This application is a continuation of international (WIPO) patent application serial number WO 2014/118628, titled “CONTAINER WITH IRREMOVABLE CLOSURE TO FACILITATE DISPENSATION OF CONTENTS” and filed on Feb. 3, 2014, which claims priority to GB1301944.3, titled “IMPROVEMENTS IN OR RELATING TO CONTAINER CLOSURES” and filed on Feb. 4, 2013, and to GB1306229.4, titled “IMPROVEMENTS IN OR RELATING TO CONTAINER CLOSURES” and filed on Apr. 6, 2013, and to GB1306672.5, titled “IMPROVEMENTS IN OR RELATING TO CONTAINER CLOSURES, and filed on Apr. 12, 2013, and to GB1311661.1, titled IMPROVEMENTS IN OR RELATING TO CONTAINER CLOSURES” filed on Jun. 28, 2013, and to GB1320532.3, titled “IMPROVEMENTS IN OR RELATING TO CONTAINER CLOSURES” filed on Nov. 20, 2013, the entire specifications of each of which are hereby incorporated by reference in their entirety.
The present invention relates to containers that are used to contain fluids that need to be dispensed in controlled quantities. In particular, the present invention relates to a container closure, which can be readily and securely fastened to dispensing containers, bottles and the like.
In many fields of endeavor, barrels, plastics containers, cans and other fluid containers are employed to enable the safe storage of a fluid. The fluids contained in the containers may be suitable for a single or several uses and can comprise fluids such as oils, fuels, chemicals, and cleaning fluids. Consider a utilities manager of a manufacturing facility. The floor of the manufacturing area has to be cleaned thoroughly because of greases etc. that are dropped; in order to maintain safety and productivity, the floor has to be cleaned using rotary scrubbing machines, which apply a liquid cleaner, followed by the use of liquid vacuum machines. The scrubbing machines will have a tank that is filled with, for example, water and a degreasant chemical. A particular dose of degreasant chemical is added to the water tank of the scrubber prior to use. The amount dispensed is conveniently provided by way of a hose with a dispensing function and is attached to the container. Upon filing of the cleaning tool, there is no wastage—especially if compared with the use of a cup by an operator with a gloved hand and scooping a required amount from an open container. Not only is wastage minimized, proper cleaning is effected, using the required dosage, whereby to satisfy onerous health and safety recommendations, for example. It will be appreciated that in certain industries such as that of medical device manufacture, drug manufacturing and food production, that there will be mandated standards of cleaning mandated. By the use of prescribed amounts of chemical per unit of solvent—typically water—then national standards/site standards can be maintained.
For example, chemicals currently used in the commercial cleaning industry or any industry are typically stored in standard blow mortgage containers, for example, 5-liter (1 gallon) containers.
In another field, greases and oils will need to be dispensed in a workshop; sometimes additives must be accurately dispensed; the product can be expensive. With reference to
Bottles/containers containing automotive lubricants, household chemicals, agricultural products and the like are ill equipped to dispense without additional dispensing device. Exterior dispensing devices on the market (e.g. funnels, valves, tubes) are limited in value. They are typically rigid, i.e. not adaptable or flexible; they are typically restricted in length/range, e.g. regarding motor oil, a funnel flask can dispense into an engine's crankshaft, but cannot reach the transmission intake; they typically require cleaning and storage for reuse, i.e. the value relates to the number of possible uses and accessibility; and they are sold separately from the bottle/container, e.g. when a consumer purchases motor oil, outside of having a funnel readily available, the consumer cannot effectively dispense the oil.
In addition to the dispensing of fluids, containers must also be housed and stacked in appropriate conditions. Businesses routinely store and move a variety of potentially polluting materials in containers ranging in capacity from a few liters up to drums of 205 liters (45 gallons) and 1000 liters (219 gallons) industrial bulk containers (IBCs). These containers must be stored in accordance with appropriate legislation.
