Distribution of multimedia video (also referred to herein as “media” and/or “program(s)”), such as movies and the like, from network services to a client device, may be achieved through adaptive bitrate streaming of the video. Prior to streaming, the video may be encoded at different bitrates and resolutions into multiple bitrate streams that are stored in the network services. Typically, each of the bitstreams includes time-ordered segments of encoded video.
Adaptive bitrate streaming includes determining an available streaming bandwidth at the client device, and then downloading a selected one of the different bitrate streams from the network services to the client device based on the determined available bandwidth. While streaming, the client device downloads and buffers the successive encoded video segments associated with the selected bitstream. The client device decodes the buffered encoded video segments to recover the video therein, and then plays back the recovered video on the client device, e.g., in audio-visual form.
In normal playback, the client device plays back the video recovered from each of the buffered segments in the order in which the video was originally encoded, i.e., in a forward direction. The client device may offer playback modes or features in addition to normal playback. Such additional playback features may include rewind, fast forward, skip, and so on, as is known. The additional playback features are referred to herein as trick play features.
In order to implement trick play features, such as rewind, the client device requires access to video that has already been played. Therefore, the client device may be required to store large amounts of already downloaded and played video in order to meet the demands of a selected trick play feature. However, many client devices, especially small, hand-held devices, have limited memory capacity and, therefore, may be unable to store the requisite amount of video.
In the drawings, the leftmost digit(s) of a reference number identifies the drawing in which the reference number first appears.
1 Network Environment
Environment 100 supports trick play features in different adaptive bitrate streaming embodiments, including on-demand streaming, live streaming, and real-time streaming embodiments. On-demand streaming includes encoding the content of a program from start to end in its entirety and then, after the entire program has been encoded, streaming, i.e., downloading, the encoded program to a client device. An example of on-demand streaming includes streaming a movie from a Video-on-Demand (VOD) service to a client device.
Live streaming includes encoding successive blocks of live content, i.e., a live program, as they are received from a content source, and then streaming each encoded block as it becomes available for download. Live streaming may include streaming live scenes, i.e., video, captured with a video camera.
Real-time streaming is similar in most aspects to live streaming, except that the input to real-time streaming is not a live video feed. Rather, the input, or source, may include successive encoded blocks, or input blocks, that have a format not suitable for streaming (e.g., for a given system) and must, therefore, be decoded and re-encoded (i.e., transcoded) into an encoded format that is suitable for streaming (in the given system). Real-time streaming handles the successive incompatible input blocks similar to the way live streaming handles the successive blocks of live content.
Network environment 100 is now described in detail. Network environment 100 includes server-side or network services 102 (also referred to simply as “services 102”) and client-side device 104. Network services 102 may be implemented as Internet cloud-based services. Network services 102 interact and cooperate with each other, and with client device 104, to manage and distribute, e.g., stream, multimedia content from content sources 108 to the client devices, over one or more communication network 106, such as the Internet. Network services 102 communicate with each other and with client devices 104 using any suitable communication protocol, such as an Internet protocol, which may include Transmission Control Protocol/Internet Protocol (TCP/IP), Hypertext Transfer Protocol (HTTP), etc., and other non-limiting protocols described herein.
Content sources 108 may include any number of multimedia content sources or providers that originate live and/or pre-recorded multimedia content (also referred to herein simply as “content”), and provide the content to services 102, directly, or indirectly through communication network 106. Content sources 108, such as Netflix®, HBO®, cable and television networks, and so on, may provide their content in the form of programs, including, but not limited to, entertainment programs (e.g., television shows, movies, cartoons, news programs, etc.), educational programs (e.g., classroom video, adult education video, learning programs, etc.), and advertising programs (e.g., commercials, infomercials, or marketing content). Content sources 108, such as, e.g., video cameras, may capture live scenes provide the resulting real-time video to services 102. Content sources may also include live broadcast feeds deployed using protocols such as Real-time Transport Protocol (RTP), and Real-time Messaging Protocol (RTMP).
Network services 102 include, but are not limited to: an encoder 110 to encode content from content sources 108; a content delivery network (CDN) 112 (also referred to as a “download server 112”) to store the encoded content, and from which the stored, encoded content may be streamed or downloaded to client device 104; and a real-time service (RTS) 114 (also referred to as a “real-time server (RTS) 114”) to (i) control services 102, and (ii) implement an RTS streaming control interface through which client device 104 may initiate and then monitor both on-demand, live, and real-time streaming sessions. Each of services 102 may be implemented as one or more distinct computer servers that execute one or more associated server-side computer program applications suited to the given service.
Encoder 110 may be implemented as a cloud encoder accessible over communication network 106. Encoder 110 encodes content provided thereto into a number of alternative bitstreams 120 (also referred to as encoded content) to support adaptive bitrate streaming of the content. For increased efficiency, encoder 110 may be implemented as a parallel encoder that includes multiple parallel encoders. In such an embodiment, encoder 110 divides the content into successive blocks or clips each of a limited duration in time. Each block may include a number of successive picture frames, referred to collectively as a group of pictures (GOPs). Encoder 110 encodes the divided blocks or GOPs in parallel to produce alternative bitstreams 120. Encoder 110 may also include transcoders to transcode input files from one encoded format to another, as necessary.
