grooves 112 in the exterior surface 114 of the sides 110 of the container assembly 100. The exterior surface 138 of the insert 130 can include one more mating features. The mating feature can provide many benefits. For example, the mating features can be used to help secure the insert in the groove. As illustrated in
The receiving surface 133 of the base 132 can be sized and shaped to receive the first engagement feature 152 and/or to receive the second engagement feature 154. The base 132 can include a plurality of receiving surfaces. In some such cases, the plurality of receiving surfaces can be configured to receive and engage with a plurality of engagement features 152, 154. For example, the base 132 can include two receiving surfaces configured to receive and engage with the two engagement features 154 on the end of the second clip portion 153 opposite the bend 155. The receiving surface(s) 133 can include surface features (e.g., bumps, grooves, ridges, etc.) configured to enhance the engagement between the first or second engagement features 152, 154 and the insert 130. In some embodiments, the base 132 could be partially, mostly, or completely solid (e.g., having no interior region or interior surface) and may include one or more outwardly projecting features (e.g., ridges, bumps, etc.) with which the first and/or second engagement features 152, 154 are configured to engage. These outwardly projecting features may be used in combination with or instead of the illustrated one or more cavities or recessed portions.
The insert 130 can include a flange portion 134 connected to or unitary with the base 132. The flange portion 132 may define at least a portion of the face of the insert. The flange portion 134 can extend outwardly from the base 132 around at least a portion of a periphery of the base 132. For example, the flange portion 134 may extend in one, two, or more directions from the base 132. As shown, the flange portion 134 extends in four directions from the sides of the base 132. The flange portion 134 can be sized to completely cover the groove 112 in which an insert 130 is installed. In some embodiments, the insert 130 inhibits water or other liquids and/or fluids from accessing the groove 112 in which the insert 130 is installed. The insert 130 may form a water tight or substantially water tight seal with the groove 112 and/or the panel 110. The flange portion 134 may further help prevent liquid from accessing the groove. In the absence of an insert 130, liquid can collect in the groove 112 and cause damage (e.g., rotting, bubbling, warping, etc.) to the groove 112. Inhibiting fluids from accessing the grooves 112 can help reduce the likelihood that the grooves 112 sustain damage, thus increasing the durability and life of the side/panels in which the inserts 130 are used.
The flange portion 134 can have one of many different shapes and cross sections. The flange portion 134 can include a tapered portion 135 around at least a portion of the periphery of the flange portion 134 (see
In some embodiments, the flange portion 134 includes a plurality of grooves or other surface features 136 (e.g., ridges, bumps, notches, etc.) as best seen in
The inserts 130 can be constructed from many materials such as plastic, nylon, metal, or other materials or combinations of materials. The inserts 130 can be manufactured using injection molding or any other process known to those skilled in the art.
The use of insets 130 in the container assembly 100 can increase the life of the sides 110 of the container assembly 100. The grooves 112 are generally the weakest structural point on the sides 110. Inserts 130 can strengthen and protect the grooves 112, thereby increasing the life of a given side 110 and the container generally.
Turning now to
As shown in
Each of the sides 110 of the container assembly 100 can comprise a single panel. Such panels could be constructed of many materials, including plywood, metal, plastic, OSB wood, etc. The panels could be coated with plastics or other coatings in order to, in some situations, increase the durability of the panels. In some embodiments, the panels/sides are constructed of non-flammable material.
The use of inserts 130 can enable the use of the panel materials listed above and/or additional materials for the sides 110 of the container assembly 100. In particular, the use of inserts can enable the use of panel materials not previously or typically used as collapsible shipping containers. For example, one or more of the sides 110 can be constructed of a wire mesh or other porous and/or permeable material. The use of such materials can provide a lighter weight container, can allow for ventilation within the container assembly 100 and/or a fireproof container. The inserts 130 can provides structural stability in the vicinity of the grooves 112 in the sides 110 that would otherwise be lacking in the absence of inserts 130. Furthermore, the inserts 130 can increase structural tolerance for rougher and less precise machining for the grooves 112 in the exterior surfaces 114 of the sides 110, which can reduce the manufacturing costs for the sides 110 of the container assembly. The use of inserts 130 can also facilitate the use of lighter and/or less durable materials, such as paper honeycomb and polystyrene. That is, the use of inserts 130 can spread the load applied by the clips 150 across a greater area than that of the clip 150 itself, to inhibit or avoid deformation or damage to the sides 110. Additionally, the use of inserts 130 with a container assembly 100 gives the assembly 100 a unique look and feel.
