This relates to closures for containers and combinations of closures and containers.
Containers of various types are known for liquids, gases and/or solids. Also, various types of closures for containers are known.
Containers, including containers blown from preforms, may be made from a variety of materials including glass, metals and polymers/plastics. Many containers are configured in the form of a bottle and many are made from a wide variety of materials including polymers/plastics such as for example polyethylene terephthalate (“PET”). Similarly closures for such containers may also be made from a wide variety of materials including polypropylene and polyethylene.
It is often important that the container and its contents are properly sealed within the inner cavity of the container by a closure. To provide for a suitable seal between the closure and the inner cavity of the container, in addition to having mating threads on the outside of the neck portion and the inside sidewall surface of the closure, a closure may also be provided with a plug seal device which may be received into the opening in the container wall, such as for example an opening formed in a neck region of a container.
In at least some situations, the insertion of the plug seal device into the open cavity of the neck region can result in one or more problems. One such problem that may arise relates to the radial reaction forces resulting when the plug seal device is inserted into the neck region cavity, which may create radial compression forces that may tend to try to reorient the plug seal device and at least part of the rest of the closure interconnected thereto, to a parallel orientation relative to the vertical inner surface wall of the neck region. The result of this tendency may be misalignment of the threads on the inside sidewall surface of the closure with the threads on the outer surface of the neck region which may lead to a condition known as a “cocked cap” in which the top panel of the closure may be distorted in shape from a generally planar orientation.
Some closures are known as “multi-start caps” as these have more than one location where thread starts are located or commence. If there is a mis-alignment of the closure with container, these types of closures are particularly vulnerable to coming into interference and/or improper engagement with the corresponding multiple thread starts of the container. If there is interference between the thread start of the closure and the thread start of the container, in some circumstances one or more thread starts of the closure may move onto the wrong side of the thread starts of the container during the relative rotation of the closure and the container. This can enhance the risk of a cocked cap condition developing or other improper engagement of the closure with the container.
Also, closures and/or their containers may be not formed to precise structural or dimensional tolerances. This can also result in improper axial alignment of the closure and its threads relative to the container and its threads.
An improved closure with plug seal device is therefore desirable.
According to one aspect, there is provided a closure comprising: a top wall and a side wall depending from the top wall, and a plug seal device depending from the top wall within the side wall. The plug seal device has an upper section, a lower section, and a sealing section proximate the boundary between the upper section and the lower section. The sealing section is operable such that when the plug seal device is inserted in an opening to an inner cavity in a container, the sealing section engages with an inner container surface to provide a seal between an inner cavity of the container and the external environment.
According to another aspect, there is provided a closure comprising a top wall and a tubular side wall extending from the top wall. A tubular plug seal device extends from the top wall within and spaced from the side wall. The plug seal device has a sealing section, an upper section extending from the sealing section upwards to the top wall, and a lower section extending downwards from the sealing section. The sealing section is operable such that when the plug seal device is inserted in an opening to an inner cavity in a container, the sealing section engages with an inner container surface to provide a seal between an inner cavity of the container and the external environment.
According to another aspect there is provided a combination of a closure as recited above, and a container. The container comprises a container wall enclosing an inner cavity, the container wall having an opening into the inner cavity, the container wall having an inner container surface proximate the opening. The sealing section of the plug seal device is configured and operable when the plug seal device is inserted in the opening, to engage with the container surface to provide an initial seal between the inner cavity of the container and the external environment.
A according to another aspect there is provided a system for making a closure as recited above. The system comprises a first mold half and a second mold half. The first and second mold halves are configured and operable to be movable relative to each other between (i) a first position which creates a mold cavity wherein the first and second mold halves are in a closed relationship to each other wherein a molded closures may be formed in the mold cavity, and (ii) a second position wherein the first and second mold halves are in a separated relationship wherein a molded closure molded in the mold cavity can be removed from the mold cavity.
Other features will become apparent from the drawings in conjunction with the following description.
In the figures which illustrate example embodiments,
The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted.
With reference initially only to
The features of closure 100 as hereinafter described may be formed as a unitary piece of material. Closure 100 may be configured in a generally right circular cylindrical tubular shaped shell 101 that is closed at a top end with a circular disc shaped top wall 102 with a downward facing, generally flat, surface 104. Shell 101 also has a generally right circular cylindrical tubular shaped side wall 106 having an outward facing generally right circular cylindrical surface 103 and inwardly facing, generally right circular cylindrical surface 108. Outward facing surface 103 may be provided with a plurality of spaced vertically oriented ribs 105 (i.e. knurls) that may assist in application and removal of closure 100 to a container by a capping machine and/or an individual.
