1. Field of the Invention
The present invention relates to containers with electromagnetic coupling modules, and more specifically, to a container with an electromagnetic coupling module having a radio IC chip used in an RFID (Radio Frequency Identification) system.
2. Description of the Related Art
Recently, RFID systems, in which a reader/writer that generates an induction field contactlessly communicates with an IC chip (also referred to as an IC tag or a radio IC chip) that is attached to an article or a container and stores predetermined information to exchange information, have been developed as article management systems. For example, Japanese Unexamined Patent Application Publication No. 2003-67711 discloses an article having an electrically conductive antenna unit and an IC chip that are provided on an outer surface of a packaging container, such as a side surface or an upper surface of a cardboard box.
However, attachment of the antenna unit and the IC chip onto the outer surface of the packaging container has a problem in which the IC chip may be damaged by a shock caused when the IC chip is hit by another article during packaging, transfer, and/or storage. Additionally, the antenna unit and the IC chip must be arranged to overlap each other in an electrically conductive manner. Since the displacement in the overlapping state causes trouble in the transmission and reception quality of signals, it causes a problem in which high accuracy is required in the arrangement. Furthermore, since the IC chip is provided on a signal radiating surface of the antenna unit, there is also a problem that the IC chip disturbs a signal radiation characteristic of the antenna unit.
To overcome the problems described above, preferred embodiments of the present invention provide a container with an electromagnetic coupling module that includes a radio IC chip that 1) is resistant to a shock applied from the outside or due to an environmental change, 2) realizes an easy arrangement of a radiator and the electromagnetic coupling module, 3) provides a preferable radiation characteristic, and 4) is suitably used in an RFID system.
To achieve the above-described characteristics and advantages, a container with an electromagnetic coupling module according to a preferred embodiment of the present invention includes an electromagnetic coupling module having a radio IC chip and a feeder circuit board on which the radio IC chip is mounted, the feeder circuit board including a feeder circuit having a resonant circuit that includes an inductance element and which has a predetermined resonant frequency, and a radiator that is electromagnetically coupled to the feeder circuit board, wherein the electromagnetic coupling module is attached to an inner surface of the container, and the radiator is attached to an outer surface of the container, such that the radiator radiates a transmission signal supplied from the resonant circuit through electromagnetic coupling and/or supplies a reception signal to the resonant circuit through electromagnetic coupling.
In a container with an electromagnetic coupling module according to a preferred embodiment of the present invention, the electromagnetic coupling module preferably includes the radio IC chip and the feeder circuit board. The electromagnetic coupling module and the radiator are arranged to be electromagnetically coupled with one another. Since the electromagnetic coupling module and the radiator are not directly electrically coupled, but rather are electromagnetically coupled with one another, the electromagnetic coupling module and the radiator work even if the electromagnetic coupling module and the radiator are respectively attached to the inner and outer surfaces of the container. Since the electromagnetic coupling module does not have to be arranged in a highly accurate manner with respect to the radiator, the arrangement process is significantly simplified.
Since transmission and reception of high-frequency signals with a reader/writer are preferably performed by providing the radiator on the outer side, an operation distance can become increased and an operation reliability is improved. On the other hand, since the electromagnetic coupling module is provided on the inner surface of the container, the electromagnetic coupling module is not affected by either a shock applied from the outside and an effect of an environmental change, such as humidity and temperature, for example, on the radio IC chip is reduced.
Additionally, since a frequency of a transmission signal radiated from the radiator and a frequency of a reception signal to be supplied to the radio IC chip are substantially determined by a resonant frequency of the resonant circuit of the feeder circuit board, various shapes of the radiator can be used and a stable frequency characteristic can be obtained.
Furthermore, since the electromagnetic coupling module is not arranged in front of the radiator, the signal radiation characteristic is not disturbed and a communication failure is less likely to occur. Furthermore, the container itself functions as a radiator even if the radiator is damaged or falls off. Accordingly, a function of the RFID system does not stop, even though the radiation characteristic may be worsened. In this regard, the container is preferably made of a dielectric. Herein, the dielectric is a material having a dielectric constant equal to or greater than about 1. By adjusting characteristic impedance of an input/output portion of the electromagnetic coupling module to match characteristic impedance around an interface of the dielectric, an electromagnetic wave is input to the dielectric and the dielectric functions as an electromagnetic radiator. The container may preferably be made of paper, cardboard, polyethylene, polypropylene, polyamide, cellophane, and polyethylene terephthalate, for example.
