Container verification through an electrical receptacle and plug associated with a container and a transport vehicle of an intermodal freight transport system

Information

  • Patent Grant
  • 9316737
  • Patent Number
    9,316,737
  • Date Filed
    Tuesday, May 21, 2013
    11 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
A method and system related to container identification through an electrical receptacle and plug associated with the container of an intermodal freight transport system is disclosed. According to one embodiment, a method includes coupling an electrical power plug of a container and an electrical power receptacle of a transport vehicle. Also, the method includes activating a tracking device of the container through a switch and actuator coupling. Further, the method includes verifying an identity of the container upon coupling the electrical power plug to the electrical power receptacle through an identification tag of the container and an electronic reader. Furthermore, the method may include conserving battery power through deactivating the tracking device of the container when the electrical power plug is de-coupled to the electrical power receptacle. The method may also include delivering an alert message to a driver when an incorrect container is identified.
Description
FIELD OF TECHNOLOGY

This disclosure relates generally to the technical field of geospatial freight tracking, and in one example embodiment, to a method and system of container verification through an electrical receptacle and plug associated with a container and a transport vehicle of an intermodal freight transport system.


BACKGROUND

In an intermodal freight distribution business, a client may wish to track a container of a shipment of goods delivered through a land based route (e.g., by train, bus, truck). For example, the client may wish to estimate how long the shipment of containers may take to reach a destination. Furthermore, the client may wish to receive a report of an event related to a movement and/or a manipulation of the container of the shipment (e.g. loading/unloading on a freight train or tractor chassis, opening/closing of doors). Tracking devices may not work when placed on the container of the shipment because there may not be enough power during the shipment. In addition, a harsh and an inclement environment may damage any external items (e.g. tracking devices) affixed to the container.


Further, a container fixed to a chassis with wheels (e.g., semi-truck trailer) may mate with a tractor (e.g., semi-truck or articulated vehicle) in a shipping yard. A driver of the tractor may become confused in the shipping yard and may mate to the wrong trailer. The trailer may be located at a wrong terminal and may also cause the driver to mate to the wrong trailer. The trailer and goods onboard may be delivered to the wrong location. The owner of the goods may suffer monetary losses. Also, a shipping company may suffer fuel and/or time losses in addition to any fees paid due to damages. Thus, the shipping company may wish to verify that a correct trailer has been mated to a correct tractor.


Additionally, the shipping company may wish to have a verification mechanism that requires no additional work process and/or action on the part of the driver. For example, in a typical scenario, the driver may mate the trailer to the tractor via 5th wheel hitch. Also, the driver may connect an electrical system of the tractor to the trailer in order to power the trailer (e.g., trailer lights, blinkers, communication to tractor). Thus, the shipping company may wish to have verification and/or geospatial tracking occur while the driver performs no more actions than these.


SUMMARY

A method and system related to container verification through an electrical receptacle and an electrical plug associated with a container and a transport vehicle of an intermodal freight transport system is disclosed. In one aspect, a method of an intermodal transport tracking system includes coupling an electrical power plug of a container and an electrical power receptacle of a transport vehicle. Further, the method includes activating a tracking device of the container through a switch and actuator coupling of at least one of the electrical power plug and the electrical power receptacle. Furthermore, the method includes verifying an identity of the container upon coupling the electrical power plug to the electrical power receptacle through an identification tag of the container and an electronic reader.


In another aspect, a method of an intermodal transport tracking system involves activating a tracking device of at least one of a container and a transport vehicle through a switch and actuator coupling of an electrical power plug and an electrical power receptacle. The method also involves generating a location data, when the electrical power plug is coupled to electrical power receptacle, through a global positioning system (GPS) of the tracking device. Further, the method involves reading an identification tag of the container, through an electronic reader of the electrical power receptacle, to discover an identification number upon a mate event.


According to another aspect, a system includes an electrical power receptacle of a transport vehicle and an electrical power plug of a container. Also, the system includes a switch and actuator coupling to signal a mate event between the electrical power plug and the electrical power receptacle. Further, the system includes an electronic reader and an identification tag comprising a container number, wherein the container number may confirm an identity of the container. The system also includes a tracking device to provide location data associated with at least one of the container and the transport vehicle. Furthermore, the system includes an administrative server to gather location data, wherein the tracking device is communicatively coupled therewith.


The methods, system, and/or apparatuses disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of machine readable medium embodying a set of instruction that, when executed by a machine, causes the machine to perform any of the operation disclosed herein. Other features will be apparent from the accompanying drawing and from the detailed description that follows.





BRIEF DESCRIPTION OF DRAWINGS

Example embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawing, in which like references indicate similar elements and in which:



FIG. 1 is a schematic view illustrating a coupling of a container to a chassis pulled by a truck tractor, according to one embodiment.



FIG. 2 is a schematic view illustrating an activation of a container reader of a chassis, a container tracking device and a chassis tracking device based on the coupling, of FIG. 1, of the container to the chassis, according to one embodiment.



FIG. 3 is schematic view illustrating a communication of a location data and a container identification number to an administrative server through a network by at least one of the container tracking device and the chassis tracking device of FIG. 2, according to one embodiment.



FIG. 4 is a time lapse diagram depicting a detection of an initial movement of the chassis of FIG. 1 and a calculation of a duration of continuous movement of the chassis and a duration of a stationary condition of the chassis, according to one embodiment.



FIG. 5 portrays an opening and a closing of a door of a container as detected through a door sensor of the container of FIG. 1, according to one embodiment.



FIG. 6 illustrates a communication of a container tracking device and a chassis tracking device of FIG. 1 to an administrative server of FIG. 3 through a network based on a set of events triggering the communication, according to one embodiment.



FIG. 7 depicts an administrative view of a case table listing a plurality of communication events associated with an intermodal freight transport system and a graphics user interface view illustrating a geographical origin of the events based on the communication of FIG. 3 of a location data and a container identification number to an administrative server through the network, according to one embodiment.



FIG. 8 is a process flow chart outlining the coupling, of FIG. 1, of a container and a chassis and a subsequent communication of a location data and a container identification number to an administrative server through at least one of a container tracking device and a chassis tracking device, according to one embodiment.



FIG. 9 is a process flow chart describing a set of events triggering the communication of FIG. 3 of a location data and a container identification number to an administrative server through a container tracking device, according to one embodiment.



FIG. 10 is a process flow chart describing a set of events triggering a communication of a location data and a container identification number to an administrative server through a chassis tracking device, according to one embodiment.



FIG. 11 depicts a tractor and a trailer mated through a 5th wheel hitch and through an electrical receptacle and an electrical plug, according to one embodiment.



FIG. 12 depicts an electrical receptacle and electrical plug with the switch and actuator coupling, container reader, and identification tag of FIG. 1, according to one embodiment.



FIG. 13 is a process flow chart outlining a mating event between the tractor and trailer of FIG. 11, including a mating event between an electrical system of the tractor and trailer, according to one embodiment.





Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.


DETAILED DESCRIPTION

Example embodiments, as described below, may be used to provide a method, a system, and/or an apparatus of implementing container verification through an electrical receptacle and plug associated with a container and a transport vehicle of an intermodal freight transport system, according to one or more embodiments.



FIG. 1 is a schematic view illustrating a coupling of a container 106 to a chassis 100 pulled by a truck tractor, according to one embodiment. Particularly, FIG. 1 depicts a coupling 101A of a first switch 102 of a housing 105 of a chassis 100 to a second actuator 108 of the container 106 when the container 106 is placed on the chassis 100. In addition, FIG. 1 depicts a coupling 101B of a second switch 110 of the container 106 to a first actuator 104 of a housing 105 of the chassis 100 when the container 106 is placed on the chassis 100. The chassis 100 may provide a capability to mount a container 106. The container 106 may be a standard, reusable steel box used to safely, efficiently, and/or securely transport a shipment of goods distributed through an intermodal freight transport system. The chassis 100 may be a secure container docking trailer associated with an intermodal transport vehicle (e.g., a railcar, a truck) as part of an intermodal freight transport system.


A switch (e.g. a first switch 102, a second switch 110) may be an electrical component that, when trigged by an actuator (e.g. a first actuator 104, a second actuator 108), may complete or interrupt an electrical circuit. The switch may be a magnetic switch or a pressure switch. The actuator may be a magnet in the case of a magnetic switch or an application of pressure by the container 106 in the case of a pressure switch. The switch may be designed to activate (e.g. through a wake event 200 of FIG. 2) a number of electrical devices (e.g., the container tracking device 112, the chassis tracking device 114, the container reader 116 of FIG. 1) associated with the circuit when the switch is coupled to an appropriate actuator.



FIG. 2 is a schematic view illustrating an activation of a container reader 116 of a chassis 100, a container tracking device 112, and/or a chassis tracking device 114 based on the coupling, of FIG. 1, of the container 106 to the chassis 100, according to one embodiment. Particularly, FIG. 2 illustrates signaling a wake event 200 to a container tracking device 112 when the first switch 102 and the first actuator 104 of the chassis 100 is coupled with the second actuator 108 and the second switch 110 of the container 106. The container tracking device 112 may be a self-powered telemetry device designed to power on based on the signaling of the wake event 200 in FIG. 2. The container tracking device 112 may include an internal battery 202 and a GPS 204.



