The present invention relates to a device that accesses a recording medium which stores electronic contents of music, moving images, books, etc., to search for a desired content, and more particularly, to a device that searches for a combination of an encrypted content and a decryption key for decrypting the content.
For information recording media that record various digital data (hereinafter, referred to as “contents”) such as music contents and moving image contents, there are a variety of types such as hard disks and optical disks. A memory card which is one of the information recording media has rapidly proliferated for use mainly in small-sized information devices such as digital still cameras and mobile phone terminals, due to its compactness and light weight.
For memory cards, there are various types depending on the different forms and specifications, and among them there is one having a copyright protection function. The memory card having a copyright protection function is capable of preventing unauthorized copying of a content having copyright and of safely recording and playing back the content. Therefore, the memory card is not only used as a recording medium for simply carrying data but is also used in a digital audio player that handles contents having copyright, resulting in wider applied use than that of conventional recording media, which contributes to the promotion of proliferation of memory cards.
An example of a copyright protection mechanism in a memory card having a copyright protection function is implemented by providing two types of recording areas (a normal area and a secret area) in the memory card (see, for example, Patent Document 1). Specifically, the memory card in this example has a secret area that can be accessed from an access device, such as a digital audio player, only by authenticating between the access device and the memory card; and a normal area that can be freely accessed from the access device regardless of whether authentication is successful or not. Then, a content (hereinafter, referred to as the “encrypted content”) which is encrypted is recorded in the normal area and key data (hereinafter, referred to as the “decryption key”) for decrypting the content is stored in the secret area. By thus separately storing the encrypted content and the decryption key in the two areas in the memory card, an unauthorized access device that cannot authenticate the validity with the memory card cannot acquire the decryption key stored in the secret area, and thus, cannot decrypt the encrypted content. As a result, it is possible to prohibit the use of the content.
Conventionally, contents to be stored in a memory card having a copyright protection function are mainly music contents ripped from a music CD purchased by a user or music contents downloaded from a content provider by using a PC or mobile phone terminal connected to the Internet with a predetermined fee paid. These contents are recorded in the memory card, and are read from the memory card and played back by an appropriate device such as a digital audio player or mobile phone terminal. In this conventional usage pattern, an encrypted content and a decryption key associated therewith are always treated as a pair.
In recent years, in addition to such a content usage pattern, a key separation type content management method, which is so-called “super-distribution type”, in which an encrypted content and a decryption key associated therewith are separately delivered to the user has received attention. In the key separation type content management method, digital contents of music, motion pictures, and so on are distributed in an encrypted format to the user through a package medium such as a CD or the Internet, while decryption keys are separately distributed from a content provider by the user who has paid a necessary fee. As such, the delivered encrypted content and decryption key do not necessarily need to be stored in the same recording medium. For example, encrypted contents may be stored in a large-capacity hard disk in a PC and decryption keys may be stored in a memory card, and upon playback they may be used in a manner such that the memory card is connected to the PC.
Hence, in the conventional pattern, when playing back contents outside the home, both encrypted contents and decryption keys need to be taken out with them recorded in a memory card. Contrary to this, in the “super-distribution type”, the user can play back and enjoy encrypted contents stored in an arbitrary PC outside the home only by carrying around a memory card storing decryption keys, increasing convenience. Furthermore, in this case, there are various advantages such as that it is possible to safely distribute encrypted contents to the user by using a relatively inexpensive package medium, and since large-volume encrypted contents are distributed to the user in advance information to be newly distributed to the user upon purchase of contents is low-volume data such as decryption keys. Accordingly, this has received attention mainly from content providers for delivering contents, and its commercialization is proceeding.
In the key separation type content management method, upon recording or playing back an encrypted content, it needs to associate a decryption key with the encrypted content. As one of methods for associating, there is a method to assign uniquely identifiable ID information to both a decryption key and an encrypted content and to use the ID information of the two as an index. Patent Document 2 discloses a method in which unique ID information is assigned to a decryption key and an encrypted content such as those described above, the decryption key and the encrypted content are stored and managed in different locations, and when decrypting the encrypted content the ID information is used as an index.
In the key separation type content management method, upon playing back contents, an encrypted content and a decryption key associated therewith need to be present together. Therefore, when a list of playable contents is displayed in order to select a content to be played back prior to the playback, it needs to search for a relationship between an encrypted content and a decryption key associated therewith and identify and display contents having both of them. However, in the key separation type content management method, the number of encrypted contents is not always the same as the number of decryption keys; therefore, when a large number of unnecessary encrypted contents or decryption keys are included, the relationship search takes a tremendous amount of time, causing a problem that it takes time to display the list.
