Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring now to the drawings and in particular to
It will be appreciated that, except as described hereinafter, the construction of the syringe 1 can be conventional. However, the present invention is not limited to syringes. A container may be a structure such as a syringe, vial, flask, bottle or jar, pharmacy bulk package or a flexible structure like a bag. The container may be made of glass, plastic, metal, a combination of glass, plastic and/or metal or other suitable materials and combinations of materials. Moreover, the broader term “container” may be taken to mean for purposes of this application structures such as a passage which would contain liquid or other flowable substance only for an instant as it flows through the structure. “Flowable substance,” as used herein, includes liquids, emulsions, suspensions and liposomes. The present invention has particular application to containers holding contrast media, and the description will be directed to contrast media 11. However, the present invention is useful with any substance held in a container that can be beneficially affected by a quality maintenance additive which is associated with the container and not directly added to the substance itself in such a way that it is ejected or emptied with the substance from the container in use.
Examples of some types of quality maintenance additives to which the present invention applies are given above in the Background of the Invention. Chelating agents and buffering agents are the most common quality maintenance additives used for contrast media 11, and the embodiments described herein will reference a chelating agent. It will be understood that although generally these additives act on the stored substance to maintain the quality of the stored substance, it is envisioned that a “quality maintenance additive” could also improve or change the quality of the stored substance in some predetermined fashion within the scope of the present invention. Often, the quality maintenance additive acts on the stored substance to remediate a condition which deviates from a desired quality characteristic of the stored substance. A quality characteristic may be, for example and without limitation, a certain pH range, the absence of microbes, the absence of positive metal ions, and prevention of oxidation. Moreover, the present invention is envisioned as having application outside the medical field.
The invention is described herein in terms of an embodiment in which the quality maintenance additive is a chelating agent. In a first embodiment of the present invention, a chelating/stabilizing agent (referred to hereafter as a “chelating agent”) is incorporated into a resin that forms the plastic barrel 3 of the syringe 1 using one of the many conventional methods known in the art. Typically, the syringe barrel 3 is made from a polymer or resin material such as polyethylene, polypropylene, a copolymer of polyolefins, polyvinylchloride, polystyrene, polycarbonate, polyethylene terephthalate, cyclic olefin materials and like commonly used polymers. The container can also be made of glass or other suitable materials. One common way of producing the syringe barrel 3 begins with a polymer produced by a basic polymerization reaction (e.g., polypropylene) to which is added, for example, an antioxidant, fiber material (for strength), colorant, nucleators (to improve stiffness and clarity), and possibly a lubricant. Optionally a chelating agent may be added to this mixture. The polymer may take the form of a powder, pellets or other suitable form. The mixture is fed into an extruder which melts the components and extrudes the mixture to form pellets which are sent to a second extruder that injects material into a mold to produce the barrel 3. The chelating agent could be added at any suitable location, such as at either extruder, or between extruders. Heat may be applied to the extruder to facilitate melting. Extrusion polymerization (or reactive extrusion) can be used to functionalize the polymer or to modify existing functional groups on the polymer.
It is further envisioned that a resin already containing a chelating moiety or substituents capable of functioning as chelating agents could be added in place of the chelating agent by itself. Examples of such resin are suitable ion-exchange resins and QuadraPure® chemical and metal scavengers (functionalized macroporous and microporous resins commercially available from Sigma-Aldrich Corporation). For additional information on resins with such substituents, see “Chapter 3. Ion Exchange” in “Separation and Purification Techniques in Biotechnology” by F. J. Dechow published in 1989 by Noyes Publications, Park Ridge N.J., USA. Other polymers that could be used for this purpose, i.e. crosslinked copolymers of basic vinyl heterocycles with another monomer coploymerizable therewith, are described in U.S. Pat. No. 5,094,867, the disclosure of which is incorporated herein by reference.
The chelating agent added to the resin mixture should be able to withstand the various molding process conditions, e.g. shear forces in the extruder and extrusion temperature. The chelating agent would be added in an amount which is sufficient to ensure that in the resin forming the barrel 3, enough of the chelating agent is exposed on an inner wall 23 of the barrel to the contrast media 11 to bind free metal ions in the contrast media. The chelating agent must not affect the strength of the barrel 3 to the extent that it cannot function for its intended purpose, and preferably should also not affect the clarity of the barrel. Moreover other processes for forming the barrel that are known in the art could be used, such as sintering where the material could be hot or cold formed, or co-extrusion where only an internal layer includes the chelating agent and an outer layer(s) maintains desired mechanical properties.
Other versions of this form of the present invention are contemplated. For instance, the head 5 of the plunger, and/or the cap 9 that closes the nozzle 7 could be made from a material including a chelating agent. As another option, chelating agents, such as DTPA or EDTA in the anhydride form, or buffering agents, such as tromethamine, could be attached (e.g., chemically bonded) to a suitable functional group, such as amine, primary amide, carboxylic, hydroxyl or phenolic group already present on the inner side of the container. Examples of such methods are well known in the art. The following recent publications are exemplary: Anal. Chem. 2005, 77, 30-35 and Anal. Chem. 2005, 77, 1096-1105. It is also envisioned that a chelating agent could be added to a mixture for making other containers such as a glass container. It will be appreciated that by associating the chelating agent with the syringe 1 (or other container such as a vial or bottle), the metal ions and chelating agents remain in the syringe after the contrast media 11 has been ejected from the syringe. Thus, neither is injected into the patient.