Alternative bitstreams 120 encode the same content in accordance with different encoding parameters/settings, such as at different encoding bitrates, resolutions, frame rates, and so on. In an embodiment, each of bitstreams 120 comprises a large number of sequential (i.e., time-ordered) files of encoded content, referred to herein as container files (CFs), as will be described further in connection with
After encoder 110 has finished encoding content, e.g., after each of the content blocks is encoded, the encoder uploads the encoded content to CDN 112 for storage therein. CDN 112 includes one or more download servers (DSs) to store the uploaded container files at corresponding network addresses, so as to be accessible to client device 104 over communication network 106.
RTS 114 acts as a contact/control point in network services 102 for client device 104, through which the client device may initiate and then monitor its respective on-demand, live, and real-time streaming sessions. To this end, RTS 114 collects information from services 102 that client device 104 may use to manage its respective streaming sessions, and provides the collected information to the client device via messages (described below) when appropriate during streaming sessions, thus enabling the client device to manage its streaming sessions. The information collected by RTS 114 (and provided to client device 104) identifies the encoded content, e.g., the container files, stored in CDN 112, and may include, but is not limited to, network addresses of the container files stored in the CDN, encoding parameters use to encode the container files, such as their encoding bitrates, resolutions, and frame rates, and file information, such as file sizes, and file types.
Client device 104 may be capable of wireless and/or wired communication with network services 102 over communication network 106, and includes processing, storage, communication, and user interface capabilities sufficient to provide all of the client device functionality described herein. Such functionality may be provided, at least in part, by one or more client applications 107, such as computer programs, that execute on client device 104. Client applications 107 may include:
The trick play index TPI created by client device 104 may be stored in the client device, as indicated in
2 Container Files—Streaming Sources
As described above, encoder 110 encodes multimedia content from content sources 108, and CDN 112 stores the encoded content. To support adaptive bitrate streaming, encoder 110 encodes the content at multiple encoding levels, where each level represents a distinct combination of an encoding bitrate and a video resolution (for video content), to produce multiple streams for the content. The multiple streams are indexed according to their respective encoding levels. While streaming the encoded program from CDN 112, client device 104 may switch between streams, i.e., levels (and thus encoded bitrates and resolutions) according to conditions at the client device.
Each of streams 1, 2 includes a distinct, time-ordered, sequence of container files CF (i.e., successive container files CF), where time is depicted in
The encoded blocks of the container files CF in a given stream may encode the same content (e.g., video content) as corresponding blocks in the other streams. For example, the stream 1 block corresponding to time code TC1 has encoded therein the same video as that in the stream 2 block corresponding to TC1. Such corresponding blocks encode the same content and share the same time code TC, i.e., they are aligned or coincide in time.
In an embodiment, a program stream index 204 may be associated with encoded video program 200 to identify each of the streams therein (e.g., streams 1, 2). RTS 114 may create (and store) program stream index 204 based on the information collected from encoder 110 and CDN 112, as described above in connection with
Program stream index 204 includes (i) address pointers (e.g., network addresses, such as Uniform Resource Locators (URLs)) 210-1, 210-2 to corresponding streams 1, 2, and (ii) encoder parameters/settings associated with the encoded streams including, but not limited to, encoding levels L1, L2 (including the encoding bitrates and resolutions Rate1/Res1 and Rate2/Res2), frame rates, encoding techniques/standards, and file types and sizes of the container files CF. Address pointers 210-1, 210-2 may point to respective lists of addresses A1, A2 of the container files CF comprising each of streams 1, 2. Address lists A1, A2 may each be represented as an array or linked list of container file network addresses, e.g., URLs. Accordingly, access to the information in program stream index 204 results in possible access to all of the container files associated with streams 1, 2.
Although each of container files CF depicted in
Container files may encode a single stream, such as a video stream (as depicted in
In embodiments: the container files may be Matroska (MKV) containers based on Extensible Binary Meta Language (EBML), which is a derivative of Extensible Binary Meta Language (XML), or files encoded in accordance with the Moving Picture Experts Group (MPEG) standard; the program index may be provided in a Synchronized Multimedia Integration Language (SMIL) format; and client device 104 may download container files from CDN 114 over networks 106 using the HTTP protocol. In other embodiments, the container file formats may include OGG, flash video (FLV), Windows Media Video (WMV), or any other format.
Exemplary, non-limiting, encoding bitrates for different levels, e.g., levels L1, L2, may range from below 125 kilo-bits-per-second (kbps) up to 15,000 kbps, or even higher, depending on the type of encoded media (i.e., content). Video resolutions Res 1-Res 4 may be equal to or different from each other.
The container files may support adaptive streaming of encoded video programs across an available spectrum bandwidth that is divided into multiple, i.e., n, levels. Video having a predetermined video resolution for each level may be encoded at a bitrate corresponding to the bandwidth associated with the given level. For example, in DivX® Plus Streaming, by Rovi Corporation, the starting bandwidth is 125 kbps and the ending bandwidth is 8400 kbps, and the number n of bandwidth levels is eleven (11). Each bandwidth level encodes a corresponding video stream, where the maximum encoded bitrate of the video stream (according to a hypothetical reference decoder model of the video coding standard H.264) is set equal to the bandwidth/bitrate of the given level. In DivX® Plus Streaming, the 11 levels are encoded according to 4 different video resolution levels, in the following way: mobile (2 levels), standard definition (4 levels), 720p (2 levels), and 1080p (3 levels).