The present invention is made in view of the above-described problem and an object of the present invention is therefore to provide a content search device capable of rapidly performing a search for a combination (relationship) of an encrypted content and a decryption key even when there is a difference between the number of encrypted contents and the number of decryption keys.
In a first aspect of the present invention, a content search device is provided that searches for a combination (correspondence relation) of an encrypted content which is obtained by encrypting content data and a decryption key which is key information for decrypting the encrypted content.
The content search device includes a reference DB determining unit and an ID comparing unit.
The reference DB determining unit accesses an encrypted content database which is a database storing the encrypted content, and a decryption key database which is a database storing the decryption key, calculates the number of encrypted contents included in the encrypted content database and satisfying a predetermined condition, and the number of decryption keys included in the decryption key database and satisfying a predetermined condition, and determines, as a reference database, one of the encrypted content database and the decryption key database, which has the lesser calculated number than other.
The ID comparing unit searches for a combination of an encrypted content and a decryption key associated therewith, while sequentially reading entries included in the reference database.
Both the encrypted content and the decryption key may include identification information for uniquely identifying the content data. The ID comparing unit may search for a combination of an encrypted content and a decryption key associated therewith, through the identification information.
The predetermined condition may be a condition satisfied by all encrypted contents included in the encrypted content database and all decryption keys included in the decryption key database.
The encrypted content and the decryption key may have a content type indicating a type of content, as an attribute. The predetermined condition may be to have the same type as a type of content which is a search target.
Both the encrypted content and the decryption key may include identification information for uniquely identifying the content data. The identification information may include information indicating a type of content.
Both the encrypted content and the decryption key may include identification information for uniquely identifying the content data. The encrypted content and the decryption key may include information indicating a type of content as information independent of the identification information.
The ID comparing unit may sequentially refer to information on encrypted contents or decryption keys in one of the encrypted content database and the decryption key database, that is determined as the reference database, to determine whether the associated decryption key or encrypted content is included in the other of the databases.
Both the encrypted content and the decryption key may include identification information for uniquely identifying the content data. The ID comparing unit may determine, through the identification information, whether a decryption key or encrypted content associated with an encrypted content or decryption key in the one of the databases is included in the other of the databases.
Both the encrypted content and the decryption key may include identification information for uniquely identifying the content data. At least one of the encrypted content database and the decryption key database may include sort information including results obtained by sorting entries included in the respective databases, based on the identification information.
At least one of the encrypted content database and the decryption key database may be constructed for each type of content.
At least one of the encrypted content database and the decryption key database may hold information about the number of entries included in the at least one database.
The content search device may further include a display unit. Only when both the encrypted content and the decryption key associated therewith are present, information about a content corresponding to the encrypted content may be displayed on the display unit.
At least one of the encrypted content database and the decryption key database may be constructed on a recording device provided internal or external to the content search device.
In a second aspect of the present invention, a content search device is provided that searches for a combination of an encrypted content which is obtained by encrypting content data and a decryption key which is key information for decrypting the encrypted content. The content search device includes an ID comparing unit that refers to an encrypted content database and a decryption key database based on identification information for uniquely identifying the content data, which is included in an encrypted content, compares identification information included in an encrypted content which is currently being referred to with identification information included in a decryption key which is currently being referred to, and searches for a combination of an encrypted content and a decryption key associated therewith. The encrypted content database is a database that stores encrypted contents which are sorted. The decryption key database is a database that stores decryption keys which are sorted based on identification information included in the decryption keys. When a result of the comparison is that a value of one identification information is smaller than a value of other identification information, the ID comparing unit skips entries in a database that includes the one identification information until the value of the one identification information becomes greater than or equal to the value of the other identification information.
According to the present invention, in the key separation type content management method, even when there is a difference between the number of encrypted contents and the number of decryption keys, it is possible to rapidly perform a search for a combination (correspondence relation) of an encrypted content and a decryption key associated therewith.