In a container with including an electromagnetic coupling module according to a preferred embodiment of the present invention, the radiator may preferably be attached to the outer surface of the container through an adhesive layer or may be directly defined on the outer surface of the container. When conductive resin paste including metal particles is applied onto the outer surface of the container, the radiator can be securely attached to the container. In this case, when the container is made of paper, a degree of adhesion between the radiator and the container increases and bleeding can be minimized. The radiator may preferably be a metal film or a metal leaf, for example.
The radio IC chip may preferably store various kinds of information regarding contents of the container with the electromagnetic coupling module. The information may preferably be writable. The radio IC chip may preferably have an information processing function other than that for the RFID system.
According to preferred embodiments of the present invention, a radio IC chip is resistant to shock applied from the outside and an environmental change, high accuracy is not required in the arrangement of a radiator and an electromagnetic coupling module and attachment thereof is easy, and an improved radiation characteristic and a stable frequency characteristic can be obtained.
Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.
Preferred embodiments of a container with an electromagnetic coupling module according to the present invention will be described below with reference to the accompanying drawings. The same reference numerals are used for components and portions common to various electromagnetic coupling modules and various articles to be described below and a repeated description will be omitted.
The radiator 25 is preferably formed by providing aluminum foil, copper foil, or a metal plating film, such as Al, Cu, or Ag, for example, on a resin film 26 and is adhered to the container main body 21 through an adhesive layer 27. Polyethylene terephthalate, polyimide, and polyester, for example, can preferably be used as the resin film 26.
The radiator 25 may preferably be linear or substantially linear as shown in
The electromagnetic coupling module 1 and the radiator 25 may be attached to the container main body 21 in a process of manufacturing of the container 20 or after completion of the container 20.
In the first and second preferred embodiments, because the electromagnetic coupling module 1 and the radiator 25 are adhered to surfaces of the container main body 21, the electromagnetic coupling module and the radiator are securely adhered. In particular, since the radiator 25 is extremely thin, the radiator does not protrude from the outer surface of the container main body 21 and is less likely to easily fall off due to a contact with another material.
In particular, if the container main body 21 is made of cardboard, such as paper, for example, adhesion reliability of the electromagnetic coupling module 1 and the radiator 25 is increased because surfaces of paper have unevenness and an anchor effect to an adhesive is obtained. In addition, as in the second preferred embodiment, since the paste is absorbed by paper when the radiator 25 is formed by applying low-viscosity conductive resin paste, bleeding and crawling are not caused.
Electromagnetic Coupling Module
As shown in
The resonant circuit 16 is a circuit arranged to supply a transmission signal having a predetermined frequency to the radiator 25 and/or a circuit arranged to select a reception signal having a predetermined frequency from signals received by the radiator 25 and to supply the selected reception signal to the radio IC chip 5, and to resonate at a predetermined frequency. As shown in
More specifically, as shown in
By laminating the above-described sheets 11A-11G, the inductance element L having a helical axis parallel or substantially parallel to the radiator 25 and the capacitance elements C1 and C2, in which the capacitor electrodes 14b are connected to respective ends of the inductance element L and the capacitor electrodes 14a are connected to the connection electrodes 12 through the via-hole conductors 13a, are defined. The connection electrodes 12 defining board-side electrode patterns are electrically connected to terminals (see
More specifically, the inductance element L defining a coil electrode pattern, among the elements defining the resonant circuit 16, feeds a transmission signal to the radiator 25 through a magnetic field. The inductance element L is fed with a reception signal from the radiator 25 through a magnetic field. Accordingly, it is preferable to arrange the inductance element L, among the inductance element L and the capacitance elements C1 and C2 defining the resonant circuit 16, closer to the radiator 25 in the feeder circuit board 10.
