The present invention relates to containers of the type including a container body with an open mouth selectively closed by a spring biased lid, and more particularly to such containers wherein the biasing action is provided by a rubber-like or elastomeric member mounted to and between the lid and the rim portion of the container body.
The prior art includes many examples of lidded containers wherein the closed lid, upon release of an appropriate latch, automatically moves to an open position impelled by a biasing spring. Such an opening force has, for the most part, normally heretofore been provided by metal springs of various types, including leaf or compression springs, torsion springs and the like.
As a variation and improvement on conventional metal springs, it has recently been proposed to use elastically deformable springs such as rubber. Two examples of such usage will be found in U.S. Pat. No. 5,501,348, to Takeuchi, and U.S. Pat. No. 6,206,221 D1 to Bando et al. Takeuchi utilizes a rather elaborately configured spring of L or channel configuration, relying in large part on the configuration for the spring action. Bando, to the contrary, utilizes what appears to be a rather simple flat elongate constant thickness strip which, upon compression, curls on itself and is received in an opening.
Another feature-known in the prior art which has a bearing on the present invention is the expedient of providing a handle assembly on a container body wherein the body includes a vertical recess in a portion of the body wall with the handle extending across the recess wherein the recess allows for engaging fingers inward of the handle for manipulation of the container. Note as an example U.S. Pat. No. Des.422,457 to Daenen et al and U.S. Pat. No. Des.423,294 to Klein. Also note U.S. Pat. No. 6,318,586 D1 to Frankenberg.
It is a primary intention of the present invention to advance the art as described above in a significant manner, particularly with regard to the use of rubber-like or elastomeric springs. In doing so, it is intended that springs in accord with the present invention provide, as compared with the known prior art, not only a highly efficient spring action, but also a spring which is both unique in structure and in the manner of use and operation thereof. In conjunction therewith, the present invention also proposes a handle assembly which provides a practical handle for the container body, particularly during the pouring of contents therefrom, and cooperatively relates to the lid hinge assembly so as to protectively and aesthetically enclose the hinge assembly and elastomeric spring.
Referring initially to the container and lid relationship, the lid, through a hinge assembly, is pivotally mounted to the container wall for free movement between a closed position overlying the container mouth and an open position upwardly swung from the container mouth to a substantially vertical position. The container body, vertically aligned with the hinge assembly and the open lid, includes a recess defined in the wall thereof. In the illustrated container embodiment, it will be noted that this wall recess in fact comprises substantially the entire rear wall of the container which, in conjunction with the narrow front wall of the container and the wide side walls thereof, present or form an oblong container, particularly desirable where shelf space might be limited. The hinge assembly includes a first component integral with the recessed wall or wall portion for a minor portion of the upper end thereof. This first hinge component is pivotally joined to a second hinge component affixed or integral with the under surface of the aligned portion of the lid. The container hinge component is enclosed by the handle which extends from the opposed side walls and transversely overlies the first hinge component in outwardly spaced relation thereto, thereby concealing the hinge component and defining a downwardly opening pocket or compartment to receive the fingers of a hand, allowing an upward lifting and manipulation of the container as desired.
The elastomeric spring, which comprises a particularly significant aspect of the invention, is distinct in its uniquely configured construction and in the particular advantages derived therefrom. More specifically, the spring, rather than being of a multi-angled configuration of webs, or a single flat constant thickness plate, is of what might be considered a generally ellipsoidal shape with opposed planar surfaces and both an elongate longitudinal cross-section which can be broadly referred to as oval or elliptical, and a transverse cross-section which is generally rectangular. More specifically, the spring of the invention is formed with a maximum thickness at the longitudinal central area thereof with the thickness of the spring tapering outwardly to the opposite sides of the central area to minimum thickness at the two opposed ends of the spring which in turn are arcuately formed. Thus, the thickness of the spring varies at a substantially constant rate from the center of the spring and transversely across the width thereof, in a direction longitudinally outward to the opposed ends, producing a spring with the area of maximum bending moment at the central area thereof which is also the area of maximum strength and, upon elastic deformation, the area of maximum developed memory induced force producing the desired lid opening action.
The formation of the spring in this manner provides significant advantages both with regard to the simplicity of the structural configuration and in the conservation of material and resultant economies. The variable thickness of the spring provides for a concentration of the bulk of material in the area of greatest value with only minimum material being required and utilized toward the opposed positioning and/or anchoring ends of the spring. The formation of such springs with different force components allows for a concentration of the bulk of material within the central area of maximum stress, as opposed to any teachings in the constant thickness elastomeric springs heretofore proposed.
In mounting the spring, the spring extends across the pivot axis of the hinge assembly with the opposed ends of the spring retained against opposed abutments on the container and lid with the orientation of the spring causing, upon a manual closing of the lid to its latch position, a single folding of the spring at the central area thereof, the area of maximum strength and elastic memory, to achieve the desired increase of biasing force required to open the lid upon release thereof. This simple single folding action is all that is required, in conjunction with the unique configuration of the spring, to provide a highly effective and efficient operation.
Other features, objects and advantages of the invention will become apparent to those skilled in the art from the following more detailed description of the invention.
Referring now more specifically to the drawings, the container 10, which for purposes of illustration has been presented as an elongate rectangular canister, includes a container body 12 and a container lid 14 pivotally mounted to the body for selectively closing the container mouth. In the illustrated embodiment, the container body 12 includes wide side walls 16 and relatively narrower front and rear walls 18 and 20.
The rear wall 20, note
The hinge assembly, that is the means by which the lid is pivotally mounted to the container body, is protectively enclosed and concealed within the formed handle pocket upwardly spaced from the lower edge of the handle. Noting
Each pivot pin 26 is rotatably received within a socket or bearing aperture 28, only one of which is shown, defined in a pair of laterally spaced partitions or mounting blocks 30 integral with and depending from the top panel 32 of the lid. As desired, the pin support arms 24 can include a small degree of flexibility to allow for a snap mounting of the lid to the container body. Noting
Of particular significance with regard to the present invention is the manner in which provision is made for the spring biased opening of the lid away from the container rim which defines the mouth of the container. This is achieved utilizing a highly unique although structurally simple spring or spring unit 40 detailed in
Noting
Noting the sequential steps of
As will be recognized, any appropriate latch mechanism can be used to retain the lid closed against the biasing force of the spring. For example, as illustrated in
The foregoing is illustrative of the principles of the invention, and while a specific embodiment of the invention has been set forth in detail, it is to be appreciated that variations may occur to those skilled in the art, such as dimensional changes resulting in both larger and smaller containers, and containers of shapes other than the basic oval shape illustrated, all without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5344037 | Favre | Sep 1994 | A |
5494185 | Dubach | Feb 1996 | A |
5501348 | Takeuchi | Mar 1996 | A |
5620107 | Takeuchi | Apr 1997 | A |
5669522 | Million et al. | Sep 1997 | A |
5699912 | Ishikawa et al. | Dec 1997 | A |
5762216 | Takeuchi | Jun 1998 | A |
5788064 | Sacherer et al. | Aug 1998 | A |
6206221 | Bando et al. | Mar 2001 | B1 |
6364152 | Poslinski et al. | Apr 2002 | B1 |
6857639 | Beeck et al. | Feb 2005 | B1 |
20040159661 | Aochi | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
686775 | Jun 1996 | CH |
1215130 | Jun 2002 | EP |
58074926 | May 1983 | JP |
Number | Date | Country | |
---|---|---|---|
20050023284 A1 | Feb 2005 | US |