Containers of oil, chemicals or other potentially polluting materials can pollute surface water and groundwater. Pollution can be caused by spills from several sources, such as the incorrect storage and handling of containers; accidental leaks; vandalism and theft; overfilling or failure of storage structures; run-off from fires and contaminated firewater; incorrect or damaged drainage systems. These are all potential hazards. Additionally, there are many substances that aren't harmful to humans but that will cause pollution if they're spilt, for example liquid food and drinks, detergents and paper sludges. For example, in England and Wales, oil storage is regulated by the Control of Pollution (Oil Storage) (England) Regulations 2001, (OSR England). Oils covered by these regulations include petrol, diesel, vegetable, synthetic and mineral oils. The regulations apply to most industrial, commercial and institutional sites storing oil outside in containers over 200 liters, including drums and IBCs and to domestic premises storing more than 3500 liters.
In the field of containers for food and drink, similar issues can occur in the control of dispensing of fluids, pastes, creams, emulsions and powders. The dispensing of condiments is one issue tomato ketchup, salad dressings, mayonnaise etc. Restaurants and the like will wish to buy in bulk and have dispensing means that allows correct dispensing to be enabled and reduce levels of pilfering. Similarly, sports drinks can be consumed with a straw—but for the container that non-sealingly allows a straw or tube to be inserted the drink cannot be consumed without spillage unless special care is taken.
Thus, known container and dispenser systems do not necessarily provide security and none are adapted to the acceptance of “universal” tube vacuum dispensing devices and/or are complex to utilize. Caps and similar closure systems for containers in production and in use to date, are designed to re-open after being attached with respect to a container.
The present invention seeks to provide a solution to the problems addressed above. The present invention seeks to provide a container closure that readily adapts to dispensing requirements, which can readily and easily be manufactured, at low cost.
In accordance with a general aspect of the invention, there is provided a cap for fitment to a container, wherein the cap becomes irreversibly attached to such a container and has an aperture for the insertion of a tube whereby controlled delivery of a fluid from the container can be enabled. The apertured cap preferably comprises one of a screw cap, a push-fit cap, having detent or glue applied thereto, for a male or female opening associated with the container. In such an arrangement, the cap can be manually attached or fitted in a no-wear or low wear mechanized process. It will be appreciated that in the attachment of some types of closure, expensive machinery is required to fasten, for example metal flanges to containers, which machines typically require re-tooling after wear, arising from the creation of welds or rolled flanges to connect the two parts together in a sealing relationship.
In accordance with a specific aspect of the invention, there is provided a container and closure combination, for the containment of fluids and extraction therefrom by way of an extraction tube, the container comprising a closed volume with an opening, the closure being configured to close the opening of the container, wherein the closure is provided with an aperture and wherein the closure, upon fitment, cannot be removed from the container opening, the aperture of the closure being defined by a unitary elastic valve member permitting unidirectional flow of fluid through the aperture; wherein the valve can operate, interchangeably, between: a first, closed condition, to prevent a free flow of fluid from the container; and, a second, operational condition, with the extraction tube sealingly engaged within the valve, to permit an extraction of fluid from the container through the tube. By having a unitary, elastic valve member, the valve can conveniently be manufactured with the closure in a simple manufacturing process e.g. in what is known as a two-shot process, whereby the inner valve is manufactured from an elastic plastics material, with the outer surround/container engagement portion being manufactured from a more rigid plastics material.
The present invention can comprise not only the container and closure with aperture but also a tube. For example, the invention may comprise a sports drink with the apertured closure together with a tube. The tube can function as a straw, whereby a drink such as a sports drink can conveniently be consumed, the cap preventing tainting of the drink replacement thereof, which could be useful in competition settings, for example, to ensure uniformity in provision of drinks. The tube can comprise a paste/sauce siphon/vacuum dispensing means or be associated with a paste/sauce siphon/vacuum dispensing means whereby a condiment such as a ketchup, mustard etc., can be dispensed.