Although coupling between the resonant circuit 16 and the radiator 25 is primarily coupling through a magnetic field, coupling through an electric field may preferably also coexist. “Electromagnetic coupling” indicates coupling through an electric field and/or a magnetic field.
In the resonant circuit 16, a resonant frequency is determined by a resonant circuit constituted by the inductance element L and the capacitance elements C1 and C2. A resonant frequency of a signal radiated from the radiator 25 is substantially determined by a self-resonance frequency of the resonant circuit 16. Accordingly, any desired shape can be used for the radiator 25. A relative location of the electromagnetic coupling module 1 with respect to the radiator 25 is freely determined. Accordingly, an adhesion position of the electromagnetic coupling module 1 does not have to be managed highly accurately.
Since the electromagnetic coupling module 1 is not arranged in front of the radiator 25, a signal radiation characteristic is not disturbed and a communication failure is much less likely to occur. Since the container main body 21 is preferably made of a dielectric, it functions as a radiator even if the radiator 25 is damaged or falls off, and a function of an RFID system does not stop though the radiation characteristic worsens more or less.
Furthermore, since the helical axis of the coil electrode patterns defining the inductance element L is arranged in parallel or substantially in parallel to the radiator 25, advantageously, the center frequency does not vary. Additionally, since the capacitance elements C1 and C2 are arranged at the following stage of the radio IC chip 5, low-frequency serge can be cut by the elements C1 and C2 and the radio IC chip 5 can be protected from the surge.
The resonant circuit 16 also has a function of a matching circuit and is arranged to match impedance of the radio IC chip 5 and impedance of the radiator 25. The feeder circuit board 10 may include a matching circuit, having an inductance element and a capacitance element, provided separately from the resonant circuit. When a function of a matching circuit is included in the resonant circuit 16, a design of the resonant circuit 16 tends to be complicated. If a matching circuit is provided separately from the resonant circuit 16, the resonant circuit and the matching circuit can be designed independently.
A container with an electromagnetic coupling module according to the present invention is not limited to the above-described preferred embodiments and can be modified variously within the scope of the present invention.
In particular, a shape of a container having an electromagnetic coupling module attached thereto is not limited to a box shape as shown in the preferred embodiments. The electromagnetic coupling module can be attached to various kinds of containers. The electromagnetic coupling module and a radiator do not have to be arranged to oppose each other. In addition, a detail of an internal configuration of a feeder circuit board and a detailed shape of the radiator may be freely determined. The feeder circuit board may be formed of a flexible material. Furthermore, processing other than solder bumps may be used to mount a radio IC chip on the feeder circuit board.
