The present invention relates to a content discharge mechanism for making a fine mist from a discharge content to be discharged to an external space, and more particularly to a spray nozzle for use with an aerosol type product and a pump type product.
Spray nozzle generate a strong spiral discharge swirl flow by making a swirl flow (initial swirl flow) of the contents on the output side of a content passage which then moves a discharge hole due to pressing of the push button, the actuation mode setting. The nozzle design imparts additional swirl in the same direction as the initial swirl flow just short of the hole.
Further, the initial swirl flow on the output side of the content passage is substantially divided to a plurality of flows in the same swirl direction (a swirl flow not going round a swirl object plane). These swirl flows are joined just short of the discharge hole.
In the present specification, the term “swirl flow” includes a flow in a swirl direction that does not go round a swirl object plane as described above.
Moreover, the side of the discharge hole for a container content is assumed to be “front” and the opposite side “rear”. That is, the left side in
The “pump type” indicates a system where the volume of a content accommodating space is reduced by pressing, for example, a peripheral part of a container is pressed by a user and the con-tents in the container is discharged to an external space.
Furthermore, an operation member for actuation mode setting includes push button type ones moving downward in operation and trigger lever type ones that rotate in operation.
Conventionally, a spray nozzle mechanism for aerosol type containers intended to atomize a content into a spray are known, for example in Japanese Unexamined Utility Model Application No. HEI3-32959.
As shown in the '959 application, a conventional spray nozzle mechanism is constructed as shown in FIGS. 5-10:
The content in the container sent from the stem side is, in the case where the cave [32] and the tangential groove [34] are formed also in the rear wall surface [36], sprayed into the external space through a route of a spray passage [21]—he cave [32] in the rear wall surface [36]—the tangential groove [34] of the rear wall surface [36]—a space region among the external peripheral surface, the beak cylinder [1′], and the internal peripheral surface—the tangential groove [34] of the front wall surface [35]—the cave [32] of the front wall surface [35]—the spray hole [13].
The content (pressurized fluid) entering the cave [32] from a plurality of the tangential grooves [34] in the front wall surface [35] forms a swirl flow along its peripheral wall and is discharged from the spray hole [13] into the external space as fine mist.
The prior art nozzle mechanism for atomizing spray content experiences reverse phases in the disposition of a plurality of the tangential grooves in the front wall surface [35] and that of the tangential groove [34] in the rear wall surface [36], which does not utilize swirl flows based on the tangential grooves in the opposite surfaces synergetically.
It is an object of the present invention to provide a content discharge mechanism for making effective fine mist discharge operation of a container content by (a) fixedly disposing a core-shaped member (corresponding to the aforementioned top [3′]) for flow passage setting in a space region (corresponding to the aforementioned cylinder chamber [12]) between an output part of a content passage region of and a content discharge hole part to an external space to produce swirl flows in the same rotation direction at an upstream side flow passage part, continuous from the content passage region and at downstream side flow passage part, continuous to the content discharge hole part; and (b) moving a plurality of initial swirl flows produced at the upstream side flow passage part to a corresponding swirl flow production part of the downstream side flow passage part in a separated state.
These another objects are obtained by the spray nozzle of the present invention. Broadly, the present invention is designed as a content discharge mechanism comprises:
1. a member for passage including a downstream passage region of a content and a sheath-shaped space region on a bottom surface of which an output part of the downstream passage region is formed;
2. a sheath-shaped discharge member attached to the sheath-shaped space region with its side of said output part being opened and including a hole for content discharge formed in its bottom surface on an external space side located oppositely to the side of the output part;
3. a core-shaped member making contact with respective bottom portions of the sheath-shaped space region and the discharge member and fixed to the member for passage and the discharge member to produce the space for passage of the content between it and an internal peripheral surface of the discharge member;
4. a plurality of upstream side passages provided on at least one of abutment parts of the member for passage and the core-shaped member so as to communicate the output part of the downstream passage region and the space for passage; and
5. a plurality of downstream side passages provided on at least one of the abutment parts of the discharge member and the core-shaped member for guiding the content advancing from the space for passage in the form of a spiral flow to the hole part for content discharge in the same direction as the spiral flow.
