1. Field of the Invention
The present invention relates to a container with an opening provided with a recording medium for recording predetermined information.
2. Description of the Related Art
In recent years, recording media, such as RFID (Radio Frequency Identification) tags, have been used with containers with an opening used for consumable supplies, such as ink, for screen printers, for example. Such a recording medium records information such as the type and compatibility of the consumable supply contained therein.
The information recorded on the recording medium needs to be protected from unauthorized reading by a third person, in view of quality control and development of new products. Further, since each RFID tag is assigned with a unique ID, it has been pointed out recently that the activity of an individual may be identified by illegally reading, storing and analyzing the unique IDs. Therefore, it is also necessary to prevent unauthorized reading of information on the recording medium by a third person, in view of privacy protection.
U.S. Pat. No. 7,168,797 has proposed an ink container for use with screen printers. The container includes a rib formed at an upper end surface thereof, and a recording medium is attached to the rib so that the recording medium can easily be removed from the ink container after use.
Japanese Unexamined Patent Publication No. 2005-086244 has proposed a mechanism which prevents information on a recording medium from being read by covering the entire recording medium with an electromagnetic wave-blocking member, and allows the information on the recording medium to be read by exposing the recording medium out of the electromagnetic wave-blocking member.
Although the technique proposed in U.S. Pat. No. 7,168,797 can prevent unauthorized reading of information on a recording medium by a third person after the ink container is discarded or recycled if the user removes the recording medium from the container before discarding or recycling the container, it is difficult to prevent unauthorized reading of information on the recording medium by a third person from the time of factory shipment of the ink container filled with ink and sealed to the time of use when the ink container is opened.
Further, although the technique proposed in Japanese Unexamined Patent Publication No. 2005-086244 can prevent unauthorized reading of information on a recording medium by a third person from the time of factory shipment to the time of use by covering the entire recording medium with the electromagnetic wave-blocking member, the structure of the mechanism is complicated and this may result in increase in costs. Furthermore, at the time of use, the user needs to expose the recording medium out of the electromagnetic wave-blocking member with certainty. If the user forgets to do that, the recording medium which is still in the reading-disabled state may be set on an external device.
In view of the above-described circumstances, the present invention is directed to inexpensively providing a container with an opening provided with a recording medium, which can be prevented from unauthorized reading of information on the recording medium by a third person from the time of factory shipment to the time of use, and can be set on an external device in a reading-enabled state at the time of use by the user without forgetting to enable reading from the recording medium.
In order to solve the above-described problems, a first aspect of the container according to the invention is a container with an opening provided with a recording medium from which recorded information is able to be read, the container including: a seal attached to the recording medium, the seal comprising a read-blocking section for blocking reading of the information recorded on the recording medium and an extending portion for sealing the opening of the container.
A second aspect of the container according to the invention is a container with an opening sealed with a cap and provided with a recording medium from which recorded information is able to be read, the container including: a seal attached to the recording medium, the seal comprising a read-blocking section for blocking reading of the information recorded on the recording medium and an extending portion attached to the cap sealing the opening of the container.
The “recording medium” in the first and second aspects of the container of the invention may be any recording medium as long as predetermined information recorded on the recording medium can be read with an external device. The “read-blocking section” refers to a section having a function of blocking reading, however, the read-blocking section needs not to completely block reading, and also refers to one having a function of substantially blocking reading. The “attached” refers to that the seal is attached so that reading of the recorded information on the recording medium is disabled. The “extending portion of the seal” refers to a portion that continuously extends from the read-blocking section of the seal.
The “attached to the cap” does not necessarily means that the extending portion is attached to the entire portion of the cap, and also refers to that the extending portion is attached to a part of the cap.
The recording medium of the container according to the invention may be an RFID tag having a coil-pattern antenna.
The read-blocking section of the seal of the container according to the invention may be made of a conductive material and may entirely or partially cover the coil-pattern antenna of the RFID tag.
The read-blocking section may be a coil-pattern conductor. The read-blocking section may form a short circuit between opposite end portions of the coil-pattern antenna.
The “opposite end portions of the coil-pattern antenna” refers not only to the opposite ends of the coil of the coil-pattern antenna, but also refers to portions of the coil-pattern antenna in the vicinity of the opposite ends thereof.
Hereinafter, a first embodiment of the container with an opening according to the present invention will be described with reference to the drawings. In this embodiment, the container is described as a container of ink supply for use with a screen printer.
As shown in
In the second embodiment, the user peels off the seal 30 from the container body 10, and then opens the cap 12 to make the container 1 ready for being set on the external device at the time of use.