FIG. 2 illustrates powering the container tracking device 112 through an internal battery 202 of the container tracking device 112 based on the wake event 200. Furthermore, FIG. 2 also depicts activating a chassis tracking device 114 and a container reader 116 of the chassis when the first switch 102 of the chassis 100 is coupled with the second actuator 108 of the container 106. The chassis tracking device 114 and the container reader 116 may receive power (e.g., 7-way power) from a transport vehicle associated with the chassis 100. The chassis tracking device 114 may also include a GPS 206. A global positioning system (e.g., the GPS 204, the GPS 206) may be an integrated space-based satellite system that provides location and time information of at least one of the container 106 and the chassis 100 to an administrative server 306 to be displayed through an administrative graphics user interface 702, as shown in FIG. 7.


A container reader 116 may be a radio frequency identification scanner or an optical scanner designed to gather data from a tag (e.g., the identification tag 118 of FIG. 1) attached to an object. The container reader 116 may receive power (e.g., 7-way power) from a transport vehicle associated with the chassis 100. The container reader 116 may be activated by the coupling 101A of the second actuator 108 of the container 106 to the first switch 102 of the chassis 100. The container reader 116 may be configured to read an identification tag 118 of the container 106 to discover a container identification number 302 based on the coupling 101A of the second actuator 108 of the container 106 to the first switch 102 of the chassis 100.


It should be noted that the chassis 100 may include an electrical power plug and/or an electrical receptacle, according to common industry practice. Further, it should be noted that the container 106 may be considered a trailer 1102, according to another embodiment and industry practice. For example, an intermodal shipping container may be a semi-truck trailer.


According to an embodiment of FIG. 11, the tractor 1100 includes an electrical receptacle 1104 to couple an electrical system of the tractor 1100 and the trailer 1102. Further, the container 106 may include an electrical plug 1106 and/or an electrical receptacle 1104 to provide coupling of an electrical system thereof to a transport vehicle, in one or more embodiments. Furthermore, an existing electrical plug and/or electrical receptacle of the tractor 1100, the trailer 1102, and/or the container 106 may provide an optimal location to place the switch and actuator coupling 101B, as well as the identification tag 118 and container reader 116, according to one embodiment.



FIG. 3 is schematic view illustrating a communication of a location data 300 and a container identification number 302 to an administrative server 306 through a network 304 by at least one of a container tracking device 112 and a chassis tracking device 114 of FIG. 2, according to one embodiment. Specifically, FIG. 3 illustrates generating, through a GPS 204 or a GPS 206 of at least one of the container tracking device 112 and the chassis tracking device 114, a location data 300 when the first switch 102 and the first actuator 104 of the chassis 100 is coupled with the second actuator 108 and the second switch 110 of the container 106. In addition, FIG. 3 also illustrates reading an identification tag 118 of the container 106 through a container reader 116 of the chassis 100 to discover a container identification number 302 when the first switch 102 and the first actuator 104 of the chassis 100 is coupled with the second actuator 108 and the second switch 110 of the container 106. Furthermore, FIG. 3 also illustrates communicating the location data 300 and the container identification number 302 through at least one of the container tracking device 112 and the chassis tracking device 114, through a network 304, to an administrative server 306.


The network 304 (e.g., WAN, mobile, telecommunications, internet, intranet, and/or ZigBee network) may enable communication between the container tracking device and the administrative server 306 and between the chassis tracking device 114 and the administrative server 306. The administrative server 306 may be a remote processing and storage device associated with an intermodal freight transport system. The administrative server 306 may aggregate the location data 300 and the container identification number 302 of a multiplicity of containers in a case table 700 and may geographically display the location of the multiplicity of containers through an administrative graphics user interface 702 of the administrative server 306, as shown in FIG. 7.


Referring to FIG. 7, depicted is an administrative view of a case table 700 listing a plurality of communication events associated with an intermodal freight transport system and an administrative graphics user interface view 702 illustrating a geographical origin of the events based on the communication, of FIG. 3, of a location data 300 and a container identification number 302 to an administrative server 306 through the network 304, according to one embodiment. The case table 700 may designate an event number 704, a container number 706, a location 708, and/or an event type 710. The event number 704 may indicate a chronological order of the events. The container number 706 may be based on a container identification number 302 discovered through a container reader 116 reading an identification tag 118 of a container 106. The location 708 may be based on a location data 300 generated by a GPS 204 of the container tracking device 112 and/or a GPS 206 of the chassis tracking device 114 when a first switch 102 and a first actuator 104 of the chassis 100 are coupled with the second actuator 108 and the second switch 110 of the container 106. The event type 710 may be based on any of a plurality of events associated with the chassis 100 (e.g., an initial movement 402, a duration 406 of continuous movement 404, a duration 410 of a stationary condition 408 of FIG. 4) and/or the container 106 (e.g., an opening 500 of a door 504 of the container 106, a closing 502 of the door 504 of the container of FIG. 5).



FIG. 4 is a time lapse diagram depicting a detection of an initial movement 402 of the chassis 100 of FIG. 1 and a calculation of a duration 406 of continuous movement 404 of the chassis and a duration 410 of a stationary condition 408 of the chassis 100 with respect to time 400, according to one embodiment. Particularly, FIG. 4 involves detecting an initial movement 402 of the chassis 100 through the GPS 206 of the chassis tracking device 114, determining a duration 406 of a continuous movement 404 of the chassis 100 through the GPS 206 of the chassis tracking device 114, and/or calculating a duration 410 of a stationary condition 408 of the chassis 100 through the GPS 206 of the chassis tracking device 114.


According to one embodiment, an initial movement 402, a duration 406 of a continuous movement 404, and/or a duration 410 of a stationary condition 408 may trigger a communication, through the chassis tracking device 114 of the chassis 100, of a location data 300 generated by a GPS 206 of the chassis tracking device 114 and a container identification number 302 detected through a container reader 116 of the chassis 100, to an administrative server 306 through a network 304, as shown in FIG. 6.


The initial movement 402 may be any movement after a duration of rest. The initial movement 402 may journey indicate an onset of a delivery route of the chassis 100 for the purpose of tracking the container 106 coupled to the chassis 100. The determined duration 406 of a continuous movement 404 may indicate a continuation of the delivery route of the chassis 100 for the purpose of tracking the container 106 coupled to the chassis 100. The calculated duration 410 of a stationary condition 408 may indicate an end of the route of the chassis 100 for the purpose of tracking the container 106 coupled to the chassis 100. The GPS 206 of the chassis tracking device 114 may register a movement of the chassis 100 by detecting a change in the position of the chassis 100.



FIG. 5 portrays an opening 500 and a closing 502 of a door 504 of a container 106 as detected through a door sensor 506 of the container 106 of FIG. 1, according to one embodiment. An opening 500 and a closing 502 of a door 504 of a container 106 may be an event of interest to a client of an intermodal freight transport business.


According to one embodiment, an opening 500 and a closing 502 of a door 504 of a container 106 may trigger a communication, through the container tracking device 112 of the container 106, of a location data 300 of the container 106 generated by a GPS 204 of the container tracking device 112, to an administrative server 306 using a network 304, as shown in FIG. 6.


According to another embodiment, an opening 500 and a closing 502 of a door 504 of a container 106 may trigger a communication, through the container tracking device 112 of the container 106, of a location data 300 of the container 106 generated by a GPS 204 of the container tracking device 112 and a container identification number 302 discovered through a container reader 116 of the chassis 100, to an administrative server 306 using a network 304, as shown in FIG. 6.



FIG. 6 illustrates a communication of a container tracking device 112 and a chassis tracking device 114 to an administrative server 306 through a network 304 based on a set of events triggering the communication, according to one embodiment. The container tracking device 112 and the chassis tracking device 114 may communicate with an administrative server 306 based on a set of events triggering the communication. The container tracking device 112 may communicate, through a network 304, the location data 300 to an administrative server 306 based on at least one of a wake event 200, an opening 500 of a door 504 of the container 106, a closing 502 of the door 504 of the container 106, and/or a daily location query 600. The chassis tracking device 114 may communicate, through a network 304, the location data 300 and a container identification number 302 of the container 106 to an administrative server 306 based on a detection of an initial movement 402 of the chassis 100, a duration 406 of continuous movement 404 (e.g., every 10 minutes of continuous movement 404), a duration 410 of a stationary condition 408 (e.g., after 6 minutes of a stationary condition 408).