6. More, preferably, a plurality of rib-shaped parts are formed on at least one of the internal peripheral surface of the discharge member and an external peripheral surface for individually restricting a flow of the con-tent from each of the upstream side passages and for guiding and holding the core-shaped member.
The content discharge mechanism described above, and an aerosol type product and a pump type product both including the content discharge mechanism are objects of the present invention.
In accordance with the present invention, as described above, the sheath-shaped nozzle piece etc. having the discharge hole part of the content into the external space and the core-shaped member therein are fixed in the sheath-shaped space on the output side of the push button body having the content passage region, and the content is sent to the discharge hole part after the content is made the initial spiral flow at an output side part of the button body etc. and at a front part (just upstream side) of the discharge hole this is further developed into a strong discharge spiral flow in the same direction.
A plurality of the initial swirl flows generated at the output side part are moved to a corresponding input side of the spiral flow generation part of a front part (just upstream part) of the discharge hole part, as well separated as possible, based on the action of the rib-shaped member set in the passage space region thereof.
It is hereby possible to make a content discharged into an external space fine mist by enabling a content sent from the container body side to be supplied to the discharge hole part in a strong discharge swirl flow in the form of evolved initial spiral flow thereof.
These and other aspects of the present invention may be more fully understood by reference to one or more of the following drawings:
The following constituent components indicated by reference numbers each with an alphabet (e.g., discharge hole 2a) denote parts of those without alphabet (e.g., nozzle piece).
Preferred embodiments of the present invention will be described with reference to
It is fundamental features of the present invention corresponding to the embodiments that
1. the core 3 for flow passage setting is fixedly disposed in the space region between the output hole part 1b of the vertical passage 1a of the button body 1 and the discharge hole 2a of a content into the external space. The swirl flows in the same rotation direction are respectively formed through the upstream side recessed passage 1e continuously extending from the vertical passage 1a and through the downstream side recessed passage 2d extending to the discharge hole 2a. The rib 2e is formed for moving a plurality of the initial swirl flows produced through the upstream side recessed passages 1e(1) to 1e(4) to the corresponding downstream side recessed passages 2d(1) to 2d(4). These passages are separated from each other as far as possible.
Material qualities of the push button body 1, nozzle piece 2, core 3, and stem 4 are of plastic such as polypropylene, polyethylene, nylon, polyacetal, polybutylene terephthalate.
The content flow passage from the stem 4 to the discharge hole 2a is the content passage of the stem 4—vertical passage 1a of the push button body 1—its output hole part 1b—upstream side recessed passage 1e—space region 2f of the color member 2—downstream side recessed passage 2d—circular recessed part 2c—discharge hole 2a.
The upstream side recessed passage 1e of the push button body 1 has substantially the same cross sectional area for content passage at respective longitudinal positions. The downstream side recessed passage 2d of the nozzle piece 2 has a cross sectional area for content passage which is smaller, closer to the circular recessed part 2c than that far away from the circular recessed part 2c as shown in
The four linear upstream side recessed passages 1e are formed at an equal interval on the bottom surface part 1d of the sheath-shaped space region 1c. The longitudinal central lines of passage 1e are shifted, so to speak, by the same phase from a radial direction of the bottom surface part (taking the output hole part 1b as a center). In other words, the longitudinal central line of the upstream side recessed passage 1e is prevented from intersecting the output hole part 1b.
More specifically, when a content passing through the upstream side recessed passage 1e strikes the internal peripheral surface of the sheath-shaped space region 1c, angles formed by a striking direction (flow direction of the content) and struck part are different at opposite sides of the struck part.
Therefore for contents striking the internal peripheral surface of the sheath-shaped space region 1c from the upstream side recessed passage 1e those swirling in a large angle direction form a main current (refer to
The contents, form the initial swirl flow like this, advances in one space region 2f as indicated by an arrow in
There is herein illustrated in
Each of the initial swirl flows f1 to f4 entering the downstream side recessed passages 2d(1) to 2d(4) becomes a large single discharge swirl flow in the same direction at the circular recessed part 2c located and the contents becoming a fine mist that is sprayed into the external space from the discharge hole 2a.
