1. Field of the Invention
The invention relates generally to a container, and more particularly, but without limitation, to a container with an automated lid feature.
2. Description of the Related Art
Trash and other containers with mechanized lids are known. But such containers typically require manual intervention to activate the lid mechanism and to maintain the lid in an open state. Moreover, the utility of known containers is limited. For at least the foregoing reasons, improved containers are needed.
Embodiments of the invention seek to overcome one or more of the shortcomings described above.
In one respect, embodiments of the invention provide a container that is useful in advertising because of its distinctive shape and faux pull ring, and/or because it is configured to output a jingle or other stored audio. Moreover, in embodiments of the invention, the container is configured as a cooler with a thermal insulator. Such a cooler may also include an automatic lid mechanism and/or a delay feature that allows for hands-free operation by users that seek to retrieve, for instance, a cold beverage from the cooler.
The invention will be more fully understood from the detailed description below and the accompanying drawings, wherein:
The invention will now be described more fully with reference to
The size of the container may be much larger than a typical beverage can. For example, the container may have an 8 gallon capacity or a 13 gallon capacity, although the invention is not limited to these exemplary proportions. The overall shape of the container, and esp. in combination with the faux pull ring 115, give the container the appearance of a beverage can. This distinctive shape may facilitate use of the container as an advertising medium.
In the illustrated embodiment, the removable body liner 130 could support alternative applications for the container. For instance, with the body liner 130 installed, the container may be used as a beverage cooler. Absent the body liner 130, the container may be used as a trash can.
In an alternative embodiment of the invention (not shown), the container is configured such that the body liner 130 is not easily removed from the body 105.
The housing 210 may encase one or more system components (not shown in
In embodiments of the invention, the internal liner 230 may be or include a thermal liner and may be constructed of polystyrene or other suitable thermal insulator. Embodiments that include a thermal internal liner 230 and a thermal body liner 130 configure the container as a cooler. As described above, container embodiments that only include the thermal body liner 130 may also be used as a cooler.
In the embodiment illustrated in
Variations to the configuration of the container illustrated in
The controller 305 may include I/O port(s) 330 and memory 335, both coupled to a Central Processing Unit (CPU) 325. The memory 335 may be or include, for example, nonvolatile memory such as Read-Only Memory (ROM), flash memory, a Hard Disc (HD) drive, or a Compact Disc (CD) drive. The I/O devices 310 may include one or more of switches 220, sensor 225, speakers 340, and motor driver 345. In alternative embodiments, the I/O devices 310 include one or more sensor switches (not shown), for example a sensor switch that senses when the lid 110 is opened and/or a sensor switch that senses when the lid 110 is closed.
The motor driver 345 may be coupled to a motor 315. The motor 315 may be or include, for example, a direct current (DC) motor, and the motor 315 may be a component of the powered hinge 205. The motor driver 345 is configured to supply the necessary power to operate the motor 315. The motor driver 345 may also be configured to protect the controller 305 from electrical spikes generated by the motor 315.
The power source 320 may be or include, for instance, one or more batteries, filters, chargers, and/or an AC-to-DC power supply.
In operation, the memory 335 may store code for execution by the CPU 325. A method for controlling the motor driver 345 may be embodied in the code. For example, the controller 305 may be configured to activate the motor driver 345 based on inputs received from the switches 220, sensor 225, and/or sensor switches (not shown). Such action indirectly opens or closes the lid 110.
The memory 335 may also store audio data, and the code may embody a method for reading the audio data from the memory 335 and outputting the audio data to the speaker 340. The controller 305 may be configured to read and output the audio data, for instance, according to inputs received from the switches 220, sensor 225, and/or other predetermined conditions.
Where the result of conditional step 410 is in the negative, the process advances to conditional step 430 to determine whether an open switch is activated. The open switch may be, for instance, one of the switches 220. Where the result of conditional step 430 is in the negative, the process advances to conditional step 440. Where the result of conditional step 430 is in the affirmative, the process opens the lid in step 435 before advancing to conditional step 440.
In conditional step 440, the process determines whether a close switch is activated. The close switch may be, for instance, another one of the switches 220. Where the result of conditional step 440 is in the affirmative, the process closes the lid in step 425 and then returns to conditional step 410. Where the result of conditional step 440 is in the negative, the process returns to conditional step 410.
The process in
Where the result of conditional step 410 is in the negative, the process advances to conditional step 470 to determine whether an open switch is activated. The open switch may be, for instance, one of the switches 220. Where the result of conditional step 470 is in the negative, the process advances to conditional step 475. Where the result of conditional step 470 is in the affirmative, the process opens the lid in step 455, waits for a predetermined delay in step 460, closes the lid in step 465, and then returns to conditional step 450.
In conditional step 475, the process determines whether a close switch is activated. The close switch may be, for instance, another one of the switches 220. Where the result of conditional step 475 is in the affirmative, the process closes the lid in step 465 and then returns to conditional step 450. Where the result of conditional step 475 is in the negative, the process returns to conditional step 450.
The process in
Where the result of conditional step 482 is in the negative, the process advances to conditional step 488 to determine whether the lid is open. Where the result of conditional step 488 is in the negative, the process returns to conditional step 482. Where the result of conditional step 488 is in the affirmative, the process closes the lid in step 490 and then returns to conditional step 482.
The process illustrated in
It will be apparent to those skilled in the art that modifications and variations can be made without deviating from the spirit or scope of the invention. For example, alternative features described herein could be combined in ways not explicitly illustrated or disclosed. Thus, it is intended that the present invention cover any such modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.