FIG. 8 is a process flow chart outlining the coupling of FIG. 1, of a container 106 and a chassis 100 of and a subsequent communication of a location data 300 and a container identification number 302 to an administrative server 306 through at least one of a container tracking device 112 and a chassis tracking device 114, according to one embodiment. In operation 800, a first switch 102 of a chassis 100 is coupled to a second actuator 108 of a container 106. In operation 802, a second switch 110 of the container 106 is coupled to a first actuator 104 of the chassis 100. In operation 804, a wake event 200 is signaled to a container tracking device 112. In operation 806, the container tracking device 112 is powered through an internal battery 202. In operation 808, a chassis tracking device 114 is activated. In operation 810, a location data 300 is generated. In operation 812, an identification tag 118 is read through a container reader 116 to discover a container identification number 302. In operation 814, the location data 300 and the container identification number 302 are communicated to an administrative server 306.



FIG. 9 is a process flow chart describing a set of events triggering the communication of FIG. 3 of a location data 300 and a container identification number 302 to an administrative server 306 through a container tracking device 112, according to one embodiment. In operation 900, a wake event 200 is signaled to a container tracking device 112. In operation 902, an opening 500 of a door 504 of the container 106 is detected. In operation 904, a closing 502 of the door 504 of the container 106 is detected. In operation 906, a location data 300 and a container identification number 302 is communicated through the container tracking device 112 based on the wake event 200, the opening 500 and the closing 502 of the door 504 of the container 106, and/or a daily location query 600 of the container 106.



FIG. 10 is a process flow chart describing a set of events triggering a communication of a location data 300 and a container identification number 302 to an administrative server 306 through a chassis tracking device 114, according to one embodiment. In operation 1000, an initial movement 402 of the chassis 100 is detected. In operation 1002, a duration 406 of a continuous movement 404 of the chassis 100 is determined. In operation 1004, a duration 410 of a stationary condition 408 of the chassis 100 is calculated. In operation 1006, a location data 300 and a container identification number 302 is communicated to an administrative server 306 through a chassis tracking device 114 based on an initial movement 402, a duration 406 of a continuous movement 404, and/or a duration 410 of a stationary condition 408 of the chassis 100.



FIG. 11 depicts a tractor 1100 and a trailer 1102 as an alternative embodiment comprising the switch and actuator coupling. The tractor 1100 may be a vehicle that may be commonly used in a ground-based freight transportation industry (e.g., semi-truck, articulated vehicle, 5th wheel equipped vehicle, vehicle with a tractor puller engine/transmission, pick-up truck). Also, the trailer 1102 may comprise a container 106 that may be fixed to a transportation chassis including wheels and a 5th wheel hitch 1108 (e.g., semi-truck trailer, freight transportation trailer, container and trailer chassis, etc.), according to another embodiment. The trailer 1102 may be used to provide ground transportation of freight with the tractor 1100. Each of the previously disclosed components (e.g., first actuator 104, second actuator 108, coupling 101, container reader 116, identification tag 118) may be alternatively located between the tractor 1100 and the trailer 1102. The significance of having these components between the aforementioned elements may be that the switch and actuator coupling 101B and the identification tag 118 and container reader 116 may be easily mated by a vehicle driver through an existing electrical adapter of the semi-truck and trailer, according to one embodiment. The functionality of the various components may be the same as previously disclosed embodiments, although with respect to a mating event between the tractor 1100 with the trailer 1102.


According to one embodiment, the tractor 1100 may mate with the trailer 1102 via 5th wheel hitch 1108 and/or an electrical harness. The electrical harness may mate the electrical system of the tractor 1100 and/or a battery therein with the electrical system trailer 1102 in order to provide electrical power to running lights, brake lights, blinkers, warning lights, and tractor-trailer communications, in one or more embodiments.



FIG. 11 depicts the electrical harness comprising an electrical receptacle 1104 of the tractor 1100 and an electrical plug 1106 of the trailer 1102. The electrical receptacle 1104 and electrical plug 1106 may be a 7-way adapter, 4-way adapter, hardwiring with a disconnect, generic electrical harness, and/or a custom harness. Further, the electrical receptacle 1104 and electrical plug 1106 comprise to include the switch and actuator coupling, in one or more embodiments.


In one or more embodiments, various connectors may be used for the electrical receptacle 1104, such as ones including four to seven pins which may permit a transfer of power for lighting as well as auxiliary functions such as an electric trailer brake controller, backup lights, and/or a 12V power supply for a winch, interior trailer lights, and/or a trailer power outlet, according to some embodiments. Further, the electrical receptacle 1104 may be used as a connector under the external vehicle chassis and/or embedded on the external surface, according to one embodiment. The electrical receptacle 1104 may also be placed with a mounting bracket to attach it to the vehicle chassis, according to one embodiment. This may help prevent damage that may occur if the electrical receptacle is left dangling, according to one embodiment. Furthermore, an adapter may be used to fit an existing plug and/or receptacle of a vehicle with the switch and actuator coupling and/or the identification tag 118 and container reader 116.


Further, nearly all tractors and/or trailers in common industry production and usage have electrical receptacles 1104 and/or electrical plugs 1106 with which to couple the electrical systems of the tractor and trailer. An existing receptacle/plug may provide a surface area to place the switch and actuator coupling as well as the container reader and identification tag, according to one embodiment. Furthermore, an existing adapter may be easily removed and/or replaced with a modified electrical adapter comprising the switch and actuator coupling 101 as well as the container reader 116 and identification tag 118, according to another embodiment.



FIG. 12 depicts the electrical receptacle 1104 and electrical plug 1106 in an electrical adapter view 1200, according to one embodiment. The electrical receptacle 1104 comprises electrical terminals 1206 to transmit electrical power to the electrical system of the trailer 1102 and/or the container 106. The electrical receptacle 1104 may include a first flange surface 1208 and/or a housing that may contact the electrical plug 1106 during a mate event (e.g., coupling of the electrical plug 1106 and the electrical receptacle 1104). The first flange surface 1208 and/or receptacle housing may include the first switch 102 and the first actuator 104 of FIG. 1. Also, the electrical receptacle 1104 may include the container reader 116. Each component may function according to previous disclosure regarding the mate event. Further, the electrical plug 1106 may include a second housing to protect the internal wiring.


According to one embodiment, the plug housing 1212 may include a second flange surface 1210. The second flange surface 1210 and/or the plug housing 1212 surface may provide a surface area to place a plurality of components. FIG. 12 shows that the second flange surface 1210 of the electrical plug 1106 may contact the first flange surface 1208 of the electrical receptacle 1104 during a mate event. The second switch 110 and second actuator 108 as well as the identification tag 118 may be included on the second flange surface 1210 and/or plug housing 1212 of the electrical plug 1106, according to one embodiment.


During a mate event, the first switch 102 and first actuator 104 may mate with the second actuator 108 and the second switch 110, according to one embodiment. The second switch 110 may signal wake event 200 to the container tracking device 112. Therefore, the container tracking device 112 may perform all of the previously disclosed functions but may be located within the trailer 1102, according to one embodiment. The first switch 102 may signal a wake event 200 to the tractor tracking device 1202, according to another embodiment.


In one embodiment, the tractor tracking device 1202 may be of a similar and/or same functionality of the abovementioned chassis tracking device 114. It may include the GPS 206 and may further communicate the location data 300 and the container identification number 302 by the network 304 to the administration server 306. According one embodiment, the tractor tracking device 1202 may be located within the tractor 1100 and/or within the cockpit of the tractor 1100.


In another embodiment, the container reader 116 may be located on the first flange area 1208 and/or housing of the electrical receptacle 1104. The container reader 116 may read the identification tag 118 of the trailer 1102 when the electrical plug 1106 mates with the electrical receptacle 1104. The container reader 116 may function according to the previously disclosed embodiments. The wake event 200 and a subsequent reading of the container identification number 302 may occur at the mating of the electrical plug 1106 of the trailer 1102 to the electrical receptacle 1104 of the tractor 1100. The container reader 116 and identification tag 118 may include any of the following technologies but is not limited to: Near-Field Communications (NFC), Radio Frequency Identification (RFID), barcode and scanner, optical sensor, smart card.


In an exemplary embodiment, the container reader 116 may identify an identification number through reading the identification tag 118, wherein the identification number is unknown and/or is of an incorrect container and/or trailer. For example, the tractor 1100 may mate with the wrong trailer 1102 at a loading dock. Thus, the container reader 116 may identify a wrong identification number and may trigger an alert. The container reader 116 may alert a driver of the tractor 1100 through the tractor tracking device 1202, wherein the tractor tracking device 1202 is located in the cockpit of the tractor 1100 and/or comprises a graphical user interface, in one or more embodiments. Further, the container tracking device 112 and/or the tractor tracking device 1202 may communicate that a wrong mate event has occurred to the administrative server 306 based on an unknown and/or incorrect identification tag 118 read through the container reader 116, according to another embodiment. Furthermore, in another embodiment, wherein the administrative server 306 is notified of the wrong mate event, the driver of the tractor 1100 may receive a message (e.g., Short Message Service (SMS) text message, voice message, phone call, pager alert) to notify of the wrong mate event.