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The internal recording device 12 includes an encrypted content database (DB) 121 and the removable recording medium 2 includes a decryption key database (DB) 21. Furthermore, outside the content search device 1, there are external encrypted content databases (DBs) 3 and external decryption key databases (DBs) 4 which are constructed on a server, a PC, an external hard disk, etc., connected via a network or USB. Both the encrypted content database 121 and the external encrypted content DBs 3 are databases that store and manage encrypted contents. Both the decryption key DB 21 and the external decryption key DBs 4 are databases that store and manage decryption keys. The content search device 1 in the first embodiment of the present invention obtains information on encrypted contents and decryption keys from these databases to search for a correspondence relation (combination) between an encrypted content and a decryption key associated therewith. A main process of the correspondence relation (combination) search is performed by the reference DB determining unit 15 and the ID comparing unit 16. Details of the process will be described later.
A content having copyright is stored in a recording medium in an encrypted state (encrypted content) in the end and key information (decryption key) for decrypting the content is similarly stored in a recording medium. Since the present invention assumes the use of the key separation type content management method, an encrypted content and a decryption key are distributed to the user independently of each other and thus are not necessarily stored in the same recording medium. The first embodiment of the present invention describes an example in which encrypted contents are stored in the encrypted content DB 121 constructed on the internal recording device 12 in the content search device 1 and the external encrypted content DBs 3 constructed on a recording medium external to the content search device 1. It is also assumed that decryption keys are stored in the decryption key DB 21 constructed on the removable recording medium 2 external to the content search device 1 and the external decryption key DBs 4 constructed on a recording medium external to the content search device 1.
With reference to
In the first embodiment of the present invention, the removable recording medium 2 that stores contents having copyright is assumed to be a removable recording medium having a special area, a secret area, and a normal area.
First, a general usage pattern of the removable recording medium will be described. The special area is a special area to/from which data cannot be written/read directly from the outside of the removable recording medium 2, storing a medium unique key which is a value unique to the removable recording medium 2, and so on. A device external to the removable recording medium 2 cannot directly read the medium unique key itself but can calculate the medium unique key based on information to be communicated in the process for authenticating between the device and the removable recording medium 2. The secret area is an area to/from which data can be written/read only when a device and the removable recording medium 2 can be authenticated as valid devices, storing key data required to decrypt a content, and so on. The normal area is an area to/from which data can be read and write can be freely performed without authentication, and stores large-volume encrypted contents, etc.
The contents are digital data, such as moving image data, still image data, music data, and book data, and are delivered via a communication network, such as the Internet or a mobile phone terminal, or stored and distributed in a package medium such as CD, MD, or DVD.
In the example of
As such, in the key separation type content management method, the encrypted content and the decryption key required to decrypt the encrypted contents are separately managed, and thus, in order to use a content it needs to search for a correspondence relation between the two to find the right combination between an encrypted content and a decryption key.
Next, with reference to
The sort file 51 stores entries present in the decryption key file 52, which are sorted by content ID. The sort file 51 stores content IDs and decryption key entry Nos. which are of the same number as the total number of entries included in the decryption key file 52. The decryption key entry Nos. indicate entry numbers in the decryption key file 52 associated with their respective entries in the sort file 51. In the example of
Next, with reference to
The example of
Note that the content IDs in the description of
In the key separation type content management method, when using contents, both encrypted content and decryption key associated therewith need to be present together. Therefore, upon playback, it needs to search for a correspondence relation between these two. Then, contents whose association has been found are displayed to the user as playable contents, the user is urged to select a content, and the selected content is played back.
In the content playback process in
When the search process for a correspondence relation is completed, results of the search are displayed on the display unit 17 (S503). For exemplary display of the results of the search, as shown in the “Audio content list” 72 in
Subsequently, the DB access unit 14 accesses the encrypted content DB 121 and/or the external encrypted content DB 3 to obtain an encrypted content to be played back (S505). Also, the DB access unit 14 accesses the decryption key DB 21 and/or the external decryption key DB 4 to obtain a decryption key associated with the encrypted content to be played back (S506). Finally, the DB access unit 14 decrypts the obtained encrypted content using the obtained decryption key and plays back the content (S507).
In the above-described content playback process, particularly, in the correspondence relation search process at step S502, when a correspondence relation search is performed in a round-robin-manner, such a process requires much time, and accordingly, it may take much time to display the content list, since the number of encrypted contents is not always the same as the number of decryption keys. The present embodiment provides a method allowing the correspondence relation search process to be rapid. The correspondence relation search process at step S502 in the first embodiment of the present invention will be described below.
