Users can provide inputs to electronic devices using many different approaches. In some cases, an electronic device can include a dome switch, which can be actuated to provide a detectable input. The dome switch can be constructed by placing a conductive dome over a contact pad of a circuit board. When the dome is pressed, the dome can invert such that an inner surface of the dome contacts the contact pad. A volume of air enclosed between the dome and the circuit board may be expelled from the dome when the dome is depressed, for example through vents of the dome switch. The vents however, may also allow foreign contaminants or particles to enter the volume enclosed between the inner surface of the dome and the circuit board. The foreign contaminants or particles can adversely affect the operation of the dome switch by causing rust, oxidation, dendrite growth, or deposits of foreign substances.
A dome switch having a membrane that is impermeable to contaminants but permeable to air, and methods for constructing the same, are provided.
A dome switch can include a circuit board having a contact pad, and a dome mounted on the circuit board over the contact pad. An internal surface of the dome can be offset from the contact pad such that an electrical path exists between the dome and the contact pad when the dome is depressed and comes into contact with the contact pad. To secure the dome to the circuit board, an adhesive sheet can be disposed over the dome and the circuit board. The adhesive sheet can include at least one vent through which air enclosed in a volume between the dome and the circuit board can be expelled when the dome is depressed. To prevent contaminants from entering the volume between the dome and the circuit board through the vent, the dome switch can include a membrane covering the vent. The membrane can be constructed from a material that is permeable to air to allow the dome to vent, but impermeable to contaminants to prevent damage to the dome.
The membrane can be disposed in any one of a number of different configurations to prevent ingress of undesired material into the dome. In one approach, the membrane can be disposed between the sheet and the dome or circuit board. In another approach, the membrane can be disposed over the sheet, such that the sheet is between the membrane and the dome or circuit board. The dome switch can include any suitable number of membranes including, for example, a single membrane covering one or more vents. As another example, the dome switch can include several membranes each covering different vents, or combining to cover a single vent.
The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings in which:
A dome switch used in an electronic device can include a dome mounted on a circuit board and defining a volume between the dome and the circuit board. To expel air from the volume when the dome is depressed, the dome can include venting holes that provide a path for air between an environment and the volume. In some cases, the venting holes can be provided in a sheet placed over the dome and circuit board and used to secure the dome to the circuit board. A membrane can be placed over the venting holes of the sheet to prevent contaminants from entering the volume while allowing air to be expelled from the volume.
A dome switch can be constructed such that a dome is depressed to provide a detected signal to an electronic device.
Dome 110 can be disposed on circuit board 102 to interface with outer contact pad 104 and inner contact pad 106. In some cases, dome 110 can be disposed such that a periphery of dome 110 is placed in electrical contact with outer contact pad 104. Dome 110 can include a conductive inner surface 112 such that when dome 110 is depressed, as shown in
Dome 110 can be constructed from any suitable material. For example, dome 110 can be constructed from a conductive material (e.g., sheet metal). As another example, dome 110 can be constructed from a non-conductive material, but can include a conductive coating applied to internal surface 112 (e.g., the surface of dome 110 that comes into contact with inner contact pad 106). Dome 110 can be constructed using any suitable approach including, for example, by stamping, machining, molding, or combinations of these.
Dome 110 can be secured to circuit board 102 using any suitable approach. In some cases, dome 110 can be coupled to circuit board 102 using a soldering or surface mount technology (SMT) process. Alternatively, a film or sheet 120 can be placed over dome 110 and adhered to circuit board 102 such that dome 110 is trapped between sheet 120 and circuit board 102. For example, sheet 120 can include a thin film of material on which an adhesive is placed. To properly secure dome 110 to circuit board 102, sheet 120 can extend beyond a periphery of dome 110, for example by at least an amount required to provide a hermetic seal between dome 110 and circuit board 102. This seal may be important, for example, to prevent debris or liquids from entering a volume 130 between circuit board 102 and dome 110.
