1. Field of the Invention
The present invention relates generally to filtering devices, and more particularly, to a filtering apparatus comprised of a plurality of opposed axial flow filtering elements, each having a plurality of co-axially arranged filtering units.
2. Background of the Invention
Often, by-products of the internal combustion engine, such as acid, moisture, sludge, and dust particles, contaminate the liquid fuel of such an engine. This results in the erosion of the performance of the engine. A filtration method can trap and remove such contaminates from the circulating liquid fuel. Most conventional filters sold on the market use a thin layer of porous membrane or paper. The finer the pores on the filter paper, the greater the amount of contaminants trapped and removed by the filter. Generally, such filters are attached to the internal combustion engine so that the liquid fuel is carried from the engine to the filter where it is filtered and then carried back to the engine in one continuous flow. In addition, conventional filters only allow the contaminated liquid to flow through the filter in a straight-line motion. Thus, such filters require a large surface area, require frequent replacement, and may obstruct the flow of the circulating liquids.
A filtering apparatus is disclosed in U.S. Pat. No. 3,308,956 to Yee et al (the “'956 patent”), Mar. 14, 1967. The '956 patent uses a filtration media, which consists of layers of porous paper tightly coiled along an axial. This arrangement of filtration media increases the surface area available for contaminated liquids to filter through. As a result, more contaminants are trapped because the contaminated liquid passes through multiple layers of filter paper. Furthermore, the increased surface area holds more contaminants, and the filter paper does not have to be replaced as often. The filter paper is made of a thin cellulose fiber. Such material traps particles as small as 0.01 to 0.5 micron. Also, this material absorbs and separates water molecules from oil. The '956 patent describes a method of filtering contaminated liquids using the axial flow principal of fluid movement wherein the oil flows in one direction through a single annular filter element. The filtering method is suitable for bypass filtering of circulating oil in an internal combustion engine. However, it is difficult to adapt such filters to accommodate for other applications where a wide range of flow rates or adjusting for the pressure drop across the filter are desired.
In another filtering apparatus disclosed in U.S. Pat. No. 4,869,820 to Yee (the “'820 patent”), Sep. 26, 1989, an axial flow filter is provided which can be adapted to handle varying flow rates. The '820 patent describes a co-axially stacked filter which consists of two longitudinally and co-axially stacked filtering units, encased in a filtering container. Fluid enters and fills the filtering container. The fluid that enters the lower filtering unit travels upward and is filtered. The fluid that enters the upper filtering unit travels downward and is filtered. The filtered fluid is then collected in a tube that is located at the center of the filtering container, exits the filtering container through an opening at the bottom of the filtering container, and is carried back to the engine. Since the two filtering units are used concurrently, the contaminated liquid is filtered at a higher rate. As a result, the flow of the circulating liquid remains undisturbed. However, the '820 patent is also limited in its ability to filter larger quantities of contaminated fluid.
In order to achieve maximum filtration of the liquids, the volume of liquids in the filtering apparatus must correspond with the flow rate, pressure, and the total volume of the circulating liquids. As the flow rate, pressure, or volume of the circulating fluid increase, the volume of liquids in the filtering apparatus must also increase. The '956 patent is suitable for bypass filtering of circulating oil in a small internal combustion engine, such as those used in cars or motorbikes. Although suitable for its intended use, the '956 patent does not accommodate the greater flow rates of large internal combustion engines, such as those used in boats, aircrafts, locomotives, and jet aircrafts. Additionally, both the '956 and the '820 patent are not suitable for recycling large volume of contaminated liquids or dirty cleaning fluid solvents from a machinery reservoir.
Accordingly, it is a principal object of the invention to provide a filtering apparatus that can accommodate greater flow rates and volume of large internal combustion engines, such as those used in boats, aircrafts, locomotives, and jet aircrafts. Another principal object of the invention provides a filtering apparatus that can better accommodate changes in the pressure of the circulating liquids.
Another principal object of the invention is to provide a filtering apparatus that can efficiently filter large reserves of contaminated liquids in an industrial setting. The present invention can be installed and attached to machines in a factory. Hence, the liquid fuel used by machines and be filtered and reused.
According to the present invention there is a filtering apparatus, which comprises an elongate container body, an inlet, an inlet reservoir, an outlet, an outlet reservoir, and two or more filter units. In a preferred embodiment, an upper lid covers and seals the inlet reservoir. The elongate container body has two ends. The inlet reservoir is attached to one end of the elongate container body while the outlet reservoir is attached to the opposite end of the elongate container body. The inlet consists of an opening on the wall surface of the inlet reservoir. The outlet consists of an opening on the wall surface of the outlet reservoir.