Conveniently, the apertured closure or cap is irreversibly fastened to a container by means of co-operating detent mechanism, similar to the frangible devices that indicate that an apertured closure has been removed associated with many consumer products (save that the detent item is not frangible and prevents removal of the apertured closure). Other methods of irreversible attachment could also be employed, such as one-way, push fit aperture closures using barbs from one part physically engaging a relatively softer surface of the other part of the container opening and apertured closure combinations or by having a reverse friction effect, thereby preventing removal. The respective parts of the combination could also be irreversibly or permanently attached by means of adhesive—glue or solvent—or by heat welding. Simple mechanical ratchet one-way locking systems can also be employed and other more sophisticated mechanical one-way systems. After the closure cap has been securely attached, it is ready for an appropriate format of dispensing tube to be inserted to extract the fluid contents. This apertured closure security feature eliminates the misuse of fluid contents in a simple and cost effective way. The apertured closure of the present invention can simply and effectively prevent an abuse of contents, spillage, pilferage, wastage and cross-contamination.
The apertured closure of the present invention can conveniently be manufactured by well established techniques of injection molding together with over molding, whereby to maintain production costs at acceptable levels, comparable to the manufacture of known cap closures.
In another aspect of the invention, there is provided a container and closure with aperture combination, the container comprising a closed volume with a generally circularly shaped rim or opening, the apertured closure comprising a closure element having an inside portion for abutment with the rim, to sealingly engage therewith, a wall portion depending from the inside portion having cooperating means to securely locate with rim of the container, the outside wall of the apertured closure surrounding the outside apertured closure; wherein the apertured closure is defined with an indentation leading to a closable seal, the seal being operable to accept a tube of a dispensing apparatus.
Once securely located with the container, the apertured closure cannot be removed without damage to either the container or closure from the container, thereby preventing any unintentional or accidental dispensing of the fluid in the preparation of cleaning preparations, lubricant mixtures etcetera, where fluids need to be dispensed in measured quantities. In a simple example, a standard container for a cleaning fluid could be controlled by the use of the present invention whereby a dispenser can be used to allow metered amounts of an additive to water for a cleaning process; by having a tube associated with the dispenser then the correct metered dosage may be provided, saving waste; accidental over-pouring is prevented. Preferably, upon first mating of the apertured closure and container, they become irreversibly fastened each to the other. In the prior example, the closure can be simply fastened by hand tightening. Additionally, by having the apertured closure secured in a non-removable fashion, removal of fluid from a container with such an apertured closure by unauthorized persons is prevented, in a simple fashion. Additionally, this can provide significant advantages in the safe disposal of toxic or otherwise undesirable fluids; since any remaining fluid cannot be removed and the container and apertured closure combination cannot be re-used, the container and apertured closure combination must be disposed of, conveniently through safe/authorized channels.
The cooperating means may comprise mutually engaging screw threads or mutually engaging bayonet fastening elements. The cooperating means may comprise detent means, whereby, for example, a clip associated with the apertured closure overlies a detent means, such as a collar about the aperture associated with the container. Such a detent system means that the aperture need not be limited to a circular opening, as required by a rotationally fitted connector.
The apertured closure could also be secured by an adhesive, in the event that the cap was an original fitment. Contoured apertured closures could be fitted whereby the apertured closure and container could only operate with corresponding dispensing apparatus.