Then, as with step S701, the reference DB determining unit 15 calculates the number of decryption keys (KEY_NUM) for the contents having a type equal to the target type (S702). Then, the reference DB determining unit 15 compares the number of encrypted contents (CONT_NUM) with the number of decryption keys (KEY_NUM) (S703). If CONT_NUM is larger, then the database(s) 4 or 21 that store(s) decryption keys is(are) selected as a database (hereinafter, referred to as the “base DB”) which serves as a base (reference) of content ID comparison. At this time, “KEY” is set to the variable BASE_DB which indicates the base DB. In other case, the reference DB determining unit 15 selects, as a base DB, the database 3 or 12 that store(s) encrypted contents (S705). At this time, “CONT” is set to the variable BASE_DB which indicates the base DB. Finally, the ID comparing unit 16 performs an ID comparison process between the database(s) that store(s) encrypted contents and the database(s) (KEY) that store (s) decryption keys, with reference to the database(s) selected as the base DB, to search for pairs of the encrypted content and decryption key (S706).
The processes at steps S701, S702, and S706 in the process in
Otherwise, if the search is not completed, then the DB access unit 14 determines whether search process of all encrypted contents included in a database which is currently being referred to is completed (S903). If the search is completed, then the search target database is switched from the current database to another database (S908) and the processing returns to the process at step S902. For example, when a search of the encrypted content DB 121 as the search target database is completed and a search of the external encrypted DBs 3 has not yet been performed, the search target database is switched from the encrypted content DB 121 to any database included in the external encrypted content DBs 3.
Otherwise, if the search is not completed at step S903, then the DB access unit 14 refers to a content ID included in an entry in the database which is currently being referred to, to check a content type (S904). Then, it determines whether the content type matches the target type (S905). In this determination process, as described in
In this manner, the number of encrypted contents of the target type included in all of the encrypted content DB 121 and the external encrypted content DBs 3 is calculated.
On the other hand, if the search is not completed in the process at step S1102, then a content ID included in an entry in a database which is currently being referred to is obtained (S1103). Then, it is determined whether it matches a content type of a current search target, with reference to the content ID obtained at step S1103 (S1104). If it matches, then with reference to the other database than the base DB, it is checked whether an entry including the content ID obtained at step S1103 is present in the other database (S1105). Here, the other database refers to the decryption key DB 21 or the external decryption key DBs 4 when the variable BASE_DB is “CONT”, and refers to the encrypted content DB 121 or the external encrypted content DBs 3 when the variable BASE_DB is “KEY”. If the same content ID is present, a valid content is found. Thus, information such as a database name, a decryption key entry No., and a title, is added to a valid content list (S1106). The valid content list is a list of valid contents found in the present ID comparison process. A list of valid contents included in this list is displayed in the end on the display unit 17 as a content list.
If the determinations at steps S1104 and S1105 provides “No” or if the process at step S1106 is completed, then the entry search location is changed from the entry which is currently being referred to, to the next entry (S1107) and the processing returns to the process at step S1102. By the above process, it is possible to search for a list of associated encrypted contents and decryption keys from each database and display the list on the display unit 17.
Referring to
In this example, in the number-of-encrypted content calculation process at step S701 in
In this example (see
Then, in the process at step S703, comparison is made between CONT_NUM (=6) and KEY_NUM (=3). Since CONT_NUM is larger, processing proceeds to the process at step S704 where the decryption key DB is set as a base DB. Namely, BASE_DB is KEY.
Finally, in the ID comparison process at step S706, ID comparison is performed using the database including decryption keys as the base DB. First, by referring to a content ID of an entry of sort No. 1 in the decryption key DB 21, it is compared with the target type. In the example of
Thereafter, the same process is sequentially performed on entries for sort Nos. 2, 3, and 4 in the decryption key DB 21. However, since a content ID of the entry of sort No. 2 does not match the target type, a search is not performed on the encrypted content DB 121 and the external encrypted content DBs 3. As a result of the above-described process, a valid content list as shown in
In this example, by setting, as the base DB (BASE_DB), the decryption key DB 21 (KEY) whose number of entries is less than that of the encrypted content DBs 3a, 3b, and 121, the number of loops of the comparison process at step S706 is three, enabling to more rapidly perform a correspondence relation search process than the case in which the encrypted content DBs 3a, 3b, and 121 are set as the base DB.
Setting a database with less number of entries as the base DB is effective for the case, for example, in which a binary search is performed based on sorted entries in a database to check whether there is a content ID that matches a desired content ID. When performing a binary search in the checking process at step S1105 with the number of valid entries with less number of valid entries being M and larger number of valid entries being N, the time required for a comparison process is O(M log2N). From this fact, it can be understood that setting one with less number of valid entries as the base DB allows a correspondence relation search process to be performed rapidly.