As described above, the present invention is useful for a container with an electromagnetic coupling module. In particularly, the present invention is advantageous in that a radio IC chip is resistant to a shock applied from the outside and an environmental change, a radiator and an electromagnetic coupling module are arranged easily, and a radiation characteristic is preferable.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-016860 | Jan 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3364564 | Kurtz et al. | Jan 1968 | A |
4794397 | Ohe et al. | Dec 1988 | A |
5232765 | Yano et al. | Aug 1993 | A |
5253969 | Richert | Oct 1993 | A |
5337063 | Takahira | Aug 1994 | A |
5374937 | Tsunekawa et al. | Dec 1994 | A |
5399060 | Richert | Mar 1995 | A |
5491483 | D'Hont | Feb 1996 | A |
5757074 | Matloubian et al. | May 1998 | A |
5903239 | Takahashi et al. | May 1999 | A |
5936150 | Kobrin et al. | Aug 1999 | A |
5955723 | Reiner | Sep 1999 | A |
5995006 | Walsh | Nov 1999 | A |
6104611 | Lastinger | Aug 2000 | A |
6107920 | Eberhardt et al. | Aug 2000 | A |
6172608 | Cole | Jan 2001 | B1 |
6181287 | Beigel | Jan 2001 | B1 |
6190942 | Wilm et al. | Feb 2001 | B1 |
6259369 | Monico | Jul 2001 | B1 |
6271803 | Watanabe et al. | Aug 2001 | B1 |
6335686 | Goff et al. | Jan 2002 | B1 |
6362784 | Kane et al. | Mar 2002 | B1 |
6367143 | Sugimura | Apr 2002 | B1 |
6378774 | Emori et al. | Apr 2002 | B1 |
6406990 | Kawai | Jun 2002 | B1 |
6448874 | Shiino et al. | Sep 2002 | B1 |
6462716 | Kushihi | Oct 2002 | B1 |
6542050 | Arai et al. | Apr 2003 | B1 |
6600459 | Yokoshima et al. | Jul 2003 | B2 |
6634564 | Kuramochi | Oct 2003 | B2 |
6664645 | Kawai | Dec 2003 | B2 |
6763254 | Nishikawa | Jul 2004 | B2 |
6828881 | Mizutani et al. | Dec 2004 | B2 |
6927738 | Senba et al. | Aug 2005 | B2 |
6963729 | Uozumi | Nov 2005 | B2 |
6975834 | Forster | Dec 2005 | B1 |
7088307 | Imaizumi | Aug 2006 | B2 |
7112952 | Arai et al. | Sep 2006 | B2 |
7119693 | Devilbiss | Oct 2006 | B1 |
7129834 | Naruse et al. | Oct 2006 | B2 |
7248221 | Kai et al. | Jul 2007 | B2 |
7250910 | Yoshikawa et al. | Jul 2007 | B2 |
7276929 | Arai et al. | Oct 2007 | B2 |
7317396 | Ujino | Jan 2008 | B2 |
7405664 | Sakama et al. | Jul 2008 | B2 |
20020011967 | Goff et al. | Jan 2002 | A1 |
20020044092 | Kushihi | Apr 2002 | A1 |
20020067316 | Yokoshima et al. | Jun 2002 | A1 |
20030020661 | Sato | Jan 2003 | A1 |
20030206107 | Goff et al. | Nov 2003 | A1 |
20040001027 | Killen et al. | Jan 2004 | A1 |
20040066617 | Hirabayashi et al. | Apr 2004 | A1 |
20040217915 | Imaizumi | Nov 2004 | A1 |
20040219956 | Iwai et al. | Nov 2004 | A1 |
20040227673 | Iwai et al. | Nov 2004 | A1 |
20050092836 | Kudo | May 2005 | A1 |
20050099337 | Takei et al. | May 2005 | A1 |
20050125093 | Kikuchi et al. | Jun 2005 | A1 |
20050140512 | Sakama et al. | Jun 2005 | A1 |
20050232412 | Ichihara et al. | Oct 2005 | A1 |
20050236623 | Takechi et al. | Oct 2005 | A1 |
20050275539 | Sakama et al. | Dec 2005 | A1 |
20060001138 | Sakama et al. | Jan 2006 | A1 |