The inlet reservoir is separated from the elongate container body by the inlet reservoir separator. There is a plurality of separator perforations located on the inlet reservoir separator. The inlet reservoir has an upper surface and a bottom surface. There are upper flange members attached to the bottom surface of the inlet reservoir separator. Each of these upper flange members makes contact with the top end of an axial conduit.
The outlet reservoir is separated from the elongate container body by the outlet reservoir separator. The outlet reservoir separator has an upper surface and a lower surface. There are lower flange members attached to the upper surface of the outlet reservoir separator. Each of these lower flange members makes contact with the bottom end of the axial conduit.
A central conduit is located within the elongate container body. The central conduit is attached to the outlet reservoir separator and makes contact with the inlet reservoir separator. Hence, the central conduit runs along the entire axial length of the elongate container body. A portion of the central conduit extends through the inlet reservoir separator and into the inlet reservoir. A screw is located on top of that portion of the central conduit, capping of the central conduit. The screw is adjusted to tighten and hold the outlet reservoir separator upon the central conduit.
The elongate container body holds at least two filter units. In the preferred embodiment, there can be three, four, or seven filter units. Each filtering unit includes at least two vertically spaced-apart filter elements encased in a single filter cartridge. In the preferred embodiment, there are four vertically spaced-apart filter elements. In the preferred embodiment, the filter elements are common tissue rolls, i.e. a continuous roll of tissue paper wrapped around a cardboard cylinder. The filter elements is vertically spaced-apart by screen members. In the preferred embodiment, the filter elements are vertically spaced-apart by three layers of metal barbed wire. However, any porous material can be used as screen members.
Each filter unit is encased in a cylindrical-shaped filter cartridge. The filter cartridge may be made of common cardboard paper or similar impermeable material. The filter cartridge has an upper end and a lower end. The filter cartridge is open at its upper and lower ends.
Within each filter unit, the filter elements are aligned along the same hollow axial called an axial conduit. Hence, at least one end of each filter unit is in fluid communication with the fluid contained within the elongate container body. The axial conduit extends from the upper flange member to the lower flange member. Thus, the axial conduit defines an annular flow path from one end of the filter unit to the other.
The upper flange member caps the upper end of the axial conduit and prevents the bypass flow of fluids from the elongate body container into the axial conduit. Axial conduit outlets are formed on the outlet reservoir plate. Each axial conduit is connected to an axial conduit outlet. The lower flange member prevents the bypass flow of fluids from the elongate container body into the outlet reservoir.
In one embodiment of the present invention, there are perforations on the wall surface of the filter cartridge at the locations where two filter elements are spaced-apart by screen members, thus allowing fluid communication at those locations. There is also a plurality of perforations formed on the wall surface of the axial conduit at locations above and below where two filter elements are spaced-apart by screen members. Thus, fluid from the elongate container body enters through the perforations on the wall surface of the filter cartridge, passes through the screen members and enters the filter elements. The fluid is filtered through the filter element and exits through perforations formed on the wall of the axial conduit. The fluid flows through the axial conduit and exits through the axial conduit outlet into the outlet reservoir. The fluid then exits through the outlet located at the bottom surface of the outlet reservoir.
Hence, when the pressure of the circulating liquids fluctuates, the pressure within the filtering apparatus can be controlled by properly selecting the number and size of the openings on the wall of the axial conduit. Also, additional filtering units of different size and/or filter elements can be added to accommodate an increase in fluid volume. Larger or smaller sized units can be accommodated with a larger or smaller sized elongated container body.
These and other embodiments of the present invention are further made apparent, in the remainder of the present document, to those of ordinary skill in the art.
In order to more fully describe embodiments of the present invention, reference is made to the accompanying drawings. These drawings are not to be considered limitations in the scope of the invention, but are merely illustrative.
The description above and below and the drawings of the present document focus on one or more currently preferred embodiments of the present invention and also describe some exemplary optional features and/or alternative embodiments. The description and drawings are for the purpose of illustration and not limitation. Those of ordinary skill in the art would recognize variations, modifications, and alternatives. Such variations, modifications, and alternatives are also within the scope of the present invention. Section titles are terse and are for convenience only.