Sheet 120 can be constructed from any suitable material. In some embodiments, sheet 120 can be constructed from a material that is impermeable to air such as, for example, a plastic (e.g., polypropylene, polystyrene, polyethylene, polyester, polyamides, polyurethane, polycarbonate, or polyethylene). By using a material that is impermeable to air, contaminants or other particles may not pass through sheet 120 to access volume 130 and damage dome switch 100.
When dome 110 is pressed and at least partially inverted, air enclosed in volume 130 between circuit board 102 and dome 110 may need to be expelled. If the air cannot be expelled when dome 110 is depressed, the size of volume 130 may diminish but the amount of air in volume 130 may remain the same. This may cause the air pressure within volume 130 to increase and resist the deformation of dome 110. Furthermore, if the air pressure increases in dome 130, dome switch 100 may not provide a desired tactile feedback (e.g., a tactile “click”) to a user. Therefore, to allow air to escape from volume 130, sheet 120 can include vents 122 in the regions of the sheet that are adjacent to the dome. For example, vents 122 can be positioned entirely over the dome. As another example, vents 122 can be positioned around the interface between dome 110 and outer contact pad 104 (e.g., around the periphery of the dome).
Air initially enclosed within volume 130 can follow any suitable path to reach environment 140 outside of dome switch 100. In some cases, when dome 110 is depressed, the increased air pressure in volume 130 can cause dome 110 to be slightly raised from the surface of circuit board 102. When dome 110 rises, air can flow between dome 110 and circuit board 102 towards vents 122. In some cases, air may flow between outer surface 114 of dome 110 and sheet 120 to reach vents 122.
Alternatively, dome 110 or circuit board 102 can include openings, grooves, channels, or other paths for directing air from volume 130 towards vents 122.
Vents 122 of dome switch 100 can include any suitable property for ensuring a proper venting of volume 130.
In some cases, one or more vents can be disposed adjacent to an interface between dome 210 and circuit board 202 (e.g., around periphery 212 of dome 210). Dome switch 200B, shown in
In some cases, one or more vents can be disposed in a region of sheet 220 that does not overlap with dome 210. Dome switch 200C, shown in
In some cases, the size, shape, and/or number of vents used in a dome switch can be selected based on the position of a vent relative to the dome. For example, vents disposed closer to periphery 212 can be smaller than vents disposed away from periphery 212. As another example, a dome switch can include fewer vents disposed adjacent to periphery 212 than vents disposed away from periphery 212. This may be because air expelled from a volume underneath dome 210 can more rapidly reach a vent disposed adjacent to periphery 212, and may therefore be more quickly expelled from the volume than through a vent disposed farther away from the volume.
Because vents of a dome switch provide a path for expelling air from a volume underneath a dome, the vents can also provide a path for contaminants or other debris from an environment to reach the volume underneath the dome. Contaminants such as, for example, foreign particles, debris, liquid (e.g., sweat, water, juices, coffee, and soda), or other substances can cause mechanical and/or electrical disruptions or failure of the dome switch should they reach the inner contact pad or outer contact pad of the dome switch. For example, debris or liquid may cause dome switch 200 to short. As another example, contaminants can cause rust, oxidation, corrosion, dendrite growth, or salt, sugar or chemical deposits. To prevent the contaminants from reaching the volume underneath the dome, the vents may be obstructed.
A dome switch can include a membrane for preventing contaminants from reaching a volume underneath a dome.
Membrane 330 can be constructed from any suitable material. In particular, membrane 330 can be constructed from any material that allows air to pass through, but prevents contaminants from passing through. In some embodiments, membrane 330 can be constructed from a single layer or multi-layer mesh material. The vents in the mesh can be selected such that air can pass through the mesh, but such that contaminants of a particular size cannot. The minimum mesh size can be selected based on any suitable criteria including, for example, the size of known contaminants, contaminants of a particular environment corresponding to where the dome switch will be used, contaminants from susceptible to damage the dome switch, or the size of any other contaminant. The particular material used for the membrane can include, for example, porous plastic (e.g., a porous polytetrafluoroethylene), Teflon, nylon, polyester, polyurethane, a composite material, organic material, synthetic material, or combinations of these.