2.1 Encoded Video Frame Structure
The encoding process may encode a video frame independent of, i.e., without reference to, any other video frames, to produce an encoded video frame referred to herein as a key frame. For example, the video frame may be intra-encoded, or intra-predicted. Such key frames are referred to as I-Frames in the H.264/MPEG standard set. Since the key frame was encoded independent of other encoded video frames, it may be decoded to recover the original video content therein independent of, i.e., without reference to, any other encoded video frames. In the context of streaming, the key frame may be downloaded from CDN 112 to client device 104, decoded independent of other encoded frames, and the recovered (decoded) video played back, i.e., presented, on the client device.
Alternatively, the encoding process may encode a video frame based on, or with reference to, other video frames, to produce an encoded video frame referred to herein as a non-key frame. For example, the video frame may be inter-encoded, i.e., inter-predicted, to produce the non-key frame. Such non-key frames include P-Frames and B-frames in the H.264/MPEG standard set. The non-key frame is decoded based on one or more other encoded video frames, e.g., key-frames, reference frames, etc. In the context of streaming, the non-key frame may be downloaded from CDN 112 to client device 104, decoded based on other encoded frames, and the recovered video played back.
With reference again to
A key/non-key (K/NK) flag associated with each of the frames 304, 306, and 308 indicates whether the associated frame is a key-frame or a non-key frame. Each of the key and the non-key frames may include a predetermined number of bytes of encoded video.
In an example in which the encoded video block represented by frame structure 300 encodes 2 seconds of video captured at a video frame rate of 30 frames per second (fps), the frame structure includes 60 encoded video frames, which may include N (i.e., one or more) interspersed key frames, and 60-N non-key frames. Typically, the number of non-key frames exceeds the number of key frames.
3 Sequence Diagrams
3.1 Start-Up
At 410, a user of client device 104 selects content, such as a video program, to be streamed using the client device GUI.
At 422, client device 104 sends a “Start” message (also referred to as a “begin playback” message) to RTS 114 to start a streaming session. The Start message includes an identifier (ID) of the content to be streamed and a current time stamp. The ID identifies content from a content source that is to be streamed to client 104, and may indicate, e.g., a channel, program name, and/or source originating the content to be streamed. The current time stamp (also referred to as “current time”) indicates a current time, such as a Universal Time Code (UTC). The UTC may be acquired from any available UTC time service, as would be appreciated by those or ordinary skill in the relevant arts.
It is assumed that at the time the Start message is issued, the content identified therein has already been encoded and is available for streaming, e.g., for video-on-demand streaming, or will begin to be encoded shortly after the time of the Start message, e.g., for live and real-time streaming. It is also assumed that RTS 114 has collected, or will be collecting, the information related to the encoded program from encoder 110 or CDN 115, such as a program stream index, e.g., program index 204, sufficient to identify the identified content in network services 102.
At 424, in response to the Start message, RTS 114 sends an encoding profile message (referred to as a “Profile” message) to client 104. The Profile message lists different encoding profiles used to encode the identified content, e.g., as available from the program stream index for the identified content. Each of the profiles specifies encoding parameters/settings, including, but not limited to: content type (e.g., audio, video, or subtitle); an encoding level corresponding to an encoding bitrate and resolution (e.g., levels L1 and L2); and a container file type, e.g., a Multipurpose Internet Mail Extensions (MIME) type.
In response to the Profile message, client device 104 selects an appropriate encoding level (e.g., an appropriate combination of an encoding bitrate and a resolution) among the levels indicated in the Profile message for streaming the identified content. Client device 104 may determine the appropriate encoding level based on a communication bandwidth at the client device.
3.2 Normal Streaming and Playback
After startup, normal streaming and playback begins, as follows.
At 432, after client device 104 has selected the encoding level, the client device sends a GetPlaylist message to RTS 114 to request a list of any new container files that have been uploaded since the client device last downloaded container files (if any) from CDN 112. The GetPlaylist message includes selection criteria for uploaded container files, namely, a current time and the selected encoding level. The current time represents a time code associated with the last container file downloaded by client device 104 (if any) in the current streaming session.
In response to the GetPlaylist message, RTS 114:
For each of the selected container files, the Playlist message includes the following information: the type of content encoded in the container file (e.g., video, audio, or subtitle); an address (e.g., URL) of the container file in CDN 112 (e.g., a subset of the addresses A1 or A2); a time code, e.g., a start time and an end time, associated with the content block encoded in the container file; and a file size of the container file.
At 434, in response to the Playlist message, client device 104 downloads container files from addresses in CDN 112 based on, i.e., as identified in, the Playlist message.