As shown in
Contaminated fluid is pumped through inlet 1, for filtration through the filter units 13, and then flow through outlet 2. The upper lid 3, further includes a pressure regulator 27 having an automatic release valve which releases when pressure increases above a predetermined pressure. The upper lid 3 further includes a gauge 28 which indicates pressure measurement and when a filter unit is saturated and needs to be replaced.
The inlet 1 consists of an opening on the wall surface of the elongate body 4 to the inlet reservoir 5. The outlet 2 consists of an opening on the wall surface of the elongate body 4 to the outlet reservoir 6. The inlet reservoir 5 is separated from the elongate container body 4 by a removable inlet reservoir separator 7. There is a plurality of separator perforations 8 located on the inlet reservoir separator 7. The outlet reservoir 6 is separated from the elongate container body 4 by the outlet reservoir separator 12. The outlet reservoir separator 12 forms a unitary structure with the elongate body 4.
As shown in
In the embodiment of
Each filter unit 13 includes two or more filter elements 15 as shown in
In the preferred embodiment, there are four filter elements 15 as shown in
The upper-middle 15b and lower-middle 15c filter elements 15 are separated by one or more screen members 16. One or more intermediate screen members 23 separate the upper 15a and upper-middle 15b filter elements 15. One or more intermediate screen members 23 separate the lower 15d and lower-middle 15c filter elements 15. In the preferred embodiment, screen members 16 and intermediate screen members 23 are comprised of three layers of barbed wire. The screen members 16 serve as flow paths for incoming fluids. The screen members 23 serve as flow path for exiting fluids.
As shown in
Filter cartridge perforations 18, as shown in
Thus contaminated fluid enters the filtering apparatus through inlet 1 and collects in inlet reservoir 5. The contaminated fluid flows through the separator perforations 8 that are located on the inlet reservoir separator 7 which serves as a baffle and collects in elongate container body 4. Due to the large amount of fluid to be filtered, the inlet reservoir separator 7 is important in provided an even dispersion of the flow of fluid. Once passing through the separator perforations 8, contaminated fluid enters the filter unit 13 through the upper end, lower end, and the filter cartridge perforations 18. The contaminated fluid that enters filter unit 13 from the upper end will flow downward into filter element 15a. The contaminated fluid that enters filter unit 13 from the lower end will flow upward into filter element 15d. The contaminated fluid that enters filter unit 13 through the filter cartridge perforations 18 will flow pass screen members 16 and flow either upward or downward to filter elements 15b and 15c.
After filtration, the filtered fluid will collect at the intermediate screen members 23 and will flow into axial conduit 14 through the slot 24. The filtered fluid will then flow out of the axial conduit 14 through exit perforations 19 and then flow through exit outlet 22 and into outlet reservoir 6.
Support members 21 extend from the bottom of the outer wall surface of the outlet reservoir 6. In the preferred embodiment, there are three to four support members 21 supporting the filtering apparatus.
The filtering apparatus just described is suitable for filtering a wide variety of fluids. In general, the described filtering apparatus removes particles in order to recycle the fluid. The present invention can remove particles that are the size of cigarette smoke and can also remove water molecules from liquids. Fluids which may be filtered by the present invention include cooking oils, hydraulic fluids, dry cleaning fluids, spent motor oil, water, gasoline, diesel fuel, and the like. After the filtering element 15 has been exhausted, the filter cartridge 17 may be easily removed and replaced.
As shown in
An alternate embodiment of the filtering apparatus of the present invention is illustrated in
Accordingly, the present invention can accommodate greater flow rates and volume of circulating liquids. The present invention can be used to filter the oil of large internal combustion engines, such as those used in boats, aircrafts, locomotives, and jet aircrafts. Furthermore, the present invention can recycle large volume of contaminated liquids or dirty cleaning fluid solvents from a machinery reservoir. Thus, the present invention may be used to filter and recycle wastewaters from food, chemical, manufacturing, and gasoline industries.
Throughout the description and drawings, example embodiments are given with reference to specific configurations. It will be appreciated by those of ordinary skill in the art that the present invention can be embodied in other specific forms. Those of ordinary skill in the art would be able to practice such other embodiments without undue experimentation. The scope of the present invention, for the purpose of the present patent document, is not limited merely to the specific example embodiments of the foregoing description, but rather is indicated by the appended claims. All changes that come within the meaning and range of equivalents within the claims are intended to be considered as being embraced within the spirit and scope of the claims.