In a second embodiment of the present invention, the quality maintenance additive can be applied to a surface of the container, as an example, syringe 1 (that is exposed to the contrast media 11) after the syringe is formed. It is well known to apply a lubricant, such as silicone to the barrel 3 and/or plunger head 5 to facilitate sliding movement of the plunger head 5 along the wall 23 when used to eject the contrast media 11 from the barrel. The quality maintenance additive, e.g. a chelating agent or a buffering agent, can be part of the silicone (or other lubricant), such as by being chemically attached to the silicone molecule or the other lubricant via a functional group (e.g., an amine, primary amide, carboxylic, hydroxyl or a phenolic group) in the silicone or the other lubricant.
Although possible, typically the composition containing a lubricant and a chelating agent does not chemically bond with the resin material of the barrel 3 when applied thereto. However, optionally, the lubricant with the quality maintenance additive, such as a chelating agent or a buffering agent, could be either chemically or by some other fashion bonded to the surface of the container such as the syringe barrel and/or the plunger. The Gelest Catalog 3000-A titled “Silicon Compounds: Silanes & Silicones” published by Gelest, Inc. in 2004 describes examples of this and other related methods. For other methods of coating surfaces, see “Organic Coatings: Science and Technology”, second edition 1999, edited by Z. W. Wicks, Jr., F. N. Jones and S. Peter Pappas and published by Wiley-Interscience.
It will be understood that the chelating agent could be applied without being formulated as part of a lubricant. For instance, if the material of the barrel 3 and/or the plunger head 5 includes a lubricant as a component it would not require additional lubricant applied to the plunger head or the barrel. It is also envisioned that the chelating agent could be attached to a material applied to the barrel 3 and/or head 5 which is not a lubricant. The material would not interfere with the normal operation of the lubricant, but allow the chelating agent to act on the liquid in the barrel 3. Moreover, if the container is not a syringe and does not have a plunger head 5 engaging and moving along an inner wall 23 of the barrel 3, no lubricant is needed. The chelating agent can be formulated in any suitable manner for adhering to the inner wall of the container. Also, physical roughening or etching can be employed to increase the surface area of the inner wall 23, so that the inner wall may then be more readily coated with a material such as a lubricant that is bonded with desired quality maintenance additive(s), such as a chelating agent.
The layer of silicone or other material including a chelating agent (
Alternatively, as an example, the chelating agent, as a weak Ca or other metal ion complex, can be coated on a container surface in the form of a polymer ink. See Proc. Intl. Soc. Mag. Reson. Med. 13 (2005) page 2142 for a description of the use of a polymer ink. The following publications describe examples of a methodology for the formation of stable, derivatized film coating on a silica surface: Anal. Chem. 2001, 73, 2429-2436 and Anal. Chem. 2003, 75, 3518-3530.
The chelating agent could also be applied in a conformal coating (vapor deposition) process. A suitable material in dimer form (e.g., parylene, polypropylene), including a chelating agent element is heated to a vapor phase in a vacuum chamber. The barrel 3 of the syringe 1 is also placed in the vacuum chamber. The vapor flows over and is deposited on the entire exposed surface area of the barrel 3 in a highly uniform layer. The deposited material on the barrel 3 attaches to the material of the barrel, forming a strong connection between the deposited material and the barrel. It is also envisioned that other techniques for associating the chelating agent (or other quality maintenance additive) with the barrel 3 could be used, such as nanocoating technology or a biologically active coating technique e.g., using an appropriately derivatized agent of hyaluronan. See, for example, “The chemistry, biology and medical applications of Hyaluronan and its derivatives”, ed. T. C. Laurent, Wenner-Gren International Series Vol. 72, Portland Press, London.
Referring to
A third embodiment provides a chelating agent that is formed as a separate component and positioned so as to contact the contrast media. Ideally (although not exclusively), these components would be placed in a syringe 1′ in areas which are not subject to wear by action of a plunger head 5′ moving in a barrel 3′. Corresponding parts of the third embodiment will be labeled with the same reference numerals as for the first and second embodiments, with the addition of a trailing prime. As shown in
A plunger head 5′ in a modified form of the embodiment of
In yet another version of this third embodiment shown in
The configuration of the bottle 53 and/or disk 57 may be other than described without departing from the scope of the present invention. For example, a container (not shown) may gradually taper in internal diameter from the bottom to the top. As another example, the chelating agent could be formed as beads that are contained in a porous container (e.g. a mesh bag) that allows the beads to be in liquid contact with the contrast media.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “hasting” are intended to be inclusive and mean that there may be additional elements other than the listed elements. The use of terms indicating a particular orientation (e.g., “top”, “bottom”, “side”, etc.) is for convenience of description and does not require any particular orientation of the item described.
As various changes could be made in the above without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/35156 | 9/28/2005 | WO | 00 | 2/27/2007 |
Number | Date | Country | |
---|---|---|---|
60613907 | Sep 2004 | US |