The present invention relates to a container which shows a box shape open at a top face, and allows folding down one pair of first sidewalls facing each other by turning around lower end portions and then folding down the other pair of second sidewalls by turning around lower end portions.
Conventionally, as a container of this type, known is one having a structure in which, when the containers are stacked, a bottom-face projection provided for the upper-layer container is fitted inside a top-face opening of the lower-layer container to prevent lateral shift. Also, on both side portions of a second sidewall of the container, side projection pieces that are overlapped with a side portion of a first sidewall from the outside are provided, and by engagement of a side engaging hole formed in the side projection piece and a side engaging projection projecting from an outer face of the side portion of the first sidewall, the first sidewall and the second sidewall adjacent to each other are joined (refer to, for example, Patent Literature 1).
Patent Document 1: Japanese Patent No. 3883984 (
Meanwhile, containers in which content is stored are sometimes stacked and loaded on a vehicle and transported. Also, a great lateral load may be exerted to one sidewall of the lower-layer container when the vehicle is accelerated or decelerated. In such a case, with the conventional containers described above, an incident could have occurred in which the sidewalls would be separated from each other due to the sidewall having received the lateral load being pushed and bent outwards. Particularly, when the second sidewall received a large load, an incident could have occurred in which the side engaging projection would be sheared.
The present invention has been made in view of the circumstances described above, and an object thereof is to provide a container which has a higher strength with respect to a lateral load when the containers are stacked than conventional containers.
A container according to an invention of claim 1 made to achieve the object described above is a container which shows a box shape open at a top face, and allows folding down one pair of first sidewalls facing each other by turning around lower end portions and then folding down the other pair of second sidewalls by turning around lower end portions, and is characterized by including a bottom-face main projection that projects from a region of a bottom face of the container at an inner side than directly under the first sidewall and the second sidewall, and is fitted inside an opening in a top face of the container which is a lower layer when the containers are stacked, a bottom-face sub-projection that projects, at four corners of the bottom face of the container, from a region directly under the first sidewall and the second sidewall, and has a lower face flush with a lower face of the bottom-face main projection, a projection receiving recess that is formed across the first sidewall and the second sidewall adjacent to each other in corner portions at four corners of the top face of the container, and receives the bottom-face sub-projection of the container which is an upper layer when the containers are stacked, a corner engaging recess formed in the lower face of the bottom-face sub-projection, and a corner engaging projection that projects from a bottom face of the projection receiving recess, and is engaged with the corner engaging recess of the container which is an upper layer when the containers are stacked to restrain a lateral shift of the upper and lower containers with respect to each other.
An invention of claim 2 is the container according to claim 1, characterized by including a side projection piece that extends from each side portion of the second sidewall, and is overlapped with an outer side of each side portion of the first sidewall, a side engaging hole formed in the side projection piece, a side engaging projection that projects from an outer face of each side portion of the first sidewall, and is engaged with the side engaging hole, and the corner engaging projection provided for only the first sidewall.
An invention of claim 3 is the container according to claim 2, characterized by including the corner engaging projection disposed at a position to overlap the side projection piece when viewed in a facing direction of the first sidewalls to each other.
An invention of claim 4 is the container according to claim 3, characterized in that at least a part of the corner engaging projection and at least a part of the side engaging projection are disposed at the same position in a facing direction of the second sidewalls to each other.
With the container of claim 1, the corner engaging projection and the corner engaging recess are engaged at the four corners on the bottom face and the top face of a top container and a bottom container when stacked, which thereby allows such containers to hold up against the lateral load received when stacked by dispersing the lateral load more widely than conventional containers. Thus, the containers achieve a higher strength with respect to the lateral load when stacked than conventional containers and prevent incidents where the adjacent sidewalls would be separated from each other due to one sidewall being pushed and bent outwards. Also, because the corner engaging projection projects from the bottom face of the projection receiving recess, the corner engaging projection does not also obstruct motion of taking content in and out of the container.
With the container of claim 2, when the second sidewall of the lower-layer container is pressed by a lateral load received by the stacked containers, the lateral load is received by not only the side engaging projection provided for the first sidewall of the lower-layer container but also the corner engaging projection. Accordingly, the side engaging projection is reduced in load share to prevent an incident where the side engaging projection would be sheared as conventionally occurred.