FIG. 13 is a process flow chart outlining the coupling of the electrical plug 1106 and the electrical receptacle 1104 of FIG. 11, according to one embodiment. Further, FIG. 13 outlines a subsequent communication of the location data 300 and the container identification number 302 to the administrative server 306 through at least one of the container tracking device 112 and the tractor tracking device 1202, according to one embodiment. In operation 1300, the trailer 1102 may be mated to the tractor 1100 through the 5th wheel hitch 1108 and the electrical harness. In operation 1302, the electrical plug 1106 may be inserted into the electrical receptacle 1104. In operation 1304, the first switch 102 may be coupled to the second actuator 108. In operation 1306, the second switch 110 may be coupled to the first actuator 104. In operation 1308, the wake event 200 may be signaled to the container tracking device 112. In operation 1310, the container tracking device 112 may receive electrical power from an internal battery 202. In operation 1312, the tractor tracking device 1202 may be activated by the first switch 102. In operation 1314, the tractor tracking device 1202 may generate a location data 300. In operation 1316, the identification tag 118 may be read through the container reader 116 of the tractor 1100 in order to discover a container identification number 302. In operation 1318, the location data 300 and the container identification number 302 may be communicated to the administration server 306.


An example will now be described in which the various embodiments will be explained in a hypothetical scenario. A distribution business named ‘XYZ Distributors’ may wish to track containers carrying shipments of goods to their respective destinations. Also, XYZ Distributor may have more containers than the numbers of tractors able to pull them. As such, XYZ Distributors may wish to separately track containers as well as chassis units. Additionally, a client of XYZ Distributors, named ‘Brian’, may wish to receive regular updates of the location of his shipment(s). In order to facilitate these regular updates, XYZ Distributors may wish to deploy tracking devices to track the container and the chassis, separated or not.


The tracking device of the container may trigger automatically daily, when the door of the container opens or closes, and/or when the container mounts to a chassis. The tracking device of the tractor may trigger based on a detection of movement. For example, the tractor may be tracked when the tractor starts to move, when it continues to move for a specific duration, and/or when it stops moving for a specific duration. Further, connecting a 7-way power plug of the container to the tractor may activate a container reader of the tractor and/or the tracking device. The container reader may read a tag on the container to identify a unique number associated with the container. The tracking devices may utilize a global positioning system to track the locations of the container and the tractor.


The tracking devices may transmit location data and/or container identification data to an administrative server associated with XYZ Distributors. When unhitched from the tractor, containers may be stored for a prolonged period of time. The container tracking device may be powered off to conserve battery power. Or, the container tracking device may be remotely activated through a communication of the administrative server, wherein the administrative server requests a location query.


The administrative server may aggregate received data to generate a case table listing the data and an administrative graphical user interface displaying the data on a map. As such, Brian may access a personalized view of the graphical user interface for the purpose of tracking a shipment of containers being distributed by XYZ Distributor.


Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices and modules described herein may be enabled and operated using hardware circuitry (e.g., CMOS based logic circuitry), firmware, software or any combination of hardware, firmware, and/or software (e.g., embodied in a machine readable medium). For example, the various electrical structure and methods may be embodied using transistors, logic gates, and/or electrical circuits (e.g., application specific integrated (ASIC) circuitry and/or Digital Signal Processor (DSP) circuitry).


In addition, it will be appreciated that the various operations, processes, and/or methods disclosed herein may be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer device). Accordingly, the specification and drawings are to be regarded in an illustrative in rather than a restrictive sense.