It is of course that the present invention is not limited to the disclosures illustrated in
The physical nature of the container contents include liquids, expandable foam, pastes, gels, and powders.
Aerosol type products and pump type products to which the present invention is applicable include cleansing agents, cleaning agents, antiperspirants, coolants, muscle antiphlogistic agents, hair styling agents, hair treatment agents, hair washing agents, hair restorers, cosmetics, shaving foams, foods, droplet like products (such as vitamin), medical goods, quasi drugs, coating materials, gardening agents, repellant agents (insecticides), cleaners, deodorants, laundry starch, urethane foams, extinguishers, adhesives, lubricant agents or the like.
Contents in the container can include powdery products, oil components, alcohols, surfactants, high polymers, and effective components associated with various applications.
Powdery products includes metal salts powder, inorganic powder, and resin powder or the like, e.g. talc, kaolin, aluminum hydroxychloride (aluminum salt), calcium arginate, powdered gold, silver powder, mica, carbonate, barium sulphate, cellulose, and mixtures of them.
Oil components include silicone oil, palm oil, eucalyptus oil, camellia oil, olive oil, jojoba oil, paraffin oil, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid or the like.
Alcohols include monovalent lower alcohol such as ethanol, monovalent higher alcohol such as lauryl alcohol, and multivalent alcohol such as ethylene glycol or the like.
Surfactants include anionic surfactant such as sodium laurylsulphate, non-ionic surfactant such as polyoxyethylene oleyl ether, amphoteric surfactant such as lauryl dimethyl amino acetic acid betaine, and cationic surfactant such as alkylchloride trimethylammonium or the like.
Polymer molecule compounds include methylcellulose, gelatine, starch, and casein or the like.
Effective components associated with respective applications include antiphlogistics/analgesics such as methyl salicylate and indometacin, bacteria elimination agents such as sodium benzoate and cresol, harmful insect extermination agents such as pyrethroid, diethyltoluamide, anhidrotics such as zinc oxide, algefacient such as camphor and peppermint camphor, antiasthmatic agents such as ephedrine and adrenaline, edulcorant such as sucralose and aspartame, adhesive and paint such as epoxy resin and urethane, dyes such as paraphenylenediamine and aminophenol, and extinguishant such as ammonium dihydrogenphosphate and sodium/potassium acid carbonate or the like.
Further, the contents can include usable suspensions, UV absorbers, emulsifiers, humectants, antioxidants, and metal ion blocking agents, etc.
Content discharge gas in the aerosol type product includes carbon dioxide, nitrogen gas, compressed air, oxygen gas, rare gas, such as helium, neon, and argon, compressed gas of mixed gas etc. of the former gases, liquefied petroleum gas, and liquefied gas of dimethyl ether and fluorocarbon etc.
Number | Date | Country | Kind |
---|---|---|---|
2005-197530 | Jul 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3081952 | Woodward et al. | Mar 1963 | A |
3112074 | Green | Nov 1963 | A |
3129893 | Green | Apr 1964 | A |
3625437 | Garrigou | Dec 1971 | A |
4074861 | Magers et al. | Feb 1978 | A |
4801093 | Brunet et al. | Jan 1989 | A |
4961727 | Beard | Oct 1990 | A |
5224471 | Marelli et al. | Jul 1993 | A |
5622318 | Bougamont et al. | Apr 1997 | A |
5711488 | Lund | Jan 1998 | A |
5738282 | Grogan | Apr 1998 | A |
5769325 | Jouillat et al. | Jun 1998 | A |
5992765 | Smith | Nov 1999 | A |
6241165 | Bickart et al. | Jun 2001 | B1 |
20030155434 | Rini et al. | Aug 2003 | A1 |
20090057447 | Lowry et al. | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20080121738 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2005/020121 | Nov 2005 | US |
Child | 11969685 | US |