20060055601 | Kameda et al. | Mar 2006 | A1 |
20060071084 | Detig et al. | Apr 2006 | A1 |
20060109185 | Iwai et al. | May 2006 | A1 |
20060145872 | Tanaka et al. | Jul 2006 | A1 |
20060158380 | Son et al. | Jul 2006 | A1 |
20060267138 | Kobayashi | Nov 2006 | A1 |
20070004028 | Lair et al. | Jan 2007 | A1 |
20070018893 | Kai et al. | Jan 2007 | A1 |
20070040028 | Kawamata | Feb 2007 | A1 |
20070052613 | Gallschuetz et al. | Mar 2007 | A1 |
20070252700 | Ishihara et al. | Nov 2007 | A1 |
20070285335 | Bungo et al. | Dec 2007 | A1 |
20080024156 | Arai et al. | Jan 2008 | A1 |
20080087990 | Kato et al. | Apr 2008 | A1 |
20080169905 | Slatter | Jul 2008 | A1 |
20080272885 | Atherton | Nov 2008 | A1 |
20090002130 | Kato | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0 694 874 | Jan 1996 | EP |
0 977 145 | Feb 2000 | EP |
50-143451 | Nov 1975 | JP |
62-127140 | Aug 1987 | JP |
03-262313 | Nov 1991 | JP |
04-150011 | May 1992 | JP |
05-327331 | Dec 1993 | JP |
6-53733 | Feb 1994 | JP |
06-077729 | Mar 1994 | JP |
06-177635 | Jun 1994 | JP |
07-183836 | Jul 1995 | JP |
08-056113 | Feb 1996 | JP |
8-87580 | Apr 1996 | JP |
11-149537 | Jun 1996 | JP |
08-176421 | Jul 1996 | JP |
08-279027 | Oct 1996 | JP |
08-307126 | Nov 1996 | JP |
08-330372 | Dec 1996 | JP |
09-014150 | Jan 1997 | JP |
09-245381 | Sep 1997 | JP |
09-252217 | Sep 1997 | JP |
09-270623 | Oct 1997 | JP |
9-512367 | Dec 1997 | JP |
10-069533 | Mar 1998 | JP |
10-505466 | May 1998 | JP |
10-171954 | Jun 1998 | JP |
10-293828 | Nov 1998 | JP |
11-039441 | Feb 1999 | JP |
11-085937 | Mar 1999 | JP |
11-149538 | Jun 1999 | JP |
11-219420 | Aug 1999 | JP |
11-328352 | Nov 1999 | JP |
11-346114 | Dec 1999 | JP |
11-515094 | Dec 1999 | JP |
2000-21128 | Jan 2000 | JP |
2000-021639 | Jan 2000 | JP |
2000-022421 | Jan 2000 | JP |
2005-229474 | Jan 2000 | JP |
2000-059260 | Feb 2000 | JP |
2000-085283 | Mar 2000 | JP |
2000-090207 | Mar 2000 | JP |
2000-132643 | May 2000 | JP |
2000-137778 | May 2000 | JP |
2000-148948 | May 2000 | JP |
2000-172812 | Jun 2000 | JP |
2000-510271 | Aug 2000 | JP |
2000-276569 | Oct 2000 | JP |
2000-286634 | Oct 2000 | JP |
2000-286760 | Oct 2000 | JP |
2000-311226 | Nov 2000 | JP |
2000-321984 | Nov 2000 | JP |
3075400 | Nov 2000 | JP |
2001-028036 | Jan 2001 | JP |
2007-18067 | Jan 2001 | JP |
2001-043340 | Feb 2001 | JP |
2001-66990 | Mar 2001 | JP |
2001-505682 | Apr 2001 | JP |
2001-168628 | Jun 2001 | JP |
2001-240046 | Sep 2001 | JP |
2001-256457 | Sep 2001 | JP |
2001-514777 | Sep 2001 | JP |
2001-319380 | Nov 2001 | JP |
2001-331976 | Nov 2001 | JP |
2001-332923 | Nov 2001 | JP |
2001-344574 | Dec 2001 | JP |
2001-351084 | Dec 2001 | JP |
2001-352176 | Dec 2001 | JP |
2002-024776 | Jan 2002 | JP |
2002-042076 | Feb 2002 | JP |
2002-063557 | Feb 2002 | JP |
2002-505645 | Feb 2002 | JP |
2002-76750 | Mar 2002 | JP |
2002-150245 | May 2002 | JP |
2002-175508 | Jun 2002 | JP |
2002-183690 | Jun 2002 | JP |
2002-185358 | Jun 2002 | JP |
2002-204117 | Jul 2002 | JP |
2002-522849 | Jul 2002 | JP |
2002-230128 | Aug 2002 | JP |
2002-252117 | Sep 2002 | JP |
2002-298109 | Oct 2002 | JP |
2002-319008 | Oct 2002 | JP |