Claims
  • 1. A method, comprising: coupling an electrical power plug of a container and an electrical power receptacle of a transport vehicle;activating, through a switch and an actuator coupling of at least one of the electrical power plug and the electrical power receptacle, a tracking device of the container;verifying, through an identification tag of the container read by an electronic reader, an identity of the container upon coupling the electrical power plug to the electrical power receptacle; andwherein reading the identification tag of the container through the electronic reader further comprises: discovering, through the coupling of the electrical power plug to the electrical power receptacle, an identification number of the container, andcommunicating, through a network, the identification number of the container to an administrative server upon discovery.
  • 2. The method of claim 1, further comprising: powering, through a battery of at least one of the tracking device and the container, the tracking device based on an activation by the switch and the actuator coupling; andwaking the tracking device of the container through an electrical signal generated by the switch and the actuator coupling and based on the coupling of the electrical power plug and the electrical power receptacle.
  • 3. The method of claim 1, further comprising: generating, through a global positioning system (GPS) of at least one of the tracking device of the container and a tracking device of the transport vehicle, a location data associated with at least one of the container and the transport vehicle; andtransmitting to the administrative server, on a periodic basis through the network, the location data through at least one of the tracking device of the container and the tracking device of the transport vehicle.
  • 4. The method of claim 1, wherein the location data and the identification number are communicated through the tracking device of the container based on at least one of the activation of the tracking device of the container and a location query of the container by the administrative server.
  • 5. The method of claim 1, wherein the location data and the identification number are communicated through the tracking device of the transport vehicle based on at least one of an initial movement of the transport vehicle, a duration of a continuous movement of the transport vehicle, and a duration of a stationary condition of the transport vehicle.
  • 6. A method comprising: activating a tracking device of at least one of a container and a transport vehicle through a switch and an actuator coupling of an electrical power plug and an electrical power receptacle;generating, through a global positioning system (GPS) of the tracking device, a location data when the electrical power plug is coupled to the electrical power receptacle;reading an identification tag of the container through an electronic reader of the electrical power receptacle to discover an identification number upon a mate event; andwherein reading the identification tag of the container through the electronic reader further comprises: discovering, through a coupling of the electrical power plug to the electrical power receptacle, the identification number of the container, andcommunicating, through a network, the identification number of the container to an administrative server upon discovery.
  • 7. The method of claim 6, wherein the mate event comprises an action that involves the coupling of at least one of an electrical system and a mechanical system of the transport vehicle and the container.
  • 8. The method of claim 7, wherein the mate event further comprises: waking the tracking device of the container through an electrical signal of the switch and the actuator coupling;powering the tracking device of the container through a battery thereof; andactivating the tracking device of the transport vehicle through the electrical signal of the switch and actuator coupling.
  • 9. The method of claim 6, further comprising: transmitting to the administrative server, through the network, at least one of the location data and the identification number through the tracking device of at least one of the container and the transport vehicle.
  • 10. The method of claim 9, wherein the tracking device of at least one of the container and the transport vehicle is configured to transmit at least one of the location data and the identification number based on at least one of a daily location query by the administrative server, a periodic location query by the administrative server, a manual location query by the administrative server, and the mate event.
  • 11. The method of claim 6, further comprising: detecting an initial movement of the container through the GPS of the tracking device of the container;determining, through the administrative server, a duration of a continuous movement of the container based on the location data of the GPS of the tracking device of the container; anddetermining, through the administrative server, a duration of a stationary condition of the container based on the location data of the GPS of the tracking device of the container.
  • 12. The method of claim 6, wherein an alert message is delivered to a driver of the transport vehicle when the electronic reader identifies the identification number of an incorrect container through the identification tag based on the mate event.
  • 13. The method of claim 6, further comprising: conserving battery power through deactivating the tracking device of the container when the electrical power plug is de-coupled to the electrical power receptacle.
  • 14. A system comprising: an electrical power receptacle of a transport vehicle;an electrical power plug of a container;a switch and an actuator coupling configured to signal a mate event between the electrical power plug and the electrical power receptacle;an electronic reader configured to read an identification tag of the container comprising an identification number thereby confirming an identity of the container;a tracking device configured to provide a location data associated with at least one of the container and the transport vehicle; andan administrative server configured to gather location data, wherein the tracking device is communicatively coupled therewith;wherein reading the identification tag of the container through the electronic reader comprises: discovering, through a coupling of the electrical power plug to the electrical power receptacle, the identification number of the container; andcommunicating, through a network, the identification number of the container to the administrative server upon discovery.
  • 15. The system of claim 14, wherein the tracking device further comprises a battery configured to supply electrical power to the tracking device based upon the mate event, wherein the battery is configured to conserve electrical power when the electrical power plug is not mated to the electrical power receptacle.
  • 16. The system of claim 14, wherein the tracking device activates based on the mate event, wherein the switch and the actuator coupling is configured to generate an electrical signal to turn on the tracking device.
  • 17. The system of claim 14, wherein the tracking device includes a global positioning system (GPS) that is configured to provide location data based on at least one of an initial movement of at least one of the container and the transport vehicle, a duration of a continuous movement of at least one of the container and the transport vehicle, and a duration of a stationary condition of the container.
  • 18. The system of claim 14, wherein the tracking device is configured to a transmit location data to the administrative server based on at least one of a daily location query of the tracking device by the administrative server, a periodic location query of the tracking device by the administrative server, a manual location query of the tracking device by the administrative server, and the mate event.
  • 19. The system of claim 14, wherein the electronic reader is coupled to the tracking device and is configured to deliver an alert message to a driver of the transport vehicle, according to the mate event, wherein the electronic reader identifies the identification number of an incorrect container through the identification tag read thereof.
  • 20. A method, comprising: coupling an electrical power plug of a container and an electrical power receptacle of a transport vehicle;activating, through a switch and an actuator coupling of at least one of the electrical power plug and the electrical power receptacle, a tracking device of the container;verifying, through an identification tag of the container read by an electronic reader, an identity of the container upon coupling the electrical power plug to the electrical power receptacle; anddetecting an initial movement of the container through a global positioning system (GPS) of the tracking device of the container;determining, through an administrative server, a duration of a continuous movement of the container based on a location data of the GPS of the tracking device of the container; anddetermining, through the administrative server, a duration of a stationary condition of the container based on the location data of the GPS of the tracking device of the container.
  • 21. The method of claim 20, further comprising: powering, through a battery of at least one of the tracking device and the container, the tracking device based on an activation by the switch and the actuator coupling; andwaking the tracking device of the container through an electrical signal generated by the switch and the actuator coupling and based on the coupling of the electrical power plug and the electrical power receptacle.
  • 22. The method of claim 20, further comprising: generating, through the GPS of at least one of the tracking device of the container and a tracking device of the transport vehicle, the location data associated with at least one of the container and the transport vehicle; andtransmitting to the administrative server, on a periodic basis through a network, the location data through at least one of the tracking device of the container and the tracking device of the transport vehicle.
  • 23. The method of claim 20, wherein reading the identification tag of the container through the electronic reader comprises: discovering, through the coupling of the electrical power plug to the electrical power receptacle, an identification number of the container; andcommunicating, through the network, the identification number of the container to the administrative server upon discovery.
  • 24. The method of claim 23, wherein the location data and the identification number are communicated through the tracking device of the container based on at least one of the activation of the tracking device of the container and a location query of the container by the administrative server.
  • 25. The method of claim 23, wherein the location data and the identification number are communicated through the tracking device of the transport vehicle based on at least one of the initial movement of the transport vehicle, the duration of the continuous movement of the transport vehicle, and the duration of the stationary condition of the transport vehicle.
  • 26. A method comprising: activating a tracking device of at least one of a container and a transport vehicle through a switch and an actuator coupling of an electrical power plug and an electrical power receptacle;generating, through a global positioning system (GPS) of the tracking device, a location data when the electrical power plug is coupled to the electrical power receptacle;reading an identification tag of the container through an electronic reader of the electrical power receptacle to discover an identification number upon a mate event;detecting an initial movement of the container through the GPS of the tracking device of the container;determining, through an administrative server, a duration of a continuous movement of the container based on the location data of the GPS of the tracking device of the container; anddetermining, through the administrative server, a duration of a stationary condition of the container based on the location data of the GPS of the tracking device of the container.
  • 27. The method of claim 26, wherein the mate event comprises an action that involves a coupling of at least one of an electrical system and a mechanical system of the transport vehicle and the container.
  • 28. The method of claim 27, wherein the mate event further comprises: waking the tracking device of the container through an electrical signal of the switch and the actuator coupling;powering the tracking device of the container through a battery thereof; andactivating the tracking device of the transport vehicle through the electrical signal of the switch and the actuator coupling.
  • 29. The method of claim 26, further comprising: transmitting to the administrative server, through a wireless network, at least one of the location data and the identification number through the tracking device of at least one of the container and the transport vehicle.
  • 30. The method of claim 29, wherein the tracking device of at least one of the container and the transport vehicle is configured to transmit at least one of the location data and the identification number based on at least one of a daily location query by the administrative server, a periodic location query by the administrative server, a manual location query by the administrative server, and the mate event.
  • 31. The method of claim 26, wherein an alert message is delivered to a driver of the transport vehicle when the electronic reader identifies the identification number of an incorrect container through the identification tag based on the mate event.
  • 32. The method of claim 26, further comprising: conserving battery power through deactivating the tracking device of the container when the electrical power plug is de-coupled to the electrical power receptacle.
  • 33. A system comprising: an electrical power receptacle of a transport vehicle;an electrical power plug of a container;a switch and an actuator coupling configured to signal a mate event between the electrical power plug and the electrical power receptacle;an electronic reader configured to read an identification tag of the container comprising an identification number thereby confirming an identity of the container;a tracking device configured to provide a location data associated with at least one of the container and the transport vehicle;an administrative server configured to gather location data, wherein the tracking device is communicatively coupled therewith; andwherein the tracking device includes a global positioning system (GPS) that is configured to provide location data based on at least one of an initial movement of at least one of the container and the transport vehicle, a duration of a continuous movement of at least one of the container and the transport vehicle, and a duration of a stationary condition of the container.
  • 34. The system of claim 33, wherein the tracking device further comprises a battery configured to supply electrical power to the tracking device based upon the mate event, wherein the battery is configured to conserve electrical power when the electrical power plug is not mated to the electrical power receptacle.
  • 35. The system of claim 33, wherein the tracking device activates based on the mate event, wherein the switch and the actuator coupling is configured to generate an electrical signal to turn on the tracking device.
  • 36. The system of claim 33, wherein the tracking device is configured to a transmit location data to the administrative server based on at least one of a daily location query of the tracking device by the administrative server, a periodic location query of the tracking device by the administrative server, a manual location query of the tracking device by the administrative server, and the mate event.
  • 37. The system of claim 33, wherein the electronic reader is coupled to the tracking device and is configured to deliver an alert message to a driver of the transport vehicle, according to the mate event, wherein the electronic reader identifies an identification number of an incorrect container through the identification tag read thereof.
  • 38. A method, comprising: coupling an electrical power plug of a container and an electrical power receptacle of a transport vehicle;activating, through a switch and an actuator coupling of at least one of the electrical power plug and the electrical power receptacle, a tracking device of the container;verifying, through an identification tag of the container read by an electronic reader, an identity of the container upon coupling the electrical power plug to the electrical power receptacle;wherein an alert message is delivered to a driver of the transport vehicle when the electronic reader identifies an identification number of an incorrect container through the identification tag based on a mate event.
  • 39. The method of claim 38, further comprising: powering, through a battery of at least one of the tracking device and the container, the tracking device based on an activation by the switch and the actuator coupling; andwaking the tracking device of the container through an electrical signal generated by the switch and the actuator coupling and based on the coupling of the electrical power plug and the electrical power receptacle.
  • 40. The method of claim 38, further comprising: generating, through a global positioning system (GPS) of at least one of the tracking device of the container and a tracking device of the transport vehicle, a location data associated with at least one of the container and the transport vehicle; andtransmitting to an administrative server, on a periodic basis through a network, the location data through at least one of the tracking device of the container and the tracking device of the transport vehicle.
  • 41. The method of claim 38, wherein reading the identification tag of the container through the electronic reader comprises: discovering, through the coupling of the electrical power plug to the electrical power receptacle, the identification number of the container; andcommunicating, through the network, the identification number of the container to the administrative server upon discovery.
  • 42. The method of claim 41, wherein the location data and the identification number are communicated through the tracking device of the container based on at least one of the activation of the tracking device of the container and a location query of the container by the administrative server.
  • 43. The method of claim 41, wherein the location data and the identification number are communicated through the tracking device of the transport vehicle based on at least one of the initial movement of the transport vehicle, the duration of the continuous movement of the transport vehicle, and the duration of the stationary condition of the transport vehicle.
  • 44. A method comprising: activating a tracking device of at least one of a container and a transport vehicle through a switch and an actuator coupling of an electrical power plug and an electrical power receptacle;generating, through a global positioning system (GPS) of the tracking device, a location data when the electrical power plug is coupled to the electrical power receptacle;reading an identification tag of the container through an electronic reader of the electrical power receptacle to discover an identification number upon a mate event;wherein an alert message is delivered to a driver of the transport vehicle when the electronic reader identifies the identification number of an incorrect container through the identification tag based on the mate event.
  • 45. The method of claim 44, wherein the mate event comprises an action that involves a coupling of at least one of an electrical system and a mechanical system of the transport vehicle and the container.
  • 46. The method of claim 45, wherein the mate event further comprises: waking the tracking device of the container through an electrical signal of the switch and the actuator coupling;powering the tracking device of the container through a battery thereof; andactivating the tracking device of the transport vehicle through the electrical signal of the switch and the actuator coupling.
  • 47. The method of claim 44, further comprising: transmitting to an administrative server, through a wireless network, at least one of the location data and the identification number through the tracking device of at least one of the container and the transport vehicle.
  • 48. The method of claim 47, wherein the tracking device of at least one of the container and the transport vehicle is configured to transmit at least one of the location data and the identification number based on at least one of a daily location query by the administrative server, a periodic location query by the administrative server, a manual location query by the administrative server, and the mate event.
  • 49. The method of claim 44, further comprising: conserving battery power through deactivating the tracking device of the container when the electrical power plug is de-coupled to the electrical power receptacle.
  • 50. A system comprising: an electrical power receptacle of a transport vehicle;an electrical power plug of a container;a switch and an actuator coupling configured to signal a mate event between the electrical power plug and the electrical power receptacle;an electronic reader configured to read an identification tag of the container comprising an identification number thereby confirming an identity of the container;a tracking device configured to provide a location data associated with at least one of the container and the transport vehicle;an administrative server configured to gather location data, wherein the tracking device is communicatively coupled therewith; andwherein the electronic reader is coupled to the tracking device and is configured to deliver an alert message to a driver of the transport vehicle, according to the mate event, wherein the electronic reader identifies the identification number of an incorrect container through the identification tag read thereof.
  • 51. The system claim 50, wherein the tracking device further comprises a battery configured to supply electrical power to the tracking device based upon the mate event, wherein the battery is configured to conserve electrical power when the electrical power plug is not mated to the electrical power receptacle.
  • 52. The system of claim 50, wherein the tracking device activates based on the mate event, wherein the switch and the actuator coupling is configured to generate an electrical signal to turn on the tracking device.
  • 53. The system of 50, wherein the tracking device includes a global positioning system (GPS) that is configured to provide location data based on at least one of an initial movement of at least one of the container and the transport vehicle, a duration of a continuous movement of at least one of the container and the transport vehicle, and a duration of a stationary condition of the container.
  • 54. The system of claim 50, wherein the tracking device is configured to a transmit location data to the administrative server based on at least one of a daily location query of the tracking device by the administrative server, a periodic location query of the tracking device by the administrative server, a manual location query of the tracking device by the administrative server, and the mate event.
CLAIM OF PRIORITY

