The instant invention pertains to a containerized rocket assisted payload (RAP) launching system that includes a metal shipping container with an array of closely spaced, vertically oriented containerized concentric launching (CCL) tubes housed therewithin.
Navy warships using guns to a maximum range of 15 miles have traditionally provided naval fire support for the Marine Corps and Army. The introduction of Tomahawk missiles increased the range of the fire support, but the size and expense of the missiles precludes meeting the volume of fire needed by the Marine Corps and Army. Navy warships are built to meet multipurpose warfighting requirements and therefore cannot carry sufficient gun ammunition or Tomahawk missiles to support a 30-day naval fire support mission for the Marine Corps or Army.
One approach to handling different missiles utilizes multipurpose launchers, of modular construction, which can be reconfigured, as necessary. The modular launchers can launch missiles, rockets, chaff and decoys. U.S. Pat. No. 5,452,640, granted Sep. 26, 1995, to Stan P. Bovee et al, discloses such a modular system—see FIGS. 7-9 and note column 2, line 36-column 3, line 29. FIGS. 10-11 show, in schematic fashion, the electronic circuitry for selectively firing the launchers.
U.S. Pat. No. 5,942,713, granted Aug. 24, 1999, to Leszek S. Basak, addresses the conflicting demands of increased firepower, and limited space, upon naval ships, in a different manner. Basak discloses a multiple missile launcher (12) having a plurality of canister holding chambers or cells (14s, 14b, 14c, 14d, 143, 14f, 14g, 14h). Each canister includes a standard connector (16c) for connection by a standard cable (17) to a mission launch sequencer (410; see FIG. 4). Each canister is loaded with four missiles (316; see FIG. 3). The cable has more than enough signal paths to couple launch and safe signals to a single missile, but not sufficient signal paths to independently control four missiles. Selection signals are sent over a selected one of the four separate signal paths to directly arcuate a relay (405, 406, 407 and 408) associated with the selected one of the missiles.
Although the Basak patent provides increased missile packed density, the need for even further space saving measures, upon naval ships, remains unsatisfied. Also, the need for safely transporting and handling large quantities, of densely packed rocket assisted payloads (RAP), of diverse configurations, remains unaddressed. Similarly, the need to determine the appropriate ship platform (naval warships or commercial container ships) to deploy and launch the rocket assisted payloads (RAP) must be resolved, or a common platform must be created. Applicant has addressed these problems and devised a solution that can be effectively implemented, by all branches of the military.
The instant invention includes a metal shipping container, of sturdy design, that is transported by ship, truck and/or train, to a desired location for deployment. An array of vertically oriented, closely spaced, containerized concentric launch (CCL) tubes is retained within the container, and a launching mechanism is incorporated into the container in operative relationship to the array of CCL tubes. Rocket assisted payloads (RAP), each including a solid rocket booster, are loaded into the CCL tubes.
Signals, representing the location coordinates for a military target, are relayed to the launching mechanism, via a radio-link or global positioning system. The coordinates are downloaded into each rocket assisted payload (RAP) and an ignition signal is transmitted via an umbilical cord to the selected rocket assisted payload (RAP). The solid rocket booster propels the selected missile upwardly and into a ballistic path. The rocket booster falls away and the wings and fins on the rocket assisted payload (RAP) come into play. The rocket assisted payload (RAP) flies to the target, in a ballistic arc, guided by its own laser, video, or global positioning navigational system. The accuracy of each rocket assisted payload (RAP) is enhanced, and the volume of fire power generated by each container is increased several-fold over known fire support systems, while the extended range of over 200 miles exceeds all naval fire support systems currently in use or in the planning stage.
Container 10 is built to international standards, such as ISO, and its dimensions will be twenty feet in length, eight feet in width, and eight feet in height. Double height containers may be made to accommodate larger payloads or greater ranges. The container, and its contents, can be transported on the deck of a cargo vessel, on the flat bed of a truck, and may be transportable by freight train, as on a flat car. The container may also be transportable in the hold of a large military transport plane.
The containers may also be stacked on top of one another, or side by side, if space permits. The rigidity of container 10, and its heavy gauge metal or steel fabrication, increases its value as a shipping container, and ultimately as a housing for rocket launchers.
The fire support system described above is intended for use with diverse rocket assisted payloads, such as a 155 mm. payload, suitable for use as an armor piercing, anti-personnel (fragmentation), and white phosphorus payload. Such rocket assisted payloads have been developed for different purposes, by different branches of the military, and are known as the Copperhead, the Excalibur, and the Rum-139 (vertical launch (ASROC).
Various other modifications and revisions to the missile launch system will occur to the skilled artisan after reviewing the specification and drawings. Consequently, the appended claims should be liberally construed in a manner consistent with the spirit and scope of the invention, and should not be limited to their literal terms.
Number | Name | Date | Kind |
---|---|---|---|
2807194 | Cammin-Christy | Sep 1957 | A |
2844073 | Re et al. | Jul 1958 | A |
3680749 | Davis | Aug 1972 | A |
4063485 | Carter et al. | Dec 1977 | A |
4267562 | Raimondi | May 1981 | A |
4681017 | Fischer et al. | Jul 1987 | A |
5452640 | Bovee et al. | Sep 1995 | A |
5554815 | Authie et al. | Sep 1996 | A |
5564649 | von Hoessle et al. | Oct 1996 | A |
5855339 | Mead et al. | Jan 1999 | A |
5942713 | Basak | Aug 1999 | A |
6069692 | Stoffberg | May 2000 | A |
6125734 | Yagla | Oct 2000 | A |
6142055 | Borgwarth et al. | Nov 2000 | A |
6152011 | Ivy et al. | Nov 2000 | A |
6487952 | Borgwarth et al. | Dec 2002 | B1 |
6491253 | McIngvale | Dec 2002 | B1 |
20020170419 | Borgwarth et al. | Nov 2002 | A1 |
20030089220 | Boudreau et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
2 264 265 | Oct 1975 | FR |
2 518 737 | Jun 1983 | FR |
133 673 | Nov 1951 | SE |