The content search device 1 in the first embodiment of the present invention calculates the numbers (CONT_NUM and KEY_NUM) of entries (valid entries) of which content types match a target type in each of a database storing encrypted contents and a database storing decryption keys, sets a database with less number of valid entries as a base DB, and searches the other database for entries corresponding to respective entries included in the base DB. In this manner, filtering contents as processing targets based on content type allows a search for a correspondence relation (combination) between an encrypted content and a decryption key to be performed more rapidly. Note that the total number of entries in each of a database that stores encrypted contents and a database that stores decryption keys may be calculated and a base DB may be set based on the respective total numbers of entries.
The present invention has been described based on the above-described embodiment. However, needless to say, the present invention is not limited to the above-described embodiment. Any change may be made to the embodiment without departing from the spirit and scope of the present invention. Various numerical values described in the first embodiment of the present invention are an example and thus the values may be changed to other values. For example, a content ID does not necessarily need to adopt the format of
Although the configuration is described in which the decryption key DB 21 is disposed in the removable recording medium 2, the encrypted content DB 121 is disposed in the internal recording device 12, and other DBs are disposed in external recording devices, other configuration may be adopted. For example, the decryption key DB 21 may be present in a recording device in the content search device 1 or the external encrypted content DBs3 and the external decryption key DBs 4 may not exist.
Although an example is described in which information identifying a content type is stored in the fourth byte of a content ID, the information identifying a content type may be stored in other formats. For example, when the information is stored in the beginning of the content ID as shown in
Alternatively, as shown in
Although a method using the sort files 51 and 61 is described as an example of the key separation type content management method, the sort files 51 and 61 are not necessarily need to be used. This scheme may be applied to a configuration in which there are simply the decryption key file 52 and the encrypted content files 62.
When a large majority of encrypted contents and decryption keys included in the target DB are of a content type of the search target, if the target type check is performed in the number-of-encrypted content calculation process and the number-of-decryption key calculation process at steps S701 and S702, it may adversely extend the processing time of a correspondence relation search process. In view of this, the target type check process in the processes at steps S701 and S702 may be omitted. In this case, simply, the numbers of entries included in respective DBs are calculated as CONT_NUM and KEY_NUM, which are used in the comparison process at step S703.
Further, the example is described in which a database does not hold information on the number of entries. However, as shown in
The flow of a content playback process in the second embodiment is basically the same as that shown in
Referring to
Then, entries in the decryption key DB 21 are sequentially referred to and a skip is made to an entry of which type matches a target type (S2002). Specifically, by referring to a sort file 51 in the decryption key DB 21, a content ID included in an entry of which sort No. has the same value as KEY_POS is obtained. When a content type included in the content ID matches a type of a current search target, the skip process ends and the processing proceeds to the next step. When the type does not match, 1 is added to KEY_POS and the same process is repeatedly performed on an entry in the sort file 51 in the decryption key DB 21, of which sort No. has the same value as KEY_POS, until an entry of which type matches is obtained.
Then, a content ID (ID_A) of an entry which is currently being referred to is obtained (S2003). Similarly, entries in the encrypted content DB 121 are sequentially referred to, entries are skipped until the target type matches, and a content ID (ID_B) is obtained (S2004 and S2005).
Then, it is determined whether a search is completed up to the end of the decryption key DB21 and encrypted content DB 121 (S2006), at this stage. If the search is completed, then the process ends. If the search is not completed, then comparison is made between ID_A and ID_B (S2007). If those values match, it means that a valid content has been found. Thus, information such as decryption key entry No. and title is added to a valid content list, 1 is added to each of KEY_POS and CONT_POS to update the search locations, and the processing returns to the process at step S2002 (S2008 and S2009).
On the other hand, if the values do not match in the process at step S2007, then a magnitude relationship between ID_A and ID_B is determined (S2010). If ID_A is larger than ID_B, then entries in the encrypted content DB 121 are skipped until ID_B becomes greater than or equal to ID_A (S2011), and the processing returns to the process at step S2002. Specifically, by referring to a sort file 61 in the encrypted content DB 121, content IDs are sequentially searched for, by sequentially reading a content ID from an entry of which sort No. has the same value as CONT_POS, and adding 1 to CONT_POS until CONT_POS becomes greater than or equal to ID_A. Similarly, if ID_A is smaller than ID_B, entries in the decryption key DB 21 are skipped until ID_A becomes greater than or equal to ID_B (S2012) and the processing returns to the process at step S2002.