When the first sidewall of the lower-layer container is pressed by a lateral load received by the stacked containers, according to the configuration of claim 3, because the side projection piece and the corner engaging projection are disposed at a position to overlap each other when viewed in the facing direction of the first sidewalls to each other, incidents are prevented in which a section between the side projection piece and the corner engaging projection of the container would be deformed to bend by a lateral load received by the side projection piece and a lateral load received by the corner engaging projection, and a higher strength is achieved.
Also, when the first sidewall of the lower-layer container is pressed by a lateral load received by the stacked containers, the first sidewall is deformed to bulge out so that the first sidewall bulges in its lateral center and a force to shift the first sidewall from the second sidewall in the lateral direction may act. Even in such a case, according to the configuration of claim 4, because at least a part of the corner engaging projection and at least a part of the side engaging projection are disposed at the same position in the facing direction of the second sidewalls to each other, a sudden reduction in load share of one of the corner engaging projection and the side engaging projection is prevented, and both can be used to resist the lateral force.
Hereinafter, an embodiment of the present invention will be described based on
Specifically, a base member 11 that turnably supports the first and second sidewalls 21 and 31 of the container 10 forms a structure in which a pair of first support walls 13 and 13 are erected from a pair of long-side outer edge portions of a rectangular bottom plate 12 and a pair of second support walls 14 and 14 are erected from a pair of short-side outer edge portions. Also, the second support wall 14 is higher than the first support wall 13. In the base member 11, a plurality of hinge recesses 15 that are open to an upper face and inner face are formed. As shown in
The first sidewall 21 can accordingly be changed into an erected position (refer to
As shown in
As shown in
In the first side projection piece 32A, quadrilateral side engaging holes 33 are formed at an upper end portion and a lower end portion, respectively. Also, in the second side projection piece 32B, a side engaging hole 33 that is the same in size as the side engaging hole 33 at the lower end portion of the first side projection piece 32A is formed. In addition, the second side projection piece 32B shows a quadrilateral shape slightly larger than the side engaging hole 33.
On the other hand, both side portions of the outer face of the first sidewall 21 cave in at parts to overlap the first and second side projection pieces 32A and 32B by a thickness of those first and second side projection pieces 32A and 32B, and a plurality of side engaging projections 23 project from positions corresponding to the plurality of side engaging holes 33 of the cave-in parts. Moreover, when the container 10 reaches an assembled state, the side engaging projections 23 are concave-convex engaged with the side engaging holes 33, and accordingly, the second sidewall 33 is restrained from falling outwards.
As shown in
On the other hand, the locking engagement portion 37 forms, as shown in
As shown in
The bottom-face main projection 41 consists of a surrounding rib 41 formed along an inner boundary line of the frame-like region R2 and a lattice rib 41B extended over the whole of an inside of the surrounding rib 41A.
The pair of bottom-face sub-projections 42 and 42 are disposed in both longitudinal end portions of the bottom face of the container 10. Each bottom-face sub-projection 42 is disposed at a position close to the outer edge of a corner portion of the frame-like region R2, and consists of an L-shaped wall 42A in an L-shape covering a corner portion of the surrounding rib 41A from the side, a pair of inclined ribs 42B and 42B that connect between both end portions of the L-shaped wall 42A and positions close to the corner portion of the surrounding rib 41A and are inclined so as to separate from the corner portion of the surrounding rib 41A from the L-shaped wall 42A toward the surrounding rib 41A, and sectioning ribs 42C that extend as extensions of the surrounding rib 41A and the lattice rib 41B and connect between the surrounding rib 41A and the L-shaped wall 42A.
The pair of bottom-face central projections 43 and 43 are disposed at a longitudinal central side of the bottom face of the container 10, and similar to the bottom-face sub-projection 42, each bottom-face central projection 43 consists of an L-shaped wall 43A, a pair of inclined ribs 43B and 43B, and sectioning ribs 43C. Also, in a part of the bottom-face central projection 43 to be directly under the erected first sidewall 21 (that is, a position to be directly under the first support wall 13), at a position close to the bottom-face main projection 41, an engagement groove 43D extending in the lateral direction of the first sidewall 21 is formed. The engagement groove 43D shows a shape in which a lower end portion of the bottom-face central projection 43 is cut away into an angled groove shape.