Next, the RFID tag 20, which is an example of the recording medium, is described in detail. It should be noted that the recording medium of the invention is not limited to the RFID tag, and includes any of other recording media that can communicate with an external device for reading the recorded information.
When the RFID tag 20 is placed within a magnetic field generated by the external device, a magnetic flux passing through the coil-pattern antenna 22 induces an electromotive force and modulation is carried out, thereby achieving communication between the RFID tag 20 and the external device. A carrier wave used for modulation in this embodiment has a frequency of 13.56 MHz, however, this is not intended to limit the invention.
Next, the read-blocking section 31 is described in detail. The read-blocking section 31 covers the coil-pattern antenna 22 of the RFID tag 20 to block the radio wave, thereby disabling communication between the external device and the RFID tag 20. Specifically, in order to prevent communication between the RFID tag 20 and the external device, the RFID tag 20 is covered with the read-blocking section 31 which is formed by a material that blocks the radio wave, i.e., a conductive material such as aluminum or copper, or a material with such a metal vapor-deposited thereon. Alternatively, the base 31a of the seal body 34 may be formed by a conductive material so that the base 31a also serves as the read-blocking section 31. The read-blocking section 31 may be formed on either of the adhesive surface side or the upper surface side of the seal 30.
As shown in
In the third embodiment of the read-blocking section 31, when the seal 30 is peeled off from the container body 10, the read-blocking section 31 and the short circuit pad 31b may be peeled off together with the seal 10. Alternatively, a conductive adhesive, or the like, may be applied on the surfaces of the short circuit pads 31b facing the electrode pads 22a, so that the short circuit pads 31b may be separated from the read-blocking section 31 and remain on the electrode pads 22a.
Next, operation of the invention is described.
To indicate communication characteristics of the RFID tag 20, the resonant frequency f and the Q factor are used. The Q factor is used to evaluate a mountain-like shape of a locus of the measured resonant frequency f of the RFID tag 20. Namely, assuming that frequencies at which the gain is 3 dB lower than the gain at the resonant frequency f, on the left and right of the resonant frequency f in the graph, are frequencies f1 and f2, and the range between the frequencies f1 and f2 is a bandwidth B, the Q factor is calculated from a ratio between the resonant frequency f and the bandwidth B.
As shown in
As described above, in the first embodiment of the container 1 of the invention, the read-blocking section 31 of the seal 30 prevents unauthorized reading of information on the RFID tag 20 by a third person from the time of factory shipment to the time of use. Further, since the extending portion 32 of the seal 30 seals the opening 11, the operation of peeling off the seal 30 to open the container by the user at the time of use also enables reading of information on the RFID tag 20. Therefore, the user can set the container 1 on the external device without forgetting to enable reading from the RFID tag 20.
In the second embodiment of the invention, unauthorized reading of information on the RFID tag 20 by a third person can be prevented from the time of factory shipment to the time of use similarly to the first embodiment. Further, since the extending portion 32 of the seal 30 is attached to the cap 12, the user needs to peel off the seal 30 in order to open the container at the time of use. Therefore, the user can set the container 1 on the external device without forgetting to enable reading from the RFID tag 20.
Further, the first and second embodiments of the container 1 of the invention do not require a complicated mechanism, and therefore, costs of the container 1 are not increased.
Although the container 1 of the invention has been described as a container of ink supply for use with screen printers, this is not intended to limit the invention. As shown in
Further, the container of the invention is also applicable to containers of consumable supplies other than ink, such as containers of toner supply, or containers of consumable supplies for devices other than printers.
According to the first aspect of the container of the invention, the read-blocking section of the seal prevents unauthorized reading of information on the recording medium by a third person from the time of factory shipment to the time of use. Further, since the extending portion of the seal seals the opening, the operation of peeling off the seal to open the container by the user at the time of use also enables reading of information on the recording medium. Therefore, the user can set the container on the external device without forgetting to enable reading from the recording medium.
According to the second aspect of the invention, unauthorized reading of information on the recording medium by a third person can be prevented from the time of factory shipment to the time of use similarly to the first aspect. Further, since the extending portion of the seal is attached to the cap, the user needs to peel off the seal in order to open the container at the time of use. Therefore, the user can set the container on the external device without forgetting to enable reading from the recording medium.
Further, the first and second aspects of the container of the invention do not require a complicated mechanism, and therefore, costs of the container are not increased.
Number | Date | Country | Kind |
---|---|---|---|
080636/2008 | Mar 2008 | JP | national |