Inward facing surface 108 of closure 100 may be provided with one or more angled, spiral spaced threads or bayonets 114. Threads 114 formed on the inward facing surface 108 of closure 100 may complement and be configured to engage with corresponding one or more angled, spiral spaced threads 116 formed on an exterior generally cylindrical surface 117 of neck region 112 of container 110, proximate an upwardly oriented opening 119 into the inner cavity of container 110. By providing more than one set of complementary spaced threads 114 and 116, it may be possible to have more than one thread start engagement position.
Closure 100 can be secured to container 110 to close opening 119 by engaging threads 114 of closure 100 with threads 116 of container 110 and rotating threads 114 relative to threads 116. To effect such an engagement, respective threads 114, 116 should be initially positioned in a suitable thread start engagement position of closure 100 relative to container 100 initially by suitable angular positioning about axis X-X of threads 114 relative to threads 116 and with vertical/axial positioning of closure 100 relative to container 110, which may be achieved or example by moving closure 100 relative to container 110 through the positions shown in
The exterior surface 117 of neck region 112 of container 110 may also be provided with a pilfer band 120 in the form of a circumferential, generally toroidal shaped shoulder which has an upper, angled shoulder surface 131 and a generally horizontally oriented (ie. generally perpendicular to the orientation of the exterior surface 117) lower, shoulder surface 122. Neck region 112 may also have a support ledge 180 positioned beneath the pilfer band 120 in the form of a lower extended annular shoulder which may be used during blow molding, capping and handling of the container.
A generally right circular cylindrical tubular tamper evident band generally designated 125 may be located vertically/axially below side wall 103 of closure 100. Tamper evident band 125 may be connected by frangible connector portions 126 to generally right circular cylindrical tubular side wall 103. Tamper evident band 125 may also include a plurality of circumferentially extending, spaced cams 127 in the form of shoulder members formed on inner generally cylindrical surface 130 of tamper evident band 125. Cams 127 may be provided with a generally horizontally oriented upper shoulder surface 128 and a lower, angled shoulder surface 129. During application of closure 100 to container 110, by rotation about axis X-X in one rotational direction, tamper evident band 125 will elastically deform such that the angled surface 129 of tamper evident band 125 will slide over angled surface 131 of pilfer band 120 will engage with and such that lower generally horizontal surface 122 of pilfer band 120 will be in face to face relation with the upper surfaces 128 of tamper evident band cams 127. When closure 100 is to be removed from neck region 112 of container 110, the resistance force created by the interface between lower generally horizontal surface 122 of pilfer band 120 that comes into engagement with the generally horizontally oriented upper surfaces 128 of tamper evident band cams 127 will be greater than the breaking force of frangible connector portions 126, and thus continued opposite direction rotation of closure 100 relative to container 110 about axis X-X will cause the frangible connector portions 126 to break. Thus, closure 100 can be removed from engagement with container 110, but tamper evident band 125 will remain in position on container 110.
Closure 100 also has a plug seal device 140 having sealing features which, when closure 100 is applied to container 110, create a solid, fluid and/or gas seal between: (i) the interior cavity 109 of the container 110 and the contents that may be contained therein; and (ii) the external environment. Plug seal device 140 also includes a pre-alignment feature as described hereinafter in detail, which helps facilitate the vertical/longitudinal axial movement and positioning of closure 100 relative to container 110 as it moves from the position shown in
Returning to
Plug seal device 140 may have a generally right circular cylindrical tubular upper wall section 142 and a generally right circular cylindrical tubular lower wall section 146. Upper wall section 142 and lower wall section 146 may be inter-connected and divided vertically/longitudinally from each other by a sealing section 148 located proximate the boundary of the upper and lower wall sections. Sealing section 148 may be integrally formed as part of plug seal device 140 and may be formed in a generally semi-circular toroidal shape, lobe shape, a generally annular ring shape or any other suitable shape that protrudes radially outward beyond both the radially outward facing cylindrical surface 144 of upper wall section 142 and radially outward beyond the radially outward facing cylindrical surface 150 of lower wall section 146. Sealing section 148 may have a generally arcuate outer sealing surface area.
Sealing section 148 is configured and operable such that when it engages with inner surface 121 of the neck region 112 it provides a complete circumferential seal between plug seal device 140 and the inner surface 121 of neck region 112 of container 110, when the sealing section is received through opening 119 of neck region 112 and the sealing section is engaged with the inner surface 121. In operation of some embodiments, when being received into opening 119 of neck region 112, sealing section 148 of plug seal device 140 may provide the first/initial seal between the inner cavity 109 of container 110 and the external environment. In some embodiments, a secondary seal may also be provided between the inner cavity 109 and the external environment, such as a seal between the plug seal device 140 and an external surface of the neck region 112.