As illustrated in
In some embodiments, each of the grooves 112 are located at the same distance D1, D2 from respective adjacent side 110 edges. In such embodiments, clips 150 with identical lengths L1, L2 for the first clip portion 151 and second clip portion 153 can be used. Identical distances D1 and D2 can reduce complications in the assembly process for the container assembly 100 by allowing the clips 150 to be engaged with the slots 130 and/or grooves 112 without matching lengths L1, L2 to distances D1, D2. In some cases, the distances D1 and D2 are not identical. In such cases, used of clips 150 with varying lengths L1, L2 for the first and second clip portions 151, 153 can be required.
For the sake of simplicity, a method for assembling a six-sided rectangular prism container will now be described. Many different container shapes and sizes are contemplated, including but not limited to the shapes cited above.
A method of assembling the container assembly 100 can include selecting a first side/panel 110 having a plurality of grooves 112 in its outer surface 114. The first side/panel 110 can be a bottom and may include a pallet base or other type of base. In some embodiments, the first side/panel 110 and/or subsequent sides/panels 110 include inserts 130 preinstalled within one or more of the grooves 112 of each side/panel 110. In some other embodiments, the assembler would install an insert 130 into one or more of the grooves 112. Upon selection of a first side/panel 110, a second side/panel 110 can then be aligned perpendicular to the first side/panel 110 such that an edge of the first side/panel 110 is adjoined to an edge of the second side/panel 110. Preferably, each of the first and second sides/panels 110 has the same number of grooves 112 adjacent the adjoined edges, with each of the grooves 112 on the first side/panel 110 opposing a corresponding groove 112 on the second side/panel 110 in the same position along the length of the adjoined edges.
One or more clips 150 can then be used to connect one or more of the corresponding pairs of grooves 112, thereby affixing the first side/panel 110 to the second side/panel 110. The one or more clips 150 can connect the one or more pairs of grooves 112 by engaging with the bases 132 of the inserts 130 via the first and second engagement features 152, 154 of the clips 150.
A third side/panel 110 can be aligned perpendicular to both the first side/panel 110 and the second side/panel 110 such that an edge of each of the first side/panel 110 and the second side/panel 110 is adjoined to an edge of the third side/panel 110. Corresponding grooves 112 can be connected to one another using the same method described above with respect to the connection between the first side/panel 110 and the second side/panel 110.
Similarly, a fourth side/panel 110 can be adjoined to any two of the already-assembled side/panels 110. The process outlined above can be continued until six sides/panels 110 are connected to each other to form a container assembly 100 having a rectangular prism shape. In some embodiments, the edges of at least one of the sides/panels 110 are rabbeted to further stabilize the connection between at least two of the sides/panels 110. Such rabbeting 118 is illustrated in
Disassembly of an assembled container assembly 100 can begin with disconnecting one of the clips 150 from a pair of inserts 130. In some embodiments, a clip 150 can be disconnected from an insert 130 by using any wedge or lever device (e.g., screwdriver, crowbar, etc.) to pry one of the first clip portion 151 and the second clip portion 153 away from the container assembly 100, thus breaking the connection between one of the first engagement feature 152 and the second engagement feature 154 from its corresponding insert 130. An extra clip 150 or a previously removed clip may also be used to remove the attached clips 150. The clip release feature 156 can be engaged by the wedge or lever device, to release the clip. In some embodiments, the clip release feature 156 on at least one end of the removed clip 150 can also be used as a lever to remove the remaining clips 150. For example, the clip release feature 156 of an already-removed clip 150 can be inserted between the exterior surface 114 of a side 110 of the container assembly 100 and one of the first clip portion 151 and second clip portion 153 of a connected clip 150. The already-removed clip 150 can then be used as a lever to lift the first or second clip portion 151, 153 of the connected clip 150 away from the container assembly 100, thus releasing the connected clip 150 from the inserts 130 and/or grooves 112 in which it is installed. Using these methods, each of the plurality of sides/panels 110 of the container assembly 100 can be disconnected from each of the other sides/panels 110.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. In addition, while a number of variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Similarly, this method of disclosure, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.
The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/511,951 filed on Jul. 26, 2011, the disclosure of which is incorporated by reference herein in its entirety and is to be considered party of this specification.
Number | Date | Country | |
---|---|---|---|
61511951 | Jul 2011 | US |