This invention relates to a container according to ISO standards, designed as a mobile work space for civilian and military use (shelter)
ISO containers with a cuboid metal structural frame comprising ISO corners and edge profiles connecting these ISO corners, as well as thermally insulated side walls, ceiling and floor are known from DE 37 19 301 C2, for example.
The construction of the structure for CSC-certified stackable containers (1:1 design, not expandable, e.g., DE 37 19 301 C2, and 1:2 and 1:3 expandable designs, e.g., EP 0 682 156 B1) is obtained essentially from the stresses that occur in shipping and the vertical loads that occur when up to nine units are stacked (CSC: International Convention for Safe Containers). Point loads and area loads are specified for the container bottom. The tare weight of the equipment to be mounted there must be applied to the walls. Wall cutouts for doors (emergency exit) and for the power supply, air conditioning ducts and optionally the water supply increase the structural complexity and the number of heat bridges.
The thermal insulation should not be at the expense of the interior size and/or increasing the empty weight of the container. Heat transfer coefficients of 0.55 to 0.75 W/(m2K) can be achieved easily with sandwich walls having shearing rigidity (sheet metal-polyurethane-sheet metal) with thicknesses of 40 mm to 60 mm. With current designs, the openings, edges and corners increase the k value of the entire container to values substantially greater than 1 W/(m2K).
For civilian and military applications (mobile sanitation facilities and work rooms such as field command posts and communications systems) for use throughout the world, even under extreme climate conditions, there is a need for reducing the technical complexity and economic cost required for the power supply and [heating and] air conditioning. Transmission losses of the container, which is closed on all sides, may constitute 30% or more of the heating and cooling demand, except for applications with an extremely high fresh air demand (operating rooms).
The problem of substantially improving the thermal insulation cannot be solved by thicker thermal insulation layers and not with the usual structural designs.
DE 197 47 181 A1 discloses a refrigerated container or insulated container which includes thermally insulated side walls plus ceiling and floor, each framed by bordering copings. The bordering copings are designed as hollow profiles and have a core of thermal insulation material. By way of edge profiles designed in two parts, the side walls, ceiling and floor are fixedly joined together in the area of the bordering copings. One disadvantage of this container is the fact that heat bridges created due to the use of the hollow profiles have a negative effect on the heat transfer coefficient value of the container.
EP 0 064712 A1 describes a refrigerated container having a continuous insulation layer. The exterior side of the insulation is formed by a steel frame with upper and lower cross beams and exterior wall panels. Interior planking is provided on the inside of the refrigerated container.
An object of the present invention is to reduce the heat transfer coefficient of the entire container without any sacrifice in terms of structural rigidity and interior size.
This object has been achieved by providing that the intermediate space between the two partial profiles is filled completely by a thermally insulating material and side walls, ceiling and floor have a vacuum insulation layer.
The present invention links two approaches together to achieve this object:
The heat transfer coefficient of the container according to this invention can be brought into the range of 0.5 W/(m2K) by the measures described here without having to accept sacrifices in terms of structural rigidity or interior size. In particular, the inventive container can be stacked several units high without restriction.
The definite reduction in the heat transfer coefficient to values around 0.5 W/(m2K) in the case of a wall thickness comparable to that of conventional thermally insulated containers reduces the required capacity of the air conditioning system by the amount that results from the temperature difference between the interior and the environment and the greater temperature difference (plus and minus) between the air-conditioned air circulating in the side wall ducts and ceiling ducts. Heating of the container by radiant wall heat and/or floor heating thus becomes much more economical.
The inventive concept may be used for containers that are not expandable (1:1 design) as well as for expandable containers (1:2 design, 1:3 design, e.g., using pull-out elements).
The inventive container is in compliance with the strength and rigidity values stipulated by ISO standards. It is suitable in particular for stacking (up to nine containers stacked one above the other) and it withstands the stresses that occur (e.g., load due to crane vehicle) in shipping of the container, in which case the force is applied at the ISO corners.
The vacuum insulation technology developed for terrestrial applications is known per se and is used in the present invention (e.g., DE 296 08 385 U1); this translates into a reduction in the weight and volume of the insulation material and thus an increase in the useful volume at a predetermined heat transfer coefficient. A granular or fibrous filler material together with a getter material, if necessary, and IR opacifiers is surrounded by a multilayer laminated film (metal foil and polyethylene film). With a system pressure of less than 5 mbar, tight welding of the films and a negligible permeation rate, a lifetime of more than 15 years is achieved at a thermal conductivity of approximately 0.004 W/(mK) according to the manufacturer's information. The size of the vacuum insulation sheets in the thickness range from 10 mm to 30 mm can be adapted to the geometric requirements.