Lower wall section 146 may provide an alignment function to axially/longitudinally and horizontally/transversely align, plug seal device 140 and thus closure 100 relative to container 110, as plug seal 140 is inserted into the opening 119 of neck region 112. This helps ensure that the central longitudinal axis of the closure 100 remains substantially coincident and aligned with the central longitudinal axis of the container 110. Thus the outward facing cylindrical surface 150 of lower wall section 146 may guide the plug seal device 140 into position and assist in preventing misalignment of the threads 114 and threads 116 as the sealing section 148 starts to engage with inner surface 121 of neck region 112 (as shown in
Additionally, the presence of the lower wall section 146 extending longitudinally beneath sealing section 148 increases the stiffness of the sealing section 148 in response to radial compression forces exerted thereon. Thus, when sealing section 148 engages with inner surface 121 of the neck region 112 to provides a complete circumferential seal between plug seal device 140 and the inner surface 121 of neck region 112 of container 110, compression forces acting radially inwards are exerted by the inner surface 121 onto sealing section 148 which creates a radially inward deflection of the sealing section 148 and both the upper wall section 142 and the lower wall section 146. This radial inward deflection of sealing section 148 creates resisting hoop stresses (ie, circumferential stresses) in the upper wall section 142 and in lower wall section 146. The hoop stresses developed in the lower wall section 146 in particular, create radial outward reaction forces that enhance the sealing contact forces acting between the sealing section 148 and the inner surface 121 of neck region 112 of container 110.
An outer alignment circular/annular ring 152 may also be positioned radially outwardly from plug seal device 140 and inward from side wall 106, and may be integrally formed at and with a corner region that joins top wall 102 and side wall 106. Outer alignment ring 152 may operate in conjunction with the upper portion of upper section 142 of plug device 140 to assist with maintaining the generally parallel orientation of neck region 117 relative to plug seal device 140 and side wall 106 of closure 100 when closure 100 is fully engaged on neck region 112 of container 110.
A generally circular groove 154 may also be provided in the downward facing surface 104 of top panel 102. Groove 154 may be positioned adjacent the upper end of upper section 142 of plug seal device 140. Groove 154 may be configured to facilitate easier inward deflection of upper section 142 relative to top wall 102 of closure 100 when sealing section 148 engages with inner surface 121 of neck region 112 as described hereinafter. Additionally, groove 154 may facilitate easier outward deflection of the circumferential edge regions of top wall 102 relative to upper section 142 of plug seal device 140 if the internal pressure of a sealed container 110 is significantly increased, also as described further hereinafter. Groove 154 thus creates a hinge area of reduced stiffness to allow for easier relative angular displacement of top wall 102 and plug seal 142 relative to each other.
With reference now to
With reference now to
From the position shown in
With reference now to
In addition to having this venting capability, lower wall section 1146 may still fulfil the same alignment function as lower wall section 146 of plug seal device 140 as described herein. Thus the outward surface area of ribs 1149 may guide the plug seal device 1140 into position and assist in preventing misalignment of the threads 114 and threads 116 as the sealing section 1148 starts to engage with inner surface 121 of neck region 112 (similar to as shown in
With reference now to
It will be noted that for each of closures 100A, 100B, 100C:
Additionally it will be noted that for each of closures 100A, 100B and 100C:
Also, it will be noted that X3 is the thickness of the wall in lower wall section 1146 where there is a rib 1149, whereas X4 is the thickness of the wall in lower section where there is channel/vent 1150.
It will also be noted that comparing closures 100A and 200, made of the same material and being the same weight (and thus using same total amount of material is their formation) and with the same outer diameters Dx/Dz and heights H, the width/thickness of the sealing section Z1 in closure 200 is significantly greater than the width of the sealing section X1 of closure 100A. Thus, using the same overall amount of plastic/polymer material, the plug seal device 1140 of closure 100A can effectively be thinner and longer than the plug seal device 240 of closure 200. By thinning the wall thickness, but extending the length of the plug seal device 140/1140, the lower section 146/1146 can be provided to function as a pre-aligner of closure 100 relative to container 110.
In general, the depth of the groove 154 may be in the range of about 5% to 50% of the depth of the top wall 1502; and the width of the groove 154 may be in the range of about 50% to 250% of the thickness to the top wall.
By contrast closure 200 having a weight of 3.7 gram of the same material as closures 100A-C, has a wall thickness dimension Z1 of 1.21 mm for the sealing section 248.
With reference now to
By contrast, in
A similar effect is observed in the chart of
Again, by contrast as shown in the chart of
The difference in contact pressure shown in
The result of the foregoing construction of a closure 100 with plug seal device 140 or 1140, is that for a closure 100 made of 3.7 gram of high density polyethylene(HDPE) material, the plug device 140/1140 can have a relatively thin wall thickness along an extended length and yet be able to (a) provide for a lower section with a pre-alignment features and (b) maintain an acceptable seal contact pressure/force in situations where the internal pressure in the cavity of the container increases a significant degree causing deflection of the top wall 102.