In some cases, membrane 330 can include a treatment for improving the impermeability of the membrane to contaminants. For example, a hydrophobic or oleophobic treatment can be applied to the membrane. As another example, a surface treatment increasing the resistance of the membrane to abrasion or other forms of damage. The treatments can include, for example, the application of materials or substances to a surface of the membrane (e.g., surface treatments), or incorporating materials or substances within membrane 330 (e.g., between several layers or as part of a layer of membrane 330).
Membrane 330 can be secured to dome switch 300 using any suitable approach. In one implementation, membrane 330 can be coupled to one or both of sheet 320 and dome 310. For example, an adhesive layer can be placed between first surface 332 (e.g., an upper surface) of membrane 330 and second surface 324 (e.g., a bottom surface) of sheet 320 to secure the membrane to the sheet. When sheet 320 is placed over dome 310 and circuit board 302 to secure dome 310 to circuit board 302, membrane 330 can be retained between dome 310 and sheet 320. In some cases, additional adhesive can be placed between second surface 334 (e.g., a lower surface) of membrane 330 and first surface 312 (e.g., an upper or outer surface) of dome 312. This may prevent membrane 330 from moving relative to dome 310.
Membrane 330 can have any suitable position relative to sheet 320. In the example of dome switch 300, membrane 330 is positioned between sheet 320 and dome 310. Because membrane 330 may typically be smaller than sheet 320, this approach can ensure that a bond between membrane 330 and sheet 320 is protected from environment 340 by at least the thickness of sheet 320. In particular, this approach may reduce peeling of membrane 330 from sheet 320.
A dome switch can include any suitable number of membranes covering vents within a sheet. In some cases, a dome switch can include several distinct membranes.
The several membranes of dome switch 500A can be disposed using any suitable approach. In one implementation, each membrane can be positioned over one or more distinct vents 522A, 522B and 522C. In the example shown in
In some cases, two or more membranes of a dome switch can be disposed so that they at least partially overlap. Dome switch 500B, shown in
Membranes 540 and 542 can have any suitable thickness. In some cases, the overlapping portions of membranes 540 and 542 can have a reduced thickness selected such that the thickness of the overlapping portions of membranes 540 and 542 substantially match the thickness of one or both of the non-overlapping portions of membrane 540 and membrane 542. This approach may ensure that sheet 520 is coupled to a smooth surface that does not have height variations. In some cases, the thickness of a membrane can vary, for example with a tapered edge away from a vent and a thicker region over the vent to provide more substantial protection in regions through which contaminants attempt to pass. The membrane can have any suitable thickness including, for example, a thickness in the range of 1.0 mm to 0.05 mm (e.g., 0.5 mm).
In some cases, a membrane can be coupled to a sheet before the sheet and membrane are coupled to a circuit board and dome.
An adhesive can be applied to a surface of one or both of sheet 620 and membrane 630 such that membrane 630 can be securely coupled to sheet 620. In some embodiments, one or both of the membrane and sheet can be constructed with an embedded adhesive layer (e.g., forming a tape) such that the membrane and sheet can be put in contact with one another to securely couple the components together. Assembled sheet and membrane component 600 can be placed over a dome in any suitable orientation. For example, component 600 can be disposed such that membrane 630 is placed in contact with a dome, and sheet 620 forms an outer surface of the dome switch. As another example, component 600 can be disposed such that sheet 620 is placed in contact with a dome, and membrane 630 forms an exposed outer surface of the dome switch.
It will be understood that the foregoing is only illustrative, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of embodiments of the invention. For example, the shapes of various components shown in the drawings are only illustrative, and many of these components can have different shapes if desired. This is not limited to dome switches, but rather can apply to any of several types of switches.
Number | Name | Date | Kind |
---|---|---|---|
6327144 | May | Dec 2001 | B1 |
6396013 | Kondo | May 2002 | B1 |
8178808 | Strittmatter | May 2012 | B2 |
20070241940 | Hsu et al. | Oct 2007 | A1 |
20100213044 | Strittmatter et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
0189950 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20120080301 A1 | Apr 2012 | US |