This patent application is a Continuation-In-Part patent application, claiming priority from U.S. patent application Ser. No. 13/668,698, titled SWITCH AND ACTUATOR COUPLING IN A CHASSIS OF A CONTAINER ASSOCIATED WITH AN INTERMODAL FREIGHT TRANSPORT SYSTEM filed on Nov. 5, 2012.

US Referenced Citations (397)
Number Name Date Kind
4067061 Juhasz Jan 1978 A
4654821 Lapp Mar 1987 A
4663725 Truckenbrod et al. May 1987 A
4675539 Nichol Jun 1987 A
4695946 Andreasen et al. Sep 1987 A
4701845 Andreasen et al. Oct 1987 A
4727360 Ferguson et al. Feb 1988 A
4884242 Lacy et al. Nov 1989 A
4891650 Sheffer Jan 1990 A
4907150 Arroyo et al. Mar 1990 A
5122959 Nathanson et al. Jun 1992 A
5208756 Song May 1993 A
5218367 Sheffer et al. Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5276865 Thorpe Jan 1994 A
5390125 Sennott et al. Feb 1995 A
5408411 Nakamura et al. Apr 1995 A
5424952 Asayama Jun 1995 A
5457439 Kuhn Oct 1995 A
5515419 Sheffer May 1996 A
5521579 Bernhard May 1996 A
5610815 Gudat et al. Mar 1997 A
5684474 Gilon et al. Nov 1997 A
5686888 Welles, II et al. Nov 1997 A
5708820 Park et al. Jan 1998 A
5712789 Radican Jan 1998 A
5751245 Janky et al. May 1998 A
5805103 Doi et al. Sep 1998 A
5867804 Pilley et al. Feb 1999 A
5917433 Keillor et al. Jun 1999 A
5923243 Bleiner Jul 1999 A
5949974 Ewing et al. Sep 1999 A
5978236 Faberman et al. Nov 1999 A
6029111 Croyle Feb 2000 A
6067044 Whelan et al. May 2000 A
6075441 Maloney Jun 2000 A
6091323 Kawai Jul 2000 A
6148291 Radican Nov 2000 A
6154152 Ito Nov 2000 A
6181029 Berglund et al. Jan 2001 B1
6202023 Hancock et al. Mar 2001 B1
6204764 Maloney Mar 2001 B1
6226389 Lemelson et al. May 2001 B1
6233563 Jefferson et al. May 2001 B1
6249217 Forbes Jun 2001 B1
6266008 Huston et al. Jul 2001 B1
6275773 Lemelson et al. Aug 2001 B1
6317693 Kodaka et al. Nov 2001 B2
6338011 Furst et al. Jan 2002 B1
6339369 Paranjpe Jan 2002 B1
6339745 Novik Jan 2002 B1
6363320 Chou Mar 2002 B1
6385539 Wilson et al. May 2002 B1
6388580 Graham May 2002 B1
6393582 Klecka et al. May 2002 B1
6393584 McLaren et al. May 2002 B1
6415227 Lin Jul 2002 B1
6483434 Umiker Nov 2002 B1
6502080 Eichorst et al. Dec 2002 B1
6577921 Carson Jun 2003 B1
6584403 Bunn Jun 2003 B2
6704810 Krehbiel, Jr. et al. Mar 2004 B1
6714857 Kapolka et al. Mar 2004 B2
6717527 Simon Apr 2004 B2
6720920 Breed et al. Apr 2004 B2
6737963 Gutta et al. May 2004 B2
6748320 Jones Jun 2004 B2
6832153 Thayer et al. Dec 2004 B2
6844827 Flick Jan 2005 B2
6856902 Mitchem Feb 2005 B1
6871137 Scaer et al. Mar 2005 B2
6873963 Westbury et al. Mar 2005 B1
6904359 Jones Jun 2005 B2
7035856 Morimoto Apr 2006 B1
7039520 Draeger et al. May 2006 B2
7065445 Thayer et al. Jun 2006 B2
7072764 Donath et al. Jul 2006 B2
7096392 Sim-Tang Aug 2006 B2
7099934 Ewing et al. Aug 2006 B1
7154390 Giermanski et al. Dec 2006 B2
7212134 Taylor May 2007 B2
7215255 Grush May 2007 B2
7242303 Patel et al. Jul 2007 B2
7253731 Joao Aug 2007 B2
7283046 Culpepper et al. Oct 2007 B2
7289019 Kertes Oct 2007 B1
7302344 Olney et al. Nov 2007 B2
7308611 Booth Dec 2007 B2
7327238 Bhogal et al. Feb 2008 B2
7339469 Braun Mar 2008 B2
7343306 Bates et al. Mar 2008 B1
7346790 Klein Mar 2008 B1
7446649 Bhogal et al. Nov 2008 B2
7455225 Hadfield et al. Nov 2008 B1
7467325 Eisen et al. Dec 2008 B2
7472202 Parupudi et al. Dec 2008 B2
7479877 Mortenson et al. Jan 2009 B2
7486176 Bhogal et al. Feb 2009 B2
7489993 Coffee et al. Feb 2009 B2
7527288 Breed May 2009 B2
7552008 Newstrom et al. Jun 2009 B2
7555370 Breed et al. Jun 2009 B2
7571051 Shulman Aug 2009 B1
7580782 Breed et al. Aug 2009 B2
7593999 Nathanson Sep 2009 B2
7600150 Wu Oct 2009 B2
7617037 Desens et al. Nov 2009 B2
7650210 Breed Jan 2010 B2
7652568 Waugh et al. Jan 2010 B2
7657354 Breed et al. Feb 2010 B2
7668931 Parupudi et al. Feb 2010 B2
7672756 Breed Mar 2010 B2
7693626 Breed et al. Apr 2010 B2
7746228 Sensenig et al. Jun 2010 B2
7751944 Parupudi et al. Jul 2010 B2
7755541 Wisherd et al. Jul 2010 B2
7769499 McQuade et al. Aug 2010 B2
7774633 Harrenstien et al. Aug 2010 B1
7876239 Horstemeyer Jan 2011 B2
7899591 Shah et al. Mar 2011 B2
7899621 Breed et al. Mar 2011 B2
7916026 Johnson et al. Mar 2011 B2
7950570 Marchasin et al. May 2011 B2
7971095 Hess et al. Jun 2011 B2
7987017 Buzzoni et al. Jul 2011 B2
8009034 Dobson et al. Aug 2011 B2
8009086 Grossnickle et al. Aug 2011 B2
8095304 Blanton et al. Jan 2012 B2
8103450 Takaoka Jan 2012 B2
8103741 Frazier et al. Jan 2012 B2
8106757 Brinton et al. Jan 2012 B2
8111154 Puri et al. Feb 2012 B1
8181868 Thomas et al. May 2012 B2
8185767 Ballou et al. May 2012 B2
8201009 Sun et al. Jun 2012 B2
8255144 Breed et al. Aug 2012 B2
8279067 Berger et al. Oct 2012 B2
8299920 Hamm et al. Oct 2012 B2
8306687 Chen Nov 2012 B2
8311858 Everett et al. Nov 2012 B2
8326813 Nizami et al. Dec 2012 B2
8368561 Welch et al. Feb 2013 B2
8380426 Konijnendijk Feb 2013 B2
8398405 Kumar Mar 2013 B2
8407139 Palmer Mar 2013 B1
8452771 Kurciska et al. May 2013 B2
8462021 Welch et al. Jun 2013 B2
8467324 Yousefi et al. Jun 2013 B2
8489907 Wakrat et al. Jul 2013 B2
8502661 Mauro et al. Aug 2013 B2
8504233 Ferguson et al. Aug 2013 B1
8504512 Herzog et al. Aug 2013 B2
8510200 Pearlman et al. Aug 2013 B2
8587430 Ferguson et al. Nov 2013 B2
8655983 Harris et al. Feb 2014 B1
8700249 Carrithers Apr 2014 B1
8718536 Hannon May 2014 B2
8725342 Ferguson et al. May 2014 B2
8762009 Ehrman et al. Jun 2014 B2
8766797 Hamm et al. Jul 2014 B2
8770480 Gulli Jul 2014 B2
8781169 Jackson et al. Jul 2014 B2
8781958 Michael Jul 2014 B2
8839026 Kopylovitz Sep 2014 B2
8933802 Baade Jan 2015 B2
20010006398 Nakamura et al. Jul 2001 A1
20010018628 Jenkins et al. Aug 2001 A1
20010037298 Ehrman et al. Nov 2001 A1
20020070891 Huston et al. Jun 2002 A1
20020198632 Breed et al. Dec 2002 A1
20030009361 Hancock et al. Jan 2003 A1
20030013146 Werb Jan 2003 A1
20030018428 Knockeart et al. Jan 2003 A1
20030023614 Newstrom et al. Jan 2003 A1