The whole of the frame-like region R2 described above excluding its part sandwiched by the pair of bottom-face main projections 41 is located directly under the first and second sidewalls 21 and 31 in an erected position (that is, directly under the first and second support walls 13 and 14). That is, the bottom-face main projections 41 and 41 of the bottom face of the container 10 formed over the whole of the part at an inner side than the frame-like region R2 are structured to project from a region of the bottom face of the container 10 at an inner side than directly under the first and second sidewalls 21 and 31. When the containers 10 and 10 are stacked on each other as shown in
As shown in
The central projection receiving recesses 53 are for receiving a part of the bottom-face central projections 43 of the upper-layer container 10 when the containers 10 and 10 are stacked, and are formed, in an upper-face central part of each first sidewall 21, by making a longitudinal extending region of the upper face of the first sidewall 21 cave in into a stepped shape. Also, as shown in
On the other hand, the projection receiving recesses 50 are for, when the containers 10 and 10 are stacked, receiving the bottom-face sub-projections 42 of the upper-layer container 10, and are formed, as shown in
From a bottom face of the projection receiving recess 50 in the first sidewall 21, a corner engaging projection 51 projects. The corner engaging projection 51 shows a prism shape, and is disposed at a position where the corner engaging projection 51 in whole overlaps the side projection piece 32 when viewed in a first horizontal direction H1 in which the first sidewalls 21 and 21 face each other. Also, as shown in
In addition, as shown in
When the containers 10 and 10 are stacked on each other as shown in
In addition, as shown in
The structure of the container 10 of the present embodiment is described above. Next, operation and effects of the container 10 will be described. As the container 10 of the present embodiment, a plurality of containers in which content is stored are sometimes stacked and loaded on a vehicle and transported. A great lateral load may be exerted to the first sidewall 21 or the second sidewall 31 of the lower-layer container 10 when the vehicle is accelerated or decelerated. In such a case, with the container 10 of the present embodiment, the corner engaging projection 51 and the corner engaging recess 42D are engaged at the four corners on the bottom face and the top face of a top container 10 and a bottom container 10 when stacked, which thereby allows such containers to hold up against the received lateral load when stacked, by dispersing the lateral load more widely than conventional containers. Thus, the containers of the present embodiment achieve a higher strength against the lateral load when stacked than conventional containers and prevent incidents where the first sidewall 21 and the second sidewall 31 would be separated from each other due to the first sidewall 21 or the second sidewall 31 being pushed and bent outwards.
Specifically, when one of the second sidewalls 31 of the lower-layer container 10 is pressed by a lateral load received by the stacked containers 10 and 10, the lateral load is received by contact between the one second sidewall 31 of the lower-layer container 10 and the bottom-face main projection 41 of the upper-layer container 10, contact between the corner engaging projections 51 and 51 at the side of the other second sidewall 31 of the lower-layer container 10 and inner faces of the corner engaging recesses 42D and 42D of the upper-layer container 10, contact between the bottom-face central protrusion 43D of the lower-layer container 10 and the central partition wall 54 of the upper-layer container 10, and contact between the side engaging projection 23 of the lower-layer container 10 and the side engaging hole 33 of the lower-layer container 10. The containers 10 of the present embodiment can thus hold up against the lateral load by dispersing the lateral load more widely than conventional containers, and achieve a higher strength against the lateral load. Also, the side engaging projection 23 is reduced in load share and is prevented from being sheared.
When one of the first sidewalls 21 of the lower-layer container 10 is pressed by a lateral load received by the stacked containers 10, the lateral load is received by contact between the one first sidewall 21 of the lower-layer container 10 and the bottom-face main projection 41 of the upper-layer container 10, contact between the corner engaging projections 51 and 51 at the side of the other first sidewall 21 of the lower-layer container 10 and inner faces of the corner engaging recesses 42D and 42D of the upper-layer container 10, contact between the one first sidewall 21 of the lower-layer container 10 and the side projection piece 32, and contact between the inner vertical wall 53V of the lower-layer container 10 and an inner face of the engagement groove 43D in the bottom-face central projection 43 of the upper-layer container 10. The containers 10 of the present embodiment can thus hold up against the lateral load by dispersing the lateral load more widely than conventional containers, and achieve a higher strength against the lateral load. Furthermore, because the corner engaging projection 51 is disposed at a position to overlap the side projection piece 32 when viewed in the facing direction of the first sidewalls 21 and 21 to each other, a higher strength is achieved against the lateral load in the facing direction of the first sidewalls 21 and 21 to each other.
