Conventional content management systems 50, such as that shown in
One approach employed to store items in a content management system is to model an item in a single table. Unfortunately, such as single table approach results in many fields among the rows and columns of the table being unused. Such an approach is inefficient from the storage viewpoint. In the past, flat data models have been used to store data in a content management system. For example,
What is needed is a methodology and apparatus for providing a superior manner of storing and retrieving information in a content management system through the use of improved table structures.
The disclosure herein involves a content management system which employs a hierarchical item type tree-based structure including tables at different levels to store metadata for items. A principal advantage of the embodiment disclosed herein is the ability to arbitrarily select or group component tables forming a complex tree-based structure and to then retrieve items therefrom in response to a query.
In one embodiment of the disclosed methodology, a method is provided for organizing information in a content management system including the step of creating a database including a root table and at least one child table together forming a tree hierarchy which stores information. The method also includes providing a stored procedure for accessing a selected arbitrary portion of the tree hierarchy.
Content manage system 10 employs a hierarchical item type tree structure in terms of a group of component tables (or views) at different levels to store metadata for items. A “GetItem” Stored Procedure 35 in library server 25 is used to arbitrarily select or group the component tables (or views) from a complex tree structure and then retrieve item information from selected component tables. Such a complex tree structure is shown in
A second complex tree structure data storage hierarchy is shown in
Returning to
If a determination is made that the subject of the current input query is the current level, then process flow continues to block 325. A query of the component table is then conducted based on the input item ID's/component ID's. A cursor is opened using a dynamic linked library (DLL). Process flow then continues to block 330 where the system builds component type ID's (view ID's) sequence information into an LOB and sends the LOB back to the client 15 via API 20. Then process flow continues back to start block 300.
If a determination is made at decision block 320 that the subject of the current input query is the next level of the tree hierarchy, then process flow continues to block 335. A query is then conducted of a system table to find all child component tables forming the next level. At block 340, for each child table, a “Do query” is performed based on the parent child relation of the component ID using foreign keys in the child tables. A cursor is opened by invoking a DLL as described earlier. Process flow then continues to block 330 where the system builds component type ID's (view ID's) sequence information into an LOB and sends the LOB back to the client 15 via API 20. Then process block continues back to start block 300.
However, if a determination is made at decision block 320 that all levels in the tree hierarchy are the subject of the current input query, then process flow continues to block 345. Note that a “for loop” within a “for loop” within still another “for loop” follows. More particularly, for each level in the tree hierarchy (345), for each table at this level all child tables are found (350) and for each of these child tables a query is performed (355) based on the parent-child relation of the component ID using the foreign key in the child table. A cursor is opened by invoking a DLL as earlier described. A determination is then made at decision block 360 to see if the bottom of the hierarchical tree has been reached. If the bottom of the tree has not been reached, then process flow continues back to block 350 at which GetItem SP 35 continues to cycle through levels. When decision block 360 ultimately determines that the bottom of the hierarchical tree has been reached, then process flow continues to decision block 365. Decision block 365 checks to see if all Item Types (views) have been exhausted. If all Item Types (views) have not been exhausted than process flow continues back to block 315 where GetItem SP 35 cycles or moves on to the next Item Type (or view). However, when decision block 365 ultimately determines that all Item Types (or views) have been exhausted, then process flow continues to block 330. At block 330 the system builds component type ID's (view ID's) sequence information into an LOB and sends the LOB back to the client 15 via API 20.
In summary, to permit GetItem SP 35 to arbitrarily select or group the component tables (or views) from different hierarchical levels of the tree vertically and across several item types or item type views horizontally, “GetItem” stored procedure 35 is responsive to data at its input 35A which 1) instructs GetItem SP 35 to retrieve items from a particular component table (or view) at any hierarchical level; 2) instructs GetItem SP 35 to retrieve items from all next-level child tables (or views) belonging to a specified component table (view) at any hierarchical level; and 3) instructs GetItem SP 35 to retrieve items from a specified component table (or view) and all of its child tables (or views) of all hierarchical levels below.
Moreover, a list of item types (or multiple item types) or item type view ID's can also be provided as input to GetItem SP 35. Each ID can be repeated several times. It is noted that the number of the Item Type, or Item Type view IDs (sNumOf ItemType ViewID) should be specified as an input to GetItem SP 35. For example, a representative input ID to GetItem SP 35 could be “ItemTypeView 1, ItemTypeView 1, and ItemTypeView2) wherein ItemTypeView 1 appears twice. In this particular example, the input for sNumOf ItemType would be 3.
The combination of GetInfo SP 35 input and sLevel and the list of item types or item type view IDs (including the repeated IDs) during an invocation of the GetItem SP provides application users with the ability to arbitrarily select component tables in multiple hierarchical structures.