At 436, client device 104 decodes all of the key frames and the non-key frames of the encoded content block from each of the downloaded container files to recover the original content therein, and then presents the recovered content, whether in audio, visual, or in other form, on client device 104. The process of decoding the encoded content from the key and non-key frames and then presenting the recovered content on client device 104 is referred to as “normal playback” on the client device. In normal playback, the content recovered from successive downloaded container files is played back on client device 104 in a forward (play) direction, i.e., in an order of increasing time code. For example, with reference again to
The normal streaming and playback sequence repeats. Therefore, in summary, in the streaming and playback sequence, client device 104 periodically requests and downloads Playlist messages, downloads container files indicated in the Playlist messages, and plays back the content from the downloaded container files in the forward direction.
3.3 Trick Play
At any time during the normal streaming and playback sequence, the user may select a trick play feature through the GUI. Trick play features include, but are not limited to, rewind and fast forward, in which client device 104 rewinds and fast forwards through previously played back content. Once the user has selected the trick play feature, client device 104 uses a trick play index, e.g., TPI 107a, to implement the trick play feature in a memory efficient manner, as will be described below.
Client device 104 creates the trick play index based on container files as they are downloaded during the normal streaming/playback sequence described above. The trick play index identifies, among other things, (i) a network location (i.e., network address) of each key frame embedded in each of the downloaded container files, (ii) a time code associated with each of the key frames, e.g., the time code of the container file in which the identified key frame is embedded, and (iii) a size of the key frame. This information enables client device 104 to access and download the key frame without having to download other data in the container file.
At 440, assume the user selects the rewind trick play feature while client device 104 is performing the normal playback of content associated with a current or latest time code.
At 442, in response to the rewind request, client device 104 determines key frames that are associated with time codes less than the latest or current time code as indicated in the trick play index, and then downloads the determined key frames from their network locations, i.e., from the container files in which the key frames are embedded, as indicated in the index. The downloading includes downloading the key frames from their respective container files, without downloading the non-key frames. In other words, client device 104 downloads only the key frames to implement the trick play feature.
At 444, client device 104 plays back the downloaded key frames (i.e., decodes and then presents the content recovered therefrom) in a rewind play direction, i.e., in an order of decreasing time code beginning with the current or latest time code.
The trick play sequence 442, 444 repeats.
At any time during the trick play sequence, the user may select to exit the trick play feature, e.g., exit rewind, and resume normal streaming and playback. Alternatively, the user may select a subsequent trick play feature, such as fast forward.
Assume, for example, that the user selects fast forward during the rewind. In response to the fast forward request, the rewind is stopped after the playback of content from a key frame associated with a last time code that is less than the current time code (since rewind plays back content in an order of decreasing time code beginning with the current time code).
Then, trick play sequence 442, 444 repeats to implement the fast forward, as follows.
At 442, client device 104 determines key frames associated with time codes greater than the last time code as indicated in the trick play index, and then downloads the determined key frames (but not the non-key frames) from their network locations as also indicated in the index.
At 444, the key frames downloaded at 442 are played back in the forward direction beginning with the last time code, toward the current time.
During trick play, the key frames may be played back at the same rate at which the video was originally captured and encoded, e.g., at a rate of 30 fps or at a slower frame rate. To implements a faster rewind or trick play, key frames may be skipped, e.g., every other key frame identified in the trick play index may be played back.
3.4 Trick Play Index Stored Offsite
In an embodiment, the trick play index created by client device 104 may be stored in and offsite location in network services 102 for subsequent access by the client device on an as needed basis to implement the trick play features.
At 482, after client device 104 has created the trick play index, the client device uploads the trick play index to network services 102 (over communication network 106) for storage at a network location therein. For example, client device 104 may upload the trick play index to either RTS 114 or CDN 112.
At 484, after client device 104 receives the trick play request at 440, the client device 104 downloads the trick play index from network services 102, e.g., from either RTS 114 or CDN 112.
Once the trick play index has been downloaded, it is available for use to implement the requested trick play feature in client device 104.
4 Profile and Playlist Messages
4.1 Profile Message
Profile message 500 includes a header 501 to specify the base profile as SMIL 3.0 (Tiny), and a body including video encoding (VE) profiles 502 and 504, and an audio encoding (AE) profile 506. Profile message 500 corresponds to a requested program ID, such as encoded program 200 of
Similarly, AE profile 906 specifies:
Playlist message 600 includes a header 601 to specify the base profile as 3.0, and a body that includes sequential records or elements 602-610, each of which is defined as a seq element <seq>. In an embodiment, each seq element 602-610 corresponds to an uploaded container file. Using seq elements, RTS 114 is able to specify a sequence of real-time media streams for playback. A sequence tag is used with each element to indicate one of <video>, <audio> or <subtitle/text> encoded content for streaming. Elements 602-610 identify respective uploaded elements (e.g., container files) that meet the Playlist message criteria (i.e., encoding level 1 and a time code equal to or greater than 40). In the example of
Trick play index 700 includes a list of key frame (KF) records 701, each identifying a corresponding one of key frames KF 1-N included in a corresponding one of successive container files CF 1-N. Each KF record 701 includes:
Together, the network address and the offset in each record 701 represent, or indicate, a location where the corresponding key frame may be accessed by the client device. The size indicates, e.g., the number of bytes that must be downloaded.