20030055542 Knockeart et al. Mar 2003 A1
20030055553 Knockeart et al. Mar 2003 A1
20030125855 Breed et al. Jul 2003 A1
20030158638 Yakes et al. Aug 2003 A1
20030158639 Nada Aug 2003 A1
20030163228 Pillar et al. Aug 2003 A1
20030163229 Pillar et al. Aug 2003 A1
20030163230 Pillar et al. Aug 2003 A1
20030171854 Pillar et al. Sep 2003 A1
20030176959 Breed Sep 2003 A1
20030191567 Gentilcore Oct 2003 A1
20030191568 Breed Oct 2003 A1
20030204407 Nabors et al. Oct 2003 A1
20040006398 Bickford Jan 2004 A1
20040006413 Kane et al. Jan 2004 A1
20040049337 Knockeart et al. Mar 2004 A1
20040056797 Knockeart et al. Mar 2004 A1
20040102895 Thayer et al. May 2004 A1
20040102896 Thayer et al. May 2004 A1
20040196152 Tice Oct 2004 A1
20040199285 Berichon et al. Oct 2004 A1
20040199302 Pillar et al. Oct 2004 A1
20040204969 Wu Oct 2004 A1
20050004748 Pinto et al. Jan 2005 A1
20050007450 Hill et al. Jan 2005 A1
20050021722 Metzger Jan 2005 A1
20050043879 Desens et al. Feb 2005 A1
20050060069 Breed et al. Mar 2005 A1
20050080565 Olney et al. Apr 2005 A1
20050114023 Williamson et al. May 2005 A1
20050131597 Raz et al. Jun 2005 A1
20050149251 Donath et al. Jul 2005 A1
20050171798 Croft et al. Aug 2005 A1
20050216294 Labow Sep 2005 A1
20060041341 Kane et al. Feb 2006 A1
20060041342 Kane et al. Feb 2006 A1
20060052913 Kane et al. Mar 2006 A1
20060053075 Roth et al. Mar 2006 A1
20060074558 Williamson et al. Apr 2006 A1
20060089786 Soehren Apr 2006 A1
20060109106 Braun May 2006 A1
20060155427 Yang Jul 2006 A1
20060155434 Kane et al. Jul 2006 A1
20060187026 Kochis Aug 2006 A1
20060253234 Kane et al. Nov 2006 A1
20060273922 Bhogal et al. Dec 2006 A1
20070005202 Breed Jan 2007 A1
20070027726 Warren et al. Feb 2007 A1
20070057781 Breed Mar 2007 A1
20070061054 Rowe et al. Mar 2007 A1
20070061076 Shulman Mar 2007 A1
20070086624 Breed et al. Apr 2007 A1
20070087756 Hoffberg Apr 2007 A1
20070096565 Breed et al. May 2007 A1
20070096899 Johnson May 2007 A1
20070115101 Creekbaum et al. May 2007 A1
20070135984 Breed et al. Jun 2007 A1
20070139216 Breed Jun 2007 A1
20070156317 Breed Jul 2007 A1
20070159354 Rosenberg Jul 2007 A1
20070162550 Rosenberg Jul 2007 A1
20070185625 Pillar et al. Aug 2007 A1
20070200690 Bhogal et al. Aug 2007 A1
20070239322 McQuade et al. Oct 2007 A1
20070285240 Sensenig et al. Dec 2007 A1
20070290836 Ainsworth et al. Dec 2007 A1
20080036187 Breed Feb 2008 A1
20080040004 Breed Feb 2008 A1
20080040005 Breed Feb 2008 A1
20080040023 Breed et al. Feb 2008 A1
20080040268 Corn Feb 2008 A1
20080042875 Harrington et al. Feb 2008 A1
20080046150 Breed Feb 2008 A1
20080051957 Breed et al. Feb 2008 A1
20080051995 Lokshin et al. Feb 2008 A1
20080061953 Bhogal et al. Mar 2008 A1
20080065291 Breed Mar 2008 A1
20080077285 Kumar et al. Mar 2008 A1
20080077326 Funk et al. Mar 2008 A1
20080091350 Smith et al. Apr 2008 A1
20080111546 Takahashi et al. May 2008 A1
20080119993 Breed May 2008 A1
20080147265 Breed Jun 2008 A1
20080147280 Breed Jun 2008 A1
20080157510 Breed et al. Jul 2008 A1
20080167821 Breed Jul 2008 A1
20080183344 Doyen et al. Jul 2008 A1
20080183376 Knockeart et al. Jul 2008 A1
20080195261 Breed Aug 2008 A1
20080195432 Fell et al. Aug 2008 A1
20080215190 Pillar et al. Sep 2008 A1
20080234933 Chowdhary et al. Sep 2008 A1
20080235105 Payne et al. Sep 2008 A1
20080252431 Nigam Oct 2008 A1
20080262669 Smid et al. Oct 2008 A1
20080318547 Ballou, Jr. et al. Dec 2008 A1
20090082918 Hendrix, Jr. Mar 2009 A1
20090138497 Zavoli et al. May 2009 A1
20090177378 Kamalski et al. Jul 2009 A1
20090261975 Ferguson et al. Oct 2009 A1
20090273489 Lu Nov 2009 A1
20090326808 Blanton et al. Dec 2009 A1
20100036793 Willis et al. Feb 2010 A1
20100049669 Mazzarolo Feb 2010 A1
20100057279 Kyllingstad Mar 2010 A1
20100057305 Breed Mar 2010 A1
20100071572 Carroll et al. Mar 2010 A1
20100076878 Burr et al. Mar 2010 A1
20100082195 Lee et al. Apr 2010 A1
20100094500 Jin Apr 2010 A1
20100127867 Chien et al. May 2010 A1
20100152972 Attard et al. Jun 2010 A1
20100169009 Breed et al. Jul 2010 A1
20100174487 Soehren Jul 2010 A1
20100207754 Shostak et al. Aug 2010 A1
20100250411 Ogrodski Sep 2010 A1
20100274415 Lam Oct 2010 A1
20100332080 Bae Dec 2010 A1
20100332118 Geelen et al. Dec 2010 A1
20100332363 Duddle et al. Dec 2010 A1
20110016340 Sun et al. Jan 2011 A1
20110060496 Nielsen et al. Mar 2011 A1
20110071750 Giovino et al. Mar 2011 A1
20110078089 Hamm et al. Mar 2011 A1
20110090399 Whitaker et al. Apr 2011 A1
20110106337 Patel et al. May 2011 A1
20110137489 Gilleland et al. Jun 2011 A1
20110140877 Gilchrist et al. Jun 2011 A1
20110166773 Raz et al. Jul 2011 A1
20110181391 Chu Jul 2011 A1
20110196580 Xu et al. Aug 2011 A1
20110221573 Huat Sep 2011 A1
20110257880 Watanabe et al. Oct 2011 A1
20110270772 Hall et al. Nov 2011 A1
20110275388 Haney Nov 2011 A1
20120029818 Smith et al. Feb 2012 A1
20120075088 Marentes Aguilar Mar 2012 A1
20120089328 Ellanti et al. Apr 2012 A1
20120089686 Meister Apr 2012 A1
20120106446 Yousefi et al. May 2012 A1
20120106801 Jackson May 2012 A1
20120123806 Schumann, Jr. et al. May 2012 A1
20120166018 Larschan et al. Jun 2012 A1
20120191329 Roessle et al. Jul 2012 A1
20120218129 Burns Aug 2012 A1
20120232945 Tong Sep 2012 A1
20120249326 Mostov Oct 2012 A1
20120252488 Hartmann Oct 2012 A1
20120253861 Davidson et al. Oct 2012 A1
20120268260 Miller et al. Oct 2012 A1
20120303237 Kumar et al. Nov 2012 A1
20120323767 Michael Dec 2012 A1
20120323771 Michael Dec 2012 A1
20120323772 Michael Dec 2012 A1
20130031318 Chen et al. Jan 2013 A1
20130031345 Kung Jan 2013 A1
20130035827 Breed Feb 2013 A1
20130057397 Cutler et al. Mar 2013 A1
20130061044 Pinkus et al. Mar 2013 A1
20130097458 Sekino et al. Apr 2013 A1
20130131928 Bolton et al. May 2013 A1
20130138251 Thogersen et al. May 2013 A1
20130144770 Boling et al. Jun 2013 A1
20130144771 Boling et al. Jun 2013 A1
20130144805 Boling et al. Jun 2013 A1
20130159214 Boling et al. Jun 2013 A1