Preferably, the seal can comprise a two-flap arrangement (also known as a “duckbill seal”), or multi-flap variants thereof. The seal member can have a tube feed-in section that is of a general conic shape, having a spiral wire element molded therein to provide a degree of ruggedness. A duckbill seal can be adapted so as to seal with generally rectangular conduit tubes. The seal, when opened with a tube for dispensing can also provide space for air to pass into the container, since dispensing means typically use vacuum forces to enable passage of fluid, a partial vacuum within the container will reduce the amount of a dispensed quantity. In the alternative, a gastight seal may be provided as between a tube and the cap, as might be required for certain classes of fluids, when the central seal is required to be airtight. For example, the aperture may define a ring of an approximate dimension slightly less than the dimension of a tube through which aperture the tube will be connected, whereby the seal, in use is gastight or fluid-tight. Additionally, the close fitting could remove any fluid that may be present upon the exterior wall of the tube as the tube is extracted. The rim of the aperture may be reinforced by the provision of an enhanced amount of polymeric/rubber material about the aperture, preferably further reinforced with a closed loop defined by a spiral spring, whereby a greater degree of strength is provided to the aperture. Additionally, a one-way valve could be provided to enable pressure compensation to occur e.g. by the provision of air, whereby to prevent vacuum problems arising in any dispensing of the fluid.
It will be appreciated that when a fluid tube is inserted into a container, which will generally have an aperture directed upwardly, that the weight of dispensed fluid in the tube will increase the weight of the tube and thus cause forces to act upon the seal, tending to induce the aperture to a degree of ovality (for a nominally circular tube or conduit). Accordingly, in another aspect of the invention, there is provided a centralizing aperture, located at the top of the apertured closure (as seen from the user, when in normal use, with the apertured closure at the top of a fluid container). The centralizing apertures may comprise a further polymeric member with an aperture or a device akin to an iris diaphragm, whereby the strain from the weight of the tube and fluid therein is borne by this first, upper aperture.
The present invention can be utilized in, for example, a stores department of a company, to ensure that fluids are utilized only with respect to their prescribed uses. In such cases, the cap is fitted after the container is initially opened, with any protective seal removed. Additionally, a container may be supplied with an apertured closure in accordance with the present invention, together with a stopper whereby to prevent loss of fluid in transit where a dispensing tube is inserted, in use, whereby to prevent loss of fluid in transit prior and subsequent to extracting fluid from said container.
In accordance with another aspect of the invention, there is provided an apertured closure for use with a container. The apertured closure can be screwed-in, clipped-on or otherwise retained to ensure that the apertured closure cannot be removed whereby to enable good stock control and/or effective dispensing of liquids within a container. Upon disposal, the provision of a bung can assist in closure of the aperture for a dispensing tube, whereby the container can be appropriately disposed of through official channels. The bung can be fitted in an irremovable fashion, though a detent, a one-way screw thread or otherwise. Whilst the invention has been described as a unitary integrally molded closure and valve combination, it is possible that these are arranged as separate items.
The present invention thus provides a simple to fabricate container stopper, which can enable satisfaction of security, health and safety requirements that are imposed on all types of businesses as well as increasing compliance with rules and regulations that are seen by some as a hindrance to normal business practice. Additionally, certain industries involved with medical device manufacture, drug manufacture and food production, etc. have additional mandated standards regarding control of fluids with the use of dispensing equipment. The present invention can assist in compliance of such further standards.
Thus, in summary, the present invention can provide an easy to use cap that once fitted to a container cannot be removed for the placement of tubes associated with vacuum/siphons associated with dispensing means and tubes as in straws for drinking from a bottle. Fluids for all uses from any type of container or receptacle whether it is a bottle, drum, tin, can, bag or box, through a dispensing means such as a tube, syphon, straw, syringe, hose or pipe.
The accompanying drawings illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention according to the embodiments. It will be appreciated by one skilled in the art that the particular embodiments illustrated in the drawings are merely exemplary, and are not to be considered as limiting of the scope of the invention or the claims herein in any way.
a-18e show methods of forming permanent connection between a closure device and an opening;
There will now be described, by way of example only, the best mode contemplated by the inventor for carrying out the present invention. In the following description, numerous specific details are set out in order to provide a complete understanding to the present invention. It will be apparent to those skilled in the art, that the present invention may be put into practice with variations of the specific. For the avoidance of doubt, the term closure refers to devices used to close or seal a bottle, jug, jar, tube, can, container, barrel, keg etc. Closures can be a cap, cover, lid, plug, bung, etc.