6 Method Flowcharts
6.1 Trick Play with Trick Play Index
Method 800 assumes client device 104 has already initiated a streaming session to stream a requested multimedia video program from network services 102 over network 106, in accordance with the start-up sequence of
805 includes sending a playlist request (e.g., a GetPlaylist message) relating to the requested video program to network services 102 (e.g., RTS 114) over communication network 106. The playlist request includes file selection criteria that includes a current time and specifies an encoding level (corresponding to an encoding bit rate and resolution) suitable for the client device.
810 includes receiving a playlist (e.g., a Playlist message), from network services 102 identifying encoded files in CDN 112 for the requested program that match the selection criteria, i.e., that are associated with successive time codes greater than the current time, and correspond to the specified encoding level. The playlist includes, for each identified file, an address of the file, and a time code associated with the file.
815 includes downloading the files of encoded video (including their key and non-key frames) identified in the playlist from their respective addresses in, e.g., CDN 112. Each of the files includes encoded video frames. The encoded video frames include non-key frames and key frames interspersed among the non-key frames.
820 includes playing back the video from each of the downloaded files, including the video from the key-frames and non-key frames in each of the files. The playing back includes playing back the video from each of the downloaded files in a forward direction, i.e., in an order of increasing time code.
825 includes creating a trick play index (e.g., trick play index 700 in
830 includes receiving a trick play request from the user of the client device, such as a request to rewind or fast forward through video.
In response to the trick play request, method 800 performs the next operations 835 and 840.
835 includes downloading the key frames, but not the non-key frames, from the key frame network locations indicated in the trick play index.
840 includes playing back the video from the downloaded key frames (not from non-key frames).
If the trick play request is rewind, then 840 includes playing back the key frames in a rewind direction, i.e., in an order of successively decreasing time codes.
If the trick play request is fast forward, then 840 includes playing back the key frames in the forward direction, i.e., in the order of successively increasing time codes.
In an embodiment in which the trick play index is stored in an offsite location, the following additional operations are performed:
905 includes accessing the time stamp and the address, e.g., URL, associated with a downloaded container file, e.g., from the Playlist message that referenced the container file.
910 includes determining an offset, e.g., in bytes, of the key frame in the container file from the beginning of the container file. Such determining may include traversing the K/NK flags sequentially in the container file to locate the instance of the key frame (or of multiple key frames) in the container file.
915 includes determining a size, e.g., in bytes, of the key frame. For example, the size determining may include determining a total number of bytes between a K/NK flag indicating a start of a key frame and a subsequent K/NK flag indicating a start of a non-key frame immediately following the key frame.
920 includes storing the accessed URL and time code, and the determined offset and size of the key frame in a new record of the trick play index.
930 includes repeating operations 905-920 for each next downloaded container file.
7 Systems
Computer system 1000 includes one or more computer instruction processing units and/or processor cores, illustrated here as processor 1002, to execute computer readable instructions, also referred to herein as computer program logic.
Computer system 1000 may include memory, cache, registers, and/or storage, illustrated here as memory 1004, which may include a non-transitory computer readable medium encoded with computer programs, illustrated here as computer program 1006.
Memory 1004 may include data 1008 to be used by processor 1002 in executing computer program 1006, and/or generated by processor 1002 during execution of computer program 1006. Data 1008 may include container files 1008a and at trick play index 1008b, such as used in the methods described herein.
Computer program 1006 may include:
Client application instructions 1010 to cause processor 1002 to perform client device functions as described herein. Instructions 1010 include:
GUI instructions 1012 to implement a GUI through which a user may select to stream a program and select trick play features;
streaming and playback 1014 instructions to download, decode, and playback streamed video content; and
trick play instructions 1016 to create and use a trick play index to implement trick play features.
Instructions 1010-1016 cause processor 1002 to perform functions such as described in one or more examples above.
Methods and systems disclosed herein may be implemented with respect to one or more of a variety of systems including one or more consumer systems, such as described below with reference to
System 1200 or portions thereof may be implemented within one or more integrated circuit dies, and may be implemented as a system-on-a-chip (SoC).
System 1200 may include one or more processors 1204 to execute client-side application programs stored in memory 1205.
System 1200 may include a communication system 1206 to interface between processors 1204 and communication networks, such as networks 106. Communication system 1206 may include a wired and/or wireless communication system.
System 1200 may include a stream processor 1207 to process program (i.e., content) streams, received over channel 1208 and through communication system 1206, for presentation at system 1200. Stream processor 1207 includes a buffer 1207a to buffer portions of received, streamed programs, and a decoder 1207b to decode and decrypt the buffered programs in accordance with encoding and encryption standards, and using decryption keys. In an alternative embodiment, decoder 1207b may be integrated with a display and graphics platform of system 1200. Stream processor 1207 together with processors 1204 and memory 1205 represent a controller of system 1200. This controller includes modules to perform the functions of one or more examples described herein, such as a streaming module to stream programs through communication system 1206.
System 1200 may include a user interface system 1210.
User interface system 1210 may include a monitor or display 1232 to display information from processor 1204, such as a client-side GUI.
User interface system 1210 may include a human interface device (HID) 1234 to provide user input to processor 1204. HID 1234 may include, for example and without limitation, one or more of a key board, a cursor device, a touch-sensitive device, and or a motion and/or image sensor. HID 1234 may include a physical device and/or a virtual device, such as a monitor-displayed or virtual keyboard.