By way of only one example variation, with reference to
Lower wall section 2146 may also increase the stiffness of the sealing section 2148 in response to radial compression forces exerted thereon. Thus, when sealing section 2148 engages with inner surface of the neck region of a container 110 to provide a complete circumferential seal between plug seal device 2140 and the inner surface of the container, compression forces acting radially inwards are exerted by the inner surface onto sealing section 2148 which creates a radially inward deflection of the sealing section 2148 and both the upper wall section 2142 and the lower wall section 2146. This radial inward deflection of sealing section 2148 creates resisting hoop stresses (ie, circumferential stresses) in the upper wall section 2142 and in lower wall section 2146. The hoop stresses developed in the lower wall section 2146 in particular, create radial outward reaction forces that enhance the sealing contact forces acting between the sealing section 2148 and the inner surface of the container 110.
Other variations are possible.
With reference to
In general operation, when cavity mold half 3102 and core mold half 3114 are in a closed configuration, the mold is clamped shut by the clamping unit and injected material is supplied to the mold cavities 3103 to form the closures such as closures 100, 100A-C and 100D, as described above. At a suitable time, mold 3116 can be opened separating the core mold half 3114 from the cavity mold half 3102 in the X direction.
Of course, the above described embodiments are intended to be illustrative only and in no way limiting. The described embodiments of carrying out the invention are susceptible to many modifications of form, arrangement of parts, details and order of operation.
When introducing elements of the present invention or the embodiments thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2016/051120 | 9/23/2016 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/066868 | 4/27/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3072277 | Hoffmann | Jan 1963 | A |
3074579 | Miller | Jan 1963 | A |
3186573 | Salminen | Jun 1965 | A |
3223269 | Williams | Dec 1965 | A |
3441161 | Van Baarn | Apr 1969 | A |
3473685 | Karlan | Oct 1969 | A |
3677430 | Yates, Jr. | Jul 1972 | A |
3815770 | Guala | Jun 1974 | A |
3877598 | Hazard | Apr 1975 | A |
3944104 | Watson | Mar 1976 | A |
4253581 | Aichinger et al. | Mar 1981 | A |
4342400 | Llera | Aug 1982 | A |
4380304 | Anderson | Apr 1983 | A |
4856668 | Pfefferkorn et al. | Aug 1989 | A |
4872304 | Thompson | Oct 1989 | A |
4915244 | Celaschi | Apr 1990 | A |
5275287 | Thompson | Jan 1994 | A |
5630522 | Montgomery | May 1997 | A |
5662233 | Reid | Sep 1997 | A |
5954215 | Alter | Sep 1999 | A |
6126027 | Thompson | Oct 2000 | A |
6338414 | Schellenbach | Jan 2002 | B1 |
6821463 | Di Dio | Nov 2004 | B2 |
6851586 | Odet | Feb 2005 | B2 |
7021477 | Wolfe | Apr 2006 | B2 |
7743952 | Auer | Jun 2010 | B2 |
7891512 | Brosius | Feb 2011 | B2 |
9884705 | Wood | Feb 2018 | B2 |
20090120899 | Stull, Sr. et al. | May 2009 | A1 |
20110139746 | Schellenbach | Jun 2011 | A1 |
20140021157 | Gren | Jan 2014 | A1 |
20140158660 | Wood | Jun 2014 | A1 |
20140190925 | Ropele | Jul 2014 | A1 |
20140319144 | Tsuzuki | Oct 2014 | A1 |
20150045485 | Tsutimoto | Feb 2015 | A1 |
20180009142 | Benoit-Gonin | Jan 2018 | A1 |
20190135507 | Schlusemann | May 2019 | A1 |
20190367247 | Romeo | Dec 2019 | A1 |
20190375555 | Edie | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
1113202 | Dec 1995 | CN |
2668541 | Jan 2005 | CN |
203780992 | Aug 2014 | CN |
104015992 | Sep 2014 | CN |
0119055 | Sep 1984 | EP |
2468654 | Jun 2012 | EP |
2784001 | Oct 2014 | EP |
3275801 | Jan 2018 | EP |
2236747 | Feb 1975 | FR |
2311285 | Sep 1997 | GB |
2001080658 | Mar 2001 | JP |
2008019443 | Feb 2008 | WO |
Entry |
---|
European Search Report, Fournier, Jacques, dated Jul. 3, 2019, 7 pages. |
PCT International Search Report; Hanham, Tanya; dated Dec. 6, 2016; 3 pages. |
Number | Date | Country | |
---|---|---|---|
20180297752 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62245458 | Oct 2015 | US |