Referring now to
The present invention, in a first embodiment, therefore enables the insertion of a delivery tube into a container such as an injection molded semi-rigid lid with a threaded outlet. In this first embodiment, when the apertured closure is fitted and a tube inserted, then the fluid can be dispensed. In a cleaning department store, for example, the container will be attached to a bench or wall, to reduce chances of a container being dropped etc. in use. The dispensing tube can be easily inserted and the use of the apertured closure will prevent the contents of the bottle leaking or spilling from the apertured closure, whilst the tube associated with a vacuum dispensing apparatus will allow control of the fluid to be dispensed, rather than the whole container being decanted by hand, with or without a measuring cup or similar. After the fluid in the container has been removed, as the tube is extracted, any remaining fluid adhering to the tube will substantially be removed by the valve of the closure wiping around the tube, assisting in keeping the area of use, and the assembly itself, in as clean a state as possible. The inside wall depending from the apertured closure central area component includes an internal screw thread allowing the lid to attach to a standard blow molded container. The semi-rigid lid includes barbed features on the inside of its internal rim. When the apertured closure is fitted to the bottle and screwed into position, the barbed features locate over existing barbed features positioned on the neck of the blow-molded bottle. Because of the orientation of the barbed features they act to lock the apertured closure in place, preventing the apertured closure from being unscrewed from the blow-molded bottle. It will be appreciated that push-on apertured closures which have a hooked flange which locate about corresponding detents associated with a neck of an outlet of the container are also possible, although by use of a pre-existing screw-threaded outlet for a container, then correct fastening can be simply ensured.
The semi-rigid lid molding acts as a pre-form component allowing a flexible polymer to be over-molded onto the lid. The semi-rigid lid includes a central open aperture into which a diaphragm is molded in the flexible material. The diaphragm is of a specific shape, which will allow a tube to be inserted from the outside of the lid into the bottle, but not from the other direction, since the entrance to the diaphragm seal is tapered. When the tube is removed the diaphragm closes preventing the liquid in the bottle from leaking. The shape of the diaphragm follows the form of a slit valve, such as a duckbill or cross slit valve. A cross slit valve, when viewed from the underside the diaphragm forms a cross shape. The shoulders of the cross-like membrane taper up to the diaphragm body at an angle. When liquid held inside the container applies pressure to the valve, the liquid acts on these angled faces pressing the valve closed and acting to reduce the likelihood of spillage of the contents from the container. The cross-like membrane creates four indented features in the conical shape of the diaphragm. These have a central crease line where the faces of the cross-form meet. When a tube is passed through the diaphragm from the outside, these features fold outwards allowing the diaphragm to open and grip the outside of the tube. When the tube is withdrawn from the bottle, the indented features naturally return to their original molded shape, so that the integrity of the cross slit valve form is maintained. Tri-star slit valves also exist, as do valves with more than four slits (i.e. cross slit). Such slit valves are, in essence, check valves that can be precision-molded, one-piece elastomeric valves that provide reliable backflow prevention at low-pressure differentials—that is to say, with reverse flow, a negative differential pressure is created whereby backflow is checked. Slit check valves can straightforwardly be designed to start functioning at specific closing pressure ranges, dependent on specific requirements, and arising from valve size, geometry, and compound characteristics. Slit check valves can be designed to operate in pressures as low as a few millimeters of water.
Referring now to
Reference is now made to
Referring now to
A container may be supplied with an apertured closure in accordance with the present invention, in which case the apertured closure may be adhesively fastened to the container. A stopper-like element may be provided within the aperture, whereby to prevent loss of fluid in transit. By the use of a suitable adhesive tape, the apertured closure may be retained. In the alternative a twisted wire-seal fastener, in the style of a champagne cork fastener may be utilized. Other securing mechanisms could be deployed.