User interface system 1210 may include an audio system 1236 to receive and/or output audible sound.
System 1200 may correspond to, for example, a computer system, a personal communication device, and/or a television set-top box.
System 1200 may include a housing, and one or more of communication system 1206, processors 1204, memory 1205, user interface system 1210, or portions thereof may be positioned within the housing. The housing may include, without limitation, a rack-mountable housing, a desk-top housing, a lap-top housing, a notebook housing, a net-book housing, a set-top box housing, a portable housing, and/or other conventional electronic housing and/or future-developed housing. For example, communication system 1202 may be implemented to receive a digital television broadcast signal, and system 1200 may include a set-top box housing or a portable housing, such as a mobile telephone housing.
Methods and systems disclosed herein may be implemented in circuitry and/or a machine, such as a computer system, and combinations thereof, including discrete and integrated circuitry, application specific integrated circuitry (ASIC), a processor and memory, and/or a computer-readable medium encoded with instructions executable by a processor, and may be implemented as part of a domain-specific integrated circuit package, a system-on-a-chip (SOC), and/or a combination of integrated circuit packages.
Methods and systems are disclosed herein with the aid of functional building blocks illustrating functions, features, and relationships thereof. At least some of the boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries may be defined so long as the specified functions and relationships thereof are appropriately performed. While various embodiments are disclosed herein, it should be understood that they are presented as examples. The scope of the claims should not be limited by any of the example embodiments disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5361332 | Yoshida et al. | Nov 1994 | A |
5404436 | Hamilton | Apr 1995 | A |
5479303 | Suzuki et al. | Dec 1995 | A |
5502766 | Boebert et al. | Mar 1996 | A |
5509070 | Schull | Apr 1996 | A |
5589993 | Naimpally et al. | Dec 1996 | A |
5715403 | Stefik | Feb 1998 | A |
5717816 | Boyce et al. | Feb 1998 | A |
5754648 | Ryan et al. | May 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5867625 | Mclaren | Feb 1999 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5946446 | Yanagihara | Aug 1999 | A |
5999812 | Himsworth | Dec 1999 | A |
6018611 | Nogami et al. | Jan 2000 | A |
6031622 | Ristow et al. | Feb 2000 | A |
6038257 | Brusewitz et al. | Mar 2000 | A |
6044469 | Horstmann | Mar 2000 | A |
6047100 | McLaren | Apr 2000 | A |
6058240 | McLaren | May 2000 | A |
6064794 | McLaren et al. | May 2000 | A |
6097877 | Katayama et al. | Aug 2000 | A |
6141754 | Choy | Oct 2000 | A |
6155840 | Sallette | Dec 2000 | A |
6175921 | Rosen | Jan 2001 | B1 |
6195388 | Choi et al. | Feb 2001 | B1 |
6222981 | Rijckaert | Apr 2001 | B1 |
6282653 | Berstis et al. | Aug 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6292621 | Tanaka et al. | Sep 2001 | B1 |
6389218 | Gordon et al. | May 2002 | B2 |
6418270 | Steenhof et al. | Jul 2002 | B1 |
6449719 | Baker | Sep 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6466733 | Kim | Oct 2002 | B1 |
6510513 | Danieli | Jan 2003 | B1 |
6510554 | Gordon et al. | Jan 2003 | B1 |
6621979 | Eerenberg et al. | Sep 2003 | B1 |
6658056 | Duruöz et al. | Dec 2003 | B1 |
6771703 | Oguz et al. | Aug 2004 | B1 |
6807306 | Girgensohn et al. | Oct 2004 | B1 |
6810389 | Meyer | Oct 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6859496 | Boroczky et al. | Feb 2005 | B1 |
6956901 | Boroczky et al. | Oct 2005 | B2 |
6965724 | Boccon-Gibod et al. | Nov 2005 | B1 |
6965993 | Baker | Nov 2005 | B2 |
7007170 | Morten | Feb 2006 | B2 |
7023924 | Keller et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7150045 | Koelle et al. | Dec 2006 | B2 |