By the above process, it is possible to search for a list of associated encrypted contents and decryption keys from the decryption key DB 21 and the encrypted content DB 121 to display the list on the display unit 17.
Next, with reference to
In a correspondence relation search process in this example, first, the target type is checked by referring to a content ID of an entry for sort No. 1 in a sort file 51 in the decryption key DB 21. Referring to
Then, the target type is checked by referring to a content ID of an entry for sort No. 1 in the encrypted content DB 121. Referring to
Then, comparing ID_A with ID_B, ID_A is larger. Thus 1 is added to CONT_POS, and a search is performed on each entry in a sort file 61 in the encrypted content DB 121. The search is repeatedly performed until the content ID becomes greater than or equal to ID_A. Specifically, at the point when CONT_POS=2 the content ID is the same as ID_A, and thus the skipping is stopped and the processing moves to the target type determination. Since the content types of ID_A and ID_B (=0x10183401 . . . ) are both “01” (=0x01) and the values of the two match, it is determined that a valid content has been able to be obtained and thus information about this content is added to a valid content list.
Then, KEY_POS and CONT_POS are updated such that KEY_POS=2 and CONT_POS=3, the processing returns to near the beginning of the processing loop to continue the process. Referring to
Referring to
Then, comparing ID_A with ID_B, ID_A is larger. Thus 1 is added to CONT_POS, and a search is performed on each entry in the sort file 61 in the encrypted content DB 121. The search is repeatedly performed until the content ID becomes greater than or equal to ID_A. Specifically, entries are skipped until CONT_POS becomes 6, and the content ID (=0x83476501 . . . ) for CONT_POS=6 is obtained as ID_B. The content types of ID_A and ID_B (=0x83476501 . . . ) are both 0x01 (audio content) and the values of the two match. It is therefore determined that a valid content has been obtained and thus information about this content is added to the valid content list.
Then, KEY_POS and CONT_POS are updated such that KEY_POS=4 and CONT_POS=7, the processing returns to near the beginning of the processing loop, and the process continues. Referring to
Then, KEY_POS and CONT_POS are updated such that KEY_POS=5 and CONT_POS=8, the processing returns to near the beginning of the processing loop to continue the process. However, since in the decryption key DB 21a search of all entries is already completed, the information stored in the valid content list is displayed on the display unit 17 and the process ends.
As described above, the content search device 1 in the second embodiment of the present invention searches for pieces of information on encrypted contents and decryption keys which are respectively sorted and stored in the encrypted content DB 121 and the decryption key DB 21. To search for a correspondence relation (combination) between the encrypted content and decryption key, the content search device 1 compares a content ID of an encrypted content with a content ID of a decryption key which are currently being referred to, and skips an entry (or entries) in the DB until a smaller value becomes a larger value. In this manner, wasteful ID comparison is eliminated, enabling to rapidly search for a correspondence relation search between an encrypted content and a decryption key.
The present invention has been described based on the above-described embodiment. However, needless to say, the present invention is not limited to the above-described embodiment. Any change may be made to the embodiment without departing from the spirit and scope of the present invention. Various numerical values described in the second embodiment of the present invention are an example and thus the values may be changed to other values. For example, a content ID does not necessarily need to adopt the format of
Although the configuration is described in which the decryption key DB 21 is disposed in the removable recording medium 2, the encrypted content DB 121 is disposed in the internal recording device 12, other configurations may be adopted. For example, the decryption key DB 21 may be present in a recording device in the content search device 1.
Although an example is described in which information identifying a content type is stored in the fourth byte of a content ID, the information may be stored in other formats. For example, when the information is stored in the beginning of the content ID as shown in
Alternatively, as shown in
Although an example is described in which a database does not hold the number of entries as shown in
When a content search device according to the present invention searches for a correspondence relation between a encrypted content and a decryption key which are managed in the key separation type content management method, the content search device compares IDs based on ID with less number of valid entries. By this, it becomes possible to rapidly search for a correspondence relation (combination) between the encrypted content and decryption key. Such a content search device can be used as a PC application, a DVD recorder, an HDD recorder, a digital audio player, a digital television, a digital still camera, or the like, that supports the key separation type content management method.
Number | Date | Country | Kind |
---|---|---|---|
2006-073798 | Mar 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/054661 | 3/9/2007 | WO | 00 | 9/16/2008 |