Also, when the first sidewall 21 of the lower-layer container 10 is pressed by a lateral load received by the stacked containers 10, the first sidewall 21 is deformed to bulge out so that the first sidewall 21 bulges in its lateral center and a force to displace the first sidewall 21 from the second sidewall 31 in the lateral direction may act. Even in such a case, with the container 10 of the present embodiment, because at least a part of the corner engaging projection 51 and at least a part of the side engaging projection 23 are disposed at the same position in the facing direction of the second sidewalls 31 to each other, a sudden reduction in load share of one of the corner engaging projection 51 and the side engaging projection 23 is prevented, and both can be used to resist the lateral load. In addition, because the corner engaging projection 51 projects from the bottom face of the projection receiving recess 50, the corner engaging projection 51 does not also obstruct motion of taking content in and out of the container 10.
[Other embodiments]
The present invention is not limited to the above-mentioned embodiment, and for example, such embodiments as to be described in the following are also included in the technical scope of the present invention, and further, the present invention can be carried out by various modifications within the scope not deviating from the gist thereof.
(1) In the container 10 of the above-mentioned embodiment, the corner engaging projection 51 is provided on only the bottom face at the side of the first sidewall 21 of the projection receiving recess 50, but the corner engaging projection 51 may be provided on only the bottom face at the side of the second sidewall 31 in the respective projection receiving recess 50, and the corner engaging projections 51 may be respectively provided on both of the bottom face at the side of the first sidewall 21 and the bottom face at the side of the second sidewall 31 in each projection receiving recess 50. In addition, providing a configuration in which, as in the container 10 of the above-mentioned embodiment, the corner engaging projection 51 is provided only in the first sidewall 21 makes it unlikely, when a stacking method of containers 10 is performed in which the upper-layer container 10 is inclined to align a part directly under one of the second sidewalls 31 with the lower-layer container 10 and brought into a horizontal position, that the corner engaging projection 51 of the lower-layer container 10 is caught in the upper-layer container 10.
(2) In the container 10 of the above-mentioned embodiment, the side engaging hole 33 penetrates through the side projection piece 32, but the side engaging hole 33 may not be structured to penetrate through the side projection piece 32.
(3) The container 10 of the above-mentioned embodiment includes, on its bottom face, the bottom-face central projection 43 in addition to the bottom-face sub-projection 42, but the container may be configured to include only the bottom-face sub-projection 42.
(4) In the container 10 of the above-mentioned embodiment, the inner vertical walls 53V are formed on both sides of the central partition wall 54 in the central projection receiving recess 53, and the engagement grooves 43D are formed correspondingly thereto in the respective bottom-face central projections 43, but engaging projections (not shown) may be respectively provided on both sides of the central partition wall 54 in the central projection receiving recess 53 in place of the inner vertical walls 53V, and the engagement grooves 43D of the respective bottom-face central projections 43 are eliminated, and an engaging recess provided as a single recess sectioned by the sectioning ribs 43C of the bottom-face central projection 43 and the above-mentioned engaging projections are engaged.
10 Container
21 First sidewall
23 Side engaging projection
31 Second sidewall
32 Side projection piece
33 Side engaging hole
41 Bottom-face main projection
42 Bottom-face sub-projection
42D Corner engaging recess
50 Projection receiving recess
51 Corner engaging projection
Number | Date | Country | Kind |
---|---|---|---|
2014-128026 | Jun 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/082928 | 12/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/198504 | 12/30/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7861879 | Samprathi | Jan 2011 | B2 |
20030116564 | Overholt | Jun 2003 | A1 |
20040226946 | Yamauchi | Nov 2004 | A1 |
20100230406 | Yamauchi | Sep 2010 | A1 |
20110049144 | Koefelda | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1477414 | Nov 2004 | EP |
H11-314637 | Nov 1999 | JP |
2006-335388 | Dec 2006 | JP |
2006335388 | Dec 2006 | JP |
3883984 | Feb 2007 | JP |
3958186 | Aug 2007 | JP |
Entry |
---|
Dec. 27, 2016 International Preliminary Report on Patentability issued in International Patent Application No. PCT/JP2014/082928. |
Mar. 17, 2015 International Search Report issued in International Patent Application No. PCT/JP2014/082928. |
Jul. 3, 2018 Office Action issued in Japanese Patent Application No. 2014-128026. |
Apr. 30, 2018 Office Action issued in Philippines Patent Application No. 1/2016/502341. |
Number | Date | Country | |
---|---|---|---|
20170073107 A1 | Mar 2017 | US |