7151832 | Fetkovich et al. | Dec 2006 | B1 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7165175 | Kollmyer et al. | Jan 2007 | B1 |
7185363 | Narin et al. | Feb 2007 | B1 |
7197234 | Chatterton | Mar 2007 | B1 |
7231132 | Davenport | Jun 2007 | B1 |
7242772 | Tehranchi | Jul 2007 | B1 |
7328345 | Morten et al. | Feb 2008 | B2 |
7349886 | Morten et al. | Mar 2008 | B2 |
7356143 | Morten | Apr 2008 | B2 |
7376831 | Kollmyer et al. | May 2008 | B2 |
7406174 | Palmer | Jul 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7478325 | Foehr | Jan 2009 | B2 |
7484103 | Woo et al. | Jan 2009 | B2 |
7526450 | Hughes et al. | Apr 2009 | B2 |
7594271 | Zhuk et al. | Sep 2009 | B2 |
7640435 | Morten | Dec 2009 | B2 |
7689510 | Lamkin et al. | Mar 2010 | B2 |
7720352 | Belknap et al. | May 2010 | B2 |
7779097 | Lamkin et al. | Aug 2010 | B2 |
7817608 | Rassool et al. | Oct 2010 | B2 |
7962942 | Craner | Jun 2011 | B1 |
7974714 | Hoffberg | Jul 2011 | B2 |
7991156 | Miller | Aug 2011 | B1 |
8023562 | Zheludkov et al. | Sep 2011 | B2 |
8046453 | Olaiya | Oct 2011 | B2 |
8054880 | Yu et al. | Nov 2011 | B2 |
8065708 | Smyth et al. | Nov 2011 | B1 |
8069260 | Speicher et al. | Nov 2011 | B2 |
8201264 | Grab et al. | Jun 2012 | B2 |
8225061 | Greenebaum | Jul 2012 | B2 |
8233768 | Soroushian et al. | Jul 2012 | B2 |
8249168 | Graves | Aug 2012 | B2 |
8261356 | Choi et al. | Sep 2012 | B2 |
8265168 | Masterson et al. | Sep 2012 | B1 |
8270473 | Chen et al. | Sep 2012 | B2 |
8270819 | Vannier | Sep 2012 | B2 |
8289338 | Priyadarshi et al. | Oct 2012 | B2 |
8291460 | Peacock | Oct 2012 | B1 |
8311115 | Gu et al. | Nov 2012 | B2 |
8321556 | Chatterjee et al. | Nov 2012 | B1 |
8386621 | Park | Feb 2013 | B2 |
8401900 | Cansler et al. | Mar 2013 | B2 |
8412841 | Swaminathan et al. | Apr 2013 | B1 |
8456380 | Pagan | Jun 2013 | B2 |
8472792 | Butt | Jun 2013 | B2 |
8515265 | Kwon et al. | Aug 2013 | B2 |
8516529 | Lajoie et al. | Aug 2013 | B2 |
8606069 | Okubo et al. | Dec 2013 | B2 |
8681866 | Jia | Mar 2014 | B1 |
8774609 | Drake et al. | Jul 2014 | B2 |
8781122 | Chan et al. | Jul 2014 | B2 |
8843586 | Pantos et al. | Sep 2014 | B2 |
8914534 | Braness et al. | Dec 2014 | B2 |
8997161 | Priyadarshi et al. | Mar 2015 | B2 |
20010036355 | Kelly et al. | Nov 2001 | A1 |
20010046299 | Wasilewski et al. | Nov 2001 | A1 |
20020051494 | Yamaguchi et al. | May 2002 | A1 |
20020057898 | Normile | May 2002 | A1 |
20020110193 | Yoo et al. | Aug 2002 | A1 |
20020136298 | Anantharamu et al. | Sep 2002 | A1 |
20020191959 | Lin et al. | Dec 2002 | A1 |
20030001964 | Masukura et al. | Jan 2003 | A1 |
20030002578 | Tsukagoshi et al. | Jan 2003 | A1 |
20030035488 | Barrau | Feb 2003 | A1 |
20030035545 | Jiang | Feb 2003 | A1 |
20030035546 | Jiang et al. | Feb 2003 | A1 |
20030061369 | Aksu et al. | Mar 2003 | A1 |
20030093799 | Kauffman et al. | May 2003 | A1 |
20030152370 | Otomo et al. | Aug 2003 | A1 |
20030163824 | Gordon et al. | Aug 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030185542 | McVeigh et al. | Oct 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030231863 | Eerenberg et al. | Dec 2003 | A1 |
20030231867 | Gates et al. | Dec 2003 | A1 |
20030233464 | Walpole et al. | Dec 2003 | A1 |
20030236836 | Borthwick | Dec 2003 | A1 |
20030236907 | Stewart et al. | Dec 2003 | A1 |
20040031058 | Reisman | Feb 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040081434 | Jung et al. | Apr 2004 | A1 |
20040093618 | Baldwin et al. | May 2004 | A1 |
20040105549 | Suzuki et al. | Jun 2004 | A1 |
20040136698 | Mock | Jul 2004 | A1 |
20040139335 | Diamand et al. | Jul 2004 | A1 |
20040158878 | Ratnakar et al. | Aug 2004 | A1 |
20040184534 | Wang | Sep 2004 | A1 |
20040255115 | DeMello et al. | Dec 2004 | A1 |
20050038826 | Bae et al. | Feb 2005 | A1 |
20050071280 | Irwin | Mar 2005 | A1 |
20050114896 | Hug | May 2005 | A1 |
20050183120 | Jain et al. | Aug 2005 | A1 |