In conclusion, when the GetItem 35 stored procedure is invoked and provided with the following data from a query from the client 1) number of Item Types (Item Type views; 2) Item Type ID (or Item Type View ID) for each Item Type (or view) 3) Component Type (or component view)—a starting point, 4) Item ID or Component ID and 5) Level (current level, immediate child or all children below), the disclosed content management system and methodology permit the user to locate information in virtually any arbitrary location in the often complex tree hierarchy which stores data in the system.
The disclosed content management system methodology and apparatus advantageously solves the problem of accessing information in a complex tree-based table data hierarchy. The content management system can be stored on virtually any computer-readable storage media, such as CD, DVD and other magnetic and optical media in either compressed or non-compressed form. Of course, it can also be stored on a server computer system or other information handling system.
Although illustrative embodiments have been shown and described, a wide range of modification, change and substitution is contemplated in the foregoing disclosure and in some instances, some features of an embodiment may be employed without a corresponding use of other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the embodiments disclosed herein.
This patent application relates to U.S. patent application, Ser. No. 10/128,450 entitled Content Management System and Methodology Employing a Tree-Based Table Hierarchy Which Accommodates Opening a Dynamically Variable Number of Cursors, the disclosure of which is incorporated herein by reference. The disclosures herein relate generally to databases and more particularly to methods and apparatus for accessing information stored in content management systems.
Number | Name | Date | Kind |
---|---|---|---|
4751740 | Wright | Jun 1988 | A |
4969091 | Muller | Nov 1990 | A |
5615337 | Zimowski et al. | Mar 1997 | A |
5644768 | Periwal et al. | Jul 1997 | A |
5742810 | Ng et al. | Apr 1998 | A |
5774719 | Bowen | Jun 1998 | A |
5778398 | Nagashima et al. | Jul 1998 | A |
5799310 | Anderson et al. | Aug 1998 | A |
5819252 | Benson et al. | Oct 1998 | A |
5862378 | Wang et al. | Jan 1999 | A |
5875332 | Wang et al. | Feb 1999 | A |
5892902 | Clark | Apr 1999 | A |
5940616 | Wang | Aug 1999 | A |
5953525 | Glaser et al. | Sep 1999 | A |
5956036 | Glaser et al. | Sep 1999 | A |
6012067 | Sarkar | Jan 2000 | A |
6016394 | Walker | Jan 2000 | A |
6047291 | Anderson et al. | Apr 2000 | A |
6055637 | Hudson et al. | Apr 2000 | A |
6063133 | Li et al. | May 2000 | A |
6065117 | White | May 2000 | A |
6067414 | Wang et al. | May 2000 | A |
6088524 | Levy et al. | Jul 2000 | A |
6104393 | Santos-Gomez | Aug 2000 | A |
6128621 | Weisz | Oct 2000 | A |
6148342 | Ho | Nov 2000 | A |
6161182 | Nadooshan | Dec 2000 | A |
6167405 | Rosensteel, Jr. et al. | Dec 2000 | A |
6173400 | Perlman et al. | Jan 2001 | B1 |
6219826 | De Pauw et al. | Apr 2001 | B1 |
6233586 | Chang et al. | May 2001 | B1 |
6263313 | Milsted et al. | Jul 2001 | B1 |
6263342 | Chang et al. | Jul 2001 | B1 |
6272488 | Chang et al. | Aug 2001 | B1 |
6279008 | Tung Ng et al. | Aug 2001 | B1 |
6279111 | Jensenworth et al. | Aug 2001 | B1 |
6282649 | Lambert et al. | Aug 2001 | B1 |
6289344 | Braia et al. | Sep 2001 | B1 |
6289458 | Garg et al. | Sep 2001 | B1 |
6292936 | Wang | Sep 2001 | B1 |
6308274 | Swift | Oct 2001 | B1 |
6314449 | Gallagher et al. | Nov 2001 | B1 |
6327629 | Wang et al. | Dec 2001 | B1 |
6338056 | Dessloch et al. | Jan 2002 | B1 |
6339777 | Attaluri et al. | Jan 2002 | B1 |
6343286 | Lee et al. | Jan 2002 | B1 |
6550057 | Bowman-Amuah | Apr 2003 | B1 |
6578068 | Bowman-Amuah | Jun 2003 | B1 |
6601234 | Bowman-Amuah | Jul 2003 | B1 |
6636845 | Chau et al. | Oct 2003 | B2 |
6643633 | Chau et al. | Nov 2003 | B2 |
20010002486 | Kocher et al. | May 2001 | A1 |
20010008015 | Vu et al. | Jul 2001 | A1 |
20010019614 | Madoukh | Sep 2001 | A1 |
Number | Date | Country |
---|---|---|
WO 9922362 | May 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030200224 A1 | Oct 2003 | US |