The vacuum insulation, which is sensitive to damage, is advantageously protected toward the outside by the outer steel plate wall of the container and is preferably protected toward the inside by plastic-laminated plywood boards, the thickness of which is dimensioned for appropriate mounting of furnishings and/or to accommodate floor loads according to the use case of the container.
In an advantageous embodiment, in addition to an insulation layer of a vacuum insulation material, an additional insulation layer of traditional insulation materials (mineral wool, rock wool, Styropor, Styrodur, polyurethane, etc.), i.e., non-vacuum insulation materials, may also be provided toward the interior.
The edge profiles which run vertically and horizontally between two ISO corners can absorb normal forces and bending forces and may advantageously be designed as two partial L-shaped profiles merged together but also as two quarter circle profiles on the inside and outside or as an expander quarter round profile and a partial profile on the inside comprising a quadrilateral profile or a tube profile.
The outer sheet metal wall of a container surface, which contributes toward its shear strength, is advantageously welded to the outer partial profile of an edge profile and the ISO corners.
The large-area interspaces between opposing edge profiles are covered with vacuum insulation sheets, small intermediate spaces are filled with foam or with other conventional insulation materials tailored exactly to fit.
The intermediate spaces between two partial profiles of an edge profile may also be filled with foam or with conventional insulation materials accurately tailored to fit. The recent development of a weldable steel plate-polyurethane sandwich may be of interest here both economically and from the standpoint of manufacturing technology.
With the small thickness of the walls and ceilings and the minor offset of the wall surfaces at the ISO corners, they protrude into the interior of the container. To reduce these heat bridges, these protrusions must be covered with a layer of thermal insulation material in the form of a trunk corner. Especially here but also on all thermally critical locations, the thermal insulation is such that the dew point can never be reached anywhere on the inside surface.
One wall (side wall, ceiling or floor) of the container advantageously comprises the following layers from the inside to the outside:
To reinforce the side wall, ceiling or floor, reinforcing profiles may advantageously also be provided, these profiles being in contact either with the inner or outer metallic cover layer of a side wall, a ceiling or floor and separated from the other cover layer by a thermal insulation intermediate layer. Since the reinforcing profiles form essentially unwanted heat bridges, a metallic material with a low thermal conduction and a high strength may advantageously be selected for them.
To accommodate floor loads in spots and over the area, a compromise must be made for thermal reasons between thermal conduction, the cross profile of the profile and the distance between the reinforcing profiles (grid dimension). In addition to the choice of the smallest possible web thickness of the standard profiles, it may also be expedient to use composite welded profiles, with stainless steel plate being advantageous thermally for the web(s), either straight or inclined, because of the lower heat transfer coefficient.
These and other objects, features and advantages of the present invention will become more readily apparent from the following detailed description of currently preferred configurations thereof when taken in conjunction with the accompanying drawings wherein:
The total wall thickness is obtained from the wall stiffness requirements which are to be met with the lowest possible web thickness of the reinforcing profile 6 and the greatest possible web length (for definition of a web of a reinforcing profile). Between the L-shaped reinforcing profile 6 and the plywood board 4 a strip 7 of thermal insulation material is inserted. In the present case the reinforcing profile 6 is welded to the metal exterior wall 1 and the wooden boards 4 are attached by a rivet joint 8.
A variant of the reinforcing profile 6 is shown in
The path of the heat conduction may also be extended by placing the web 6′ at an inclination. A symmetrical arrangement of two webs 6′ per profile is expedient (symmetrical to a plane of symmetry perpendicular to the wall of the container), so that the webs 6′, belt 6″ and exterior wall 1 form a trapezoid. The resulting hollow space can be filled out with foam.
If a greater rigidity is necessary for the horizontal container edges around the bottom, then according to
Number | Date | Country | Kind |
---|---|---|---|
102 01 362 | Jan 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/00079 | 1/13/2003 | WO | 00 | 8/4/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/059687 | 7/24/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3003810 | Kloote et al. | Oct 1961 | A |
3031044 | Stitt et al. | Apr 1962 | A |
3175606 | Talmey et al. | Mar 1965 | A |
4021982 | Kotcharian | May 1977 | A |
5460013 | Thomsen | Oct 1995 | A |
5875599 | McGrath et al. | Mar 1999 | A |
6615741 | Fecko et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
296 08 385 | Sep 1997 | DE |
Number | Date | Country | |
---|---|---|---|
20060006174 A1 | Jan 2006 | US |