20130166198 Funk et al. Jun 2013 A1
20130179034 Pryor Jul 2013 A1
20130185193 Boling et al. Jul 2013 A1
20130185221 Adams et al. Jul 2013 A1
20130218369 Yoshihama et al. Aug 2013 A1
20130218461 Naimark Aug 2013 A1
20130222133 Schultz et al. Aug 2013 A1
20130250933 Yousefi et al. Sep 2013 A1
20130253732 Patel et al. Sep 2013 A1
20130253734 Kaap et al. Sep 2013 A1
20130253754 Ferguson et al. Sep 2013 A1
20130302757 Pearlman et al. Nov 2013 A1
20130311077 Ichida Nov 2013 A1
20130332070 Fleizach et al. Dec 2013 A1
20140012438 Shoppa et al. Jan 2014 A1
20140012510 Mensinger et al. Jan 2014 A1
20140012511 Mensinger et al. Jan 2014 A1
20140012634 Pearlman et al. Jan 2014 A1
20140025229 Levien et al. Jan 2014 A1
20140025230 Levien et al. Jan 2014 A1
20140025233 Levien et al. Jan 2014 A1
20140025234 Levien et al. Jan 2014 A1
20140025235 Levien et al. Jan 2014 A1
20140025236 Levien et al. Jan 2014 A1
20140025284 Roberts Jan 2014 A1
20140052366 Rothschild Feb 2014 A1
20140052605 Beerle et al. Feb 2014 A1
20140058622 Trombley et al. Feb 2014 A1
20140058655 Trombley et al. Feb 2014 A1
20140058668 Trombley et al. Feb 2014 A1
20140058805 Paesler et al. Feb 2014 A1
20140067160 Levien et al. Mar 2014 A1
20140067167 Levien et al. Mar 2014 A1
20140074692 Beerle et al. Mar 2014 A1
20140077285 Noda et al. Mar 2014 A1
20140077326 Koshino et al. Mar 2014 A1
20140091350 Katsuno et al. Apr 2014 A1
20140095061 Hyde Apr 2014 A1
20140111546 Utagawa Apr 2014 A1
20140119993 Rhodes May 2014 A1
20140125500 Baade May 2014 A1
20140129426 Lamb et al. May 2014 A1
20140143169 Lozito May 2014 A1
20140147280 Kowatsch May 2014 A1
20140157510 Mjelde Jun 2014 A1
20140167821 Yang et al. Jun 2014 A1
20140180567 Fetsch Jun 2014 A1
20140183376 Perkins Jul 2014 A1
20140195261 Rasquinha et al. Jul 2014 A1
20140201064 Jackson et al. Jul 2014 A1
20140210503 Tam Jul 2014 A1
20140215190 Mylius et al. Jul 2014 A1
20150006207 Jarvis et al. Jan 2015 A1
20150019270 Jarvis et al. Jan 2015 A1
20150024727 Hale-Pletka et al. Jan 2015 A1
20150066362 Meyer et al. Mar 2015 A1
20150067312 Lewandowski et al. Mar 2015 A1
Foreign Referenced Citations (53)
Number Date Country
2688263 Dec 2008 CA
2709740 Jul 2009 CA
2712576 Feb 2011 CA
2828835 Apr 2014 CA
2832185 May 2014 CA
0581558 Apr 1997 EP
0795760 Apr 1999 EP
0806632 Apr 1999 EP
0660083 Sep 2000 EP
0795700 Nov 2001 EP
0767448 Dec 2002 EP
0785132 May 2003 EP
1324241 Jul 2003 EP
0763713 May 2004 EP
1752949 Feb 2007 EP
1777541 Apr 2007 EP
1785744 May 2007 EP
1791101 Feb 2008 EP
1912191 Apr 2008 EP
1944190 Jul 2008 EP
1760655 Sep 2008 EP
2000889 Dec 2008 EP
1870788 Oct 2009 EP
1894779 Nov 2009 EP
1975563 Nov 2009 EP
1975565 Nov 2009 EP
1804223 Dec 2009 EP
1927961 Jan 2010 EP
2154026 Feb 2010 EP
2339562 Jun 2011 EP
2528043 Nov 2012 EP
1975566 Dec 2012 EP
1742083 Jan 2013 EP
1895273 Jan 2013 EP
2747004 Jun 2014 EP
9834314 Aug 1998 WO
0175472 Oct 2001 WO
0219683 Mar 2002 WO
2004009473 Jan 2004 WO
2004051594 Jun 2004 WO
2004086076 Oct 2004 WO
2005008603 Jan 2005 WO
2006053566 May 2006 WO
2008118578 Oct 2008 WO
2009080070 Jul 2009 WO
2009112305 Sep 2009 WO
2009158469 Dec 2009 WO
2011011544 Jan 2011 WO
2011037766 Mar 2011 WO
2011037800 Mar 2011 WO
2011070534 Jun 2011 WO
2013016581 Jan 2013 WO
2014062668 Apr 2014 WO
Non-Patent Literature Citations (11)
Entry
“Save Money on Fleet Fueling Purchases”, Sokolis Group Fuel Managment, Jan. 26, 2011 by Sokolis (p. 1) http://www.sokolisgroup.com/blog/save-money-on-fleet-fueling-purchases/.
“Sensor-based Logistics: Monitoring Shipment Vital Signs in Real Time”, Inbound Logistics, Jun. 2013 by Chris Swearingen (pp. 2) http://www.inboundlogistics.com/cms/article/sensor-based-logistics-monitoring-shipment-vital-signs-in-real-time/.
“Electronic Cargo Tracking System and Solution, Intermodal Real-time Container Tracking and Rail Car Transport Security Tracking System for End-to-End Supply Chain Security System and Tracking Solution”, Cargo Tracking Solution & intermodal Transport Monitoring, Avante International Technology, Inc. in 2001-2015 (pp. 11) http://www.avantetech.com/products/shipping/.
“Sea Container Tracking Methods”, Moving-Australia, 2012 (pp. 3) http://www.moving-australia.co.uk/container/tracking-methods.php.
“GlobalTag for Global Visibility and Tracking”, Global Tracking Technology, in 2015 (pp. 5) http://globaltrackingtechnology.com/globaltag-for-global-visibility.html.
“The Course of the ‘Connected’ Car”, It Is Innovation, Emphasis on safety, Jan. 6, 2013 by Murray Slovick (pp. 4) http://www.ce.org/i3/Features/2013/January-February/The-Course-of-the-Connected-car.aspx.
“Cooperating Embedded Systems and Wireless Sensor Networks”, John Wiley & Sons, Inc., ISBN: 978-1-84821-000-4, Mar. 10, 2008 by Michel Banâtre et al. (pp. 2) http://as.wiley.com/WileyCDA/WileyTitle/productCd-1848210000.html.
“Mitsubishi Motors Develops New Driver Support System”, Mitsubishi Motors, Dec. 15, 1998 (pp. 5) http://www.mitsubishi-motors.com/en/corporate/pressrelease/corporate/detail429.html.
“Vehicle Tracking for an Evasive Manoeuvres Assistant Using Low-Cost Ultrasonic Sensors”, EBSCO Host Connections, 2014, vol. 14 Issue 12, p. 22689, Dec. 2014 by Jiménez, Felipe et al. (p. 1) http://connection.ebscohost.com/c/articles/100145890/vehicle-tracking-evasive-manoeuvres-assistant-using-low-cost-ultrasonic-sensors.
“The End of Demographics: How Marketers Are Going Deeper With Personal Data”, Mashable Journal, in Jul. 1, 2011 by Jamie Beckland (pp. 7) http://mashable.com/2011/06/30/psychographics-marketing/.
“Power cycling 101: Optimizing energy use in advanced sensor products”, Analog Dialogue, vol. 44, Aug. 2010 by Mark Looney (pp. 7) http://www.analog.com/library/analogdialogue/archives/44-08/power—cycling.html.
Related Publications (1)
Number Date Country
20140125501 A1 May 2014 US
Continuations (1)
Number Date Country
Parent 13668698 Nov 2012 US
Child 13898493 US