2002-362613 | Dec 2002 | JP |
2002-373029 | Dec 2002 | JP |
2002-373323 | Dec 2002 | JP |
2002-374139 | Dec 2002 | JP |
2003-006599 | Jan 2003 | JP |
2003-016412 | Jan 2003 | JP |
2003-030612 | Jan 2003 | JP |
2003-44789 | Feb 2003 | JP |
2003-046318 | Feb 2003 | JP |
2003-58840 | Feb 2003 | JP |
2003-067711 | Mar 2003 | JP |
2003-069335 | Mar 2003 | JP |
2003-076947 | Mar 2003 | JP |
2003-085501 | Mar 2003 | JP |
2003-085520 | Mar 2003 | JP |
2003-87008 | Mar 2003 | JP |
2003-87044 | Mar 2003 | JP |
2003-099720 | Apr 2003 | JP |
2003-099721 | Apr 2003 | JP |
2003-110344 | Apr 2003 | JP |
2003-132330 | May 2003 | JP |
2003-134007 | May 2003 | JP |
2003-155062 | May 2003 | JP |
2003-158414 | May 2003 | JP |
2003-187207 | Jul 2003 | JP |
2003-187211 | Jul 2003 | JP |
2003-188338 | Jul 2003 | JP |
2003-198230 | Jul 2003 | JP |
2003-209421 | Jul 2003 | JP |
2003-216919 | Jul 2003 | JP |
2003-218624 | Jul 2003 | JP |
2003-233780 | Aug 2003 | JP |
2003-242471 | Aug 2003 | JP |
2003-243918 | Aug 2003 | JP |
2003-249813 | Sep 2003 | JP |
2003-288560 | Oct 2003 | JP |
2003-309418 | Oct 2003 | JP |
2003-332820 | Nov 2003 | JP |
2004-082775 | Mar 2004 | JP |
2004-88218 | Mar 2004 | JP |
2004-096566 | Mar 2004 | JP |
2004-253858 | Sep 2004 | JP |
2004-287767 | Oct 2004 | JP |
2004-297249 | Oct 2004 | JP |
2004-297681 | Oct 2004 | JP |
2004-326380 | Nov 2004 | JP |
2004-334268 | Nov 2004 | JP |
2004-336250 | Nov 2004 | JP |
2004-343000 | Dec 2004 | JP |
2004-362190 | Dec 2004 | JP |
2004-362341 | Dec 2004 | JP |
2004-362602 | Dec 2004 | JP |
2005-124061 | May 2005 | JP |
2005-136528 | May 2005 | JP |
2005-165839 | Jun 2005 | JP |
2005-167327 | Jun 2005 | JP |
2005-190417 | Jul 2005 | JP |
2005-191705 | Jul 2005 | JP |
2005-210676 | Aug 2005 | JP |
2005-210680 | Aug 2005 | JP |
2005-217822 | Aug 2005 | JP |
2005-236339 | Sep 2005 | JP |
2005-244778 | Sep 2005 | JP |
2005-275870 | Oct 2005 | JP |
2005-295135 | Oct 2005 | JP |
2005-311205 | Nov 2005 | JP |
2005-321305 | Nov 2005 | JP |
2005-335755 | Dec 2005 | JP |
2005-345545 | Dec 2005 | JP |
2005-346820 | Dec 2005 | JP |
2005-352858 | Dec 2005 | JP |
2006-031766 | Feb 2006 | JP |
2006-39902 | Feb 2006 | JP |
2006-67479 | Mar 2006 | JP |
2006-72706 | Mar 2006 | JP |
2006-80367 | Mar 2006 | JP |
2006-92630 | Apr 2006 | JP |
2006-102953 | Apr 2006 | JP |
2006-148518 | Jun 2006 | JP |
2006-174151 | Jun 2006 | JP |
2006-195795 | Jul 2006 | JP |
2006-203187 | Aug 2006 | JP |
2006-203852 | Aug 2006 | JP |
2006-232292 | Sep 2006 | JP |
2006-270212 | Oct 2006 | JP |
2006-302219 | Nov 2006 | JP |
2006-309401 | Nov 2006 | JP |
2007-043535 | Feb 2007 | JP |
2007-65822 | Mar 2007 | JP |
2007-122542 | May 2007 | JP |
2007-150868 | Jun 2007 | JP |
11-175678 | Jan 2009 | JP |
9100176 | Mar 1992 | NL |
9100347 | Mar 1992 | NL |
0010122 | Feb 2000 | WO |
03079305 | Sep 2003 | WO |
2004036772 | Apr 2004 | WO |
2004070879 | Aug 2004 | WO |
2004072892 | Aug 2004 | WO |
2005073937 | Aug 2005 | WO |
2005115849 | Dec 2005 | WO |
2006045682 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090201117 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2008/050945 | Jan 2008 | US |
Child | 12426369 | US |