Referring back to
It is convenient to mold the aperture valve such that the valve is sealed in a closed state upon manufacture. This provides surety against spillage when the aperture closure in accordance with the present invention is fastened to a container with a fluid therein yet has not been used. Conveniently, the valve member is sealed adjacent a peripheral edge of the cross slit 120 per
It will be appreciated that whilst the first embodiment has been shown with reference to a five liter container, the apertured closure, flexible diaphragm with aperture can be made to in a range of sizes, to accommodate a number of standard diameter tubes and can be made with a bayonet style, clip-over style or screw-threaded whether it be left or right handed. It can be made for any size container and for any size of tube. Accordingly, for example, the container could be a twenty liter container or other commonly used container from which fluids need to be dispensed, provided that an outlet has a neck, screw-threaded or otherwise which the apertured closure or cap in accordance with the invention can locate. The connection of the apertured closure with respect to the container could also comprise a push-fit design with either a male or female clip design to suit a push fit design container as shown in diagram. Whilst most apertures tend to be circular in shape, by virtue of their having a circular, screw-threaded aperture, it will be appreciated that if a detent/clip system is employed, the aperture need not be circular and a square, rectangular, other polygonal or irregular shaped opening could be utilized. For example, the irregular shape may be provided so that for particularly hazardous fluids, then appropriate shape determinant closures are to be used with such classes of fluids. In an alternative scenario, a shape could be associated with a particular manufacturer of containers and apertured closures. It is conceivable that an outline of a logo of a manufacturer could define the shape of the opening and thus the corresponding apertured closure.
Referring now to
With reference to
As will be appreciated, in a still further embodiment, the apertured closure could be provided with thread cutting barbs, whereby to screw-threadedly engage with an opening, whether it be an external circumference (male) or an internal tube (female) opening.
In a still further aspect of the invention, a tube and valve combination may be selected to provide an improved seal in use. For example, the tube may be dimensioned to correspond with a general n-flap duckbill valve by having n-super-elliptical portions.
In accordance with a still further aspect of the invention, the closure is provided with a dispensing device, whereby the container, once fitted with the closure and secured thereto is provided with a dispenser unit. The dispenser comprises a body which is provided with a valve, a tube, insertable through the apertured closure of the invention, the valve or other type of mechanism being operable to receive fluid from the tube and to allow a measured dose or flow therethrough, to an outlet, being a tube, spray nozzle or spout. The body of the dispenser unit conveniently being removably attached to the apertured closure and being shaped to engage with certain features of the apertured closure, perhaps by mutually arranged co-operating sets of screw threads, whereby, for example, a container with the apertured closure may have a dispenser removably associated therewith.
The invention provides a simple to fabricate container stopper, which can enable satisfaction of health and safety requirements that are imposed on all types of businesses and increases compliance. Within the EU, for example, there is an Ecolabel scheme that provides accreditation. The scheme involves certification as well as compliance checks by independent, qualified scientists, and is trusted by consumers. This, in turn, means that a business can sell its products across the European Union and in other countries where such accreditations are considered equivalent to other national standards. In so doing, a business can more easily be focused on its primary aims, adding value to a business and its products because it increases reputation, indicates corporate social responsibility and increases sales. The present invention, by assuring economical use of liquid products can help a company achieve such accreditation and corresponding accreditations elsewhere.
The skilled person will be aware of a range of possible modifications of the various embodiments described above. Accordingly, the present invention is defined by the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
1301944 | Feb 2013 | GB | national |
1306229 | Apr 2013 | GB | national |
1306672 | Apr 2013 | GB | national |
1311661 | Jun 2013 | GB | national |
1320532 | Nov 2013 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2579724 | Breakstone | Dec 1951 | A |
3142409 | Ross | Jul 1964 | A |
5360127 | Barriac et al. | Nov 1994 | A |
7077296 | Brown et al. | Jul 2006 | B2 |
20040105786 | Anderson et al. | Jun 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20230002124 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14818230 | Aug 2015 | US |
Child | 17867480 | US |