20050193070 | Brown et al. | Sep 2005 | A1 |
20050193322 | Lamkin et al. | Sep 2005 | A1 |
20050204289 | Mohammed et al. | Sep 2005 | A1 |
20050207442 | Zoest et al. | Sep 2005 | A1 |
20050207578 | Matsuyama et al. | Sep 2005 | A1 |
20050273695 | Schnurr | Dec 2005 | A1 |
20050275656 | Corbin et al. | Dec 2005 | A1 |
20060026294 | Virdi et al. | Feb 2006 | A1 |
20060036549 | Wu | Feb 2006 | A1 |
20060037057 | Xu | Feb 2006 | A1 |
20060052095 | Vazvan | Mar 2006 | A1 |
20060053080 | Edmonson et al. | Mar 2006 | A1 |
20060064605 | Giobbi | Mar 2006 | A1 |
20060078301 | Ikeda et al. | Apr 2006 | A1 |
20060129909 | Butt et al. | Jun 2006 | A1 |
20060173887 | Breitfeld et al. | Aug 2006 | A1 |
20060245727 | Nakano et al. | Nov 2006 | A1 |
20060259588 | Lerman et al. | Nov 2006 | A1 |
20060263056 | Lin et al. | Nov 2006 | A1 |
20070031110 | Rijckaert | Feb 2007 | A1 |
20070047901 | Ando et al. | Mar 2007 | A1 |
20070053513 | Hoffberg | Mar 2007 | A1 |
20070058928 | Naito et al. | Mar 2007 | A1 |
20070083617 | Chakrabarti et al. | Apr 2007 | A1 |
20070086528 | Mauchly et al. | Apr 2007 | A1 |
20070136817 | Nguyen | Jun 2007 | A1 |
20070140647 | Kusunoki et al. | Jun 2007 | A1 |
20070154165 | Hemmeryckx-Deleersnijder et al. | Jul 2007 | A1 |
20070168541 | Gupta et al. | Jul 2007 | A1 |
20070168542 | Gupta et al. | Jul 2007 | A1 |
20070178933 | Nelson | Aug 2007 | A1 |
20070180125 | Knowles et al. | Aug 2007 | A1 |
20070192810 | Pritchett et al. | Aug 2007 | A1 |
20070217759 | Dodd | Sep 2007 | A1 |
20070234391 | Hunter et al. | Oct 2007 | A1 |
20070239839 | Buday et al. | Oct 2007 | A1 |
20070255940 | Ueno | Nov 2007 | A1 |
20070274679 | Yahata et al. | Nov 2007 | A1 |
20070292107 | Yahata et al. | Dec 2007 | A1 |
20080008455 | De Lange et al. | Jan 2008 | A1 |
20080043832 | Barkley et al. | Feb 2008 | A1 |
20080101466 | Swenson et al. | May 2008 | A1 |
20080120389 | Bassali et al. | May 2008 | A1 |
20080126248 | Lee et al. | May 2008 | A1 |
20080137736 | Richardson et al. | Jun 2008 | A1 |
20080172441 | Speicher et al. | Jul 2008 | A1 |
20080187283 | Takahashi | Aug 2008 | A1 |
20080192818 | DiPietro et al. | Aug 2008 | A1 |
20080195744 | Bowra et al. | Aug 2008 | A1 |
20080205860 | Holtman | Aug 2008 | A1 |
20080256105 | Nogawa et al. | Oct 2008 | A1 |
20080263354 | Beuque et al. | Oct 2008 | A1 |
20080279535 | Haque et al. | Nov 2008 | A1 |
20080310454 | Bellwood et al. | Dec 2008 | A1 |
20080310496 | Fang | Dec 2008 | A1 |
20090031220 | Tranchant et al. | Jan 2009 | A1 |
20090037959 | Suh et al. | Feb 2009 | A1 |
20090048852 | Burns et al. | Feb 2009 | A1 |
20090055546 | Jung et al. | Feb 2009 | A1 |
20090060452 | Chaudhri | Mar 2009 | A1 |
20090066839 | Jung et al. | Mar 2009 | A1 |
20090097644 | Haruki | Apr 2009 | A1 |
20090132599 | Soroushian et al. | May 2009 | A1 |
20090132721 | Soroushian et al. | May 2009 | A1 |
20090132824 | Terada et al. | May 2009 | A1 |
20090136216 | Soroushian et al. | May 2009 | A1 |
20090150557 | Wormley et al. | Jun 2009 | A1 |
20090169181 | Priyadarshi et al. | Jul 2009 | A1 |
20090178090 | Oztaskent | Jul 2009 | A1 |
20090196139 | Bates et al. | Aug 2009 | A1 |
20090201988 | Gazier et al. | Aug 2009 | A1 |
20090226148 | Nesvadba et al. | Sep 2009 | A1 |
20090290706 | Amini et al. | Nov 2009 | A1 |
20090293116 | DeMello et al. | Nov 2009 | A1 |
20090303241 | Priyadarshi et al. | Dec 2009 | A1 |
20090307258 | Priyadarshi et al. | Dec 2009 | A1 |
20090307267 | Chen et al. | Dec 2009 | A1 |
20090310933 | Lee | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090316783 | Au et al. | Dec 2009 | A1 |
20090328124 | Khouzam et al. | Dec 2009 | A1 |
20090328228 | Schnell | Dec 2009 | A1 |
20100040351 | Toma et al. | Feb 2010 | A1 |
20100074324 | Qian et al. | Mar 2010 | A1 |
20100083322 | Rouse | Apr 2010 | A1 |
20100094969 | Zuckerman et al. | Apr 2010 | A1 |
20100095121 | Shetty et al. | Apr 2010 | A1 |
20100107260 | Orrell et al. | Apr 2010 | A1 |
20100111192 | Graves | May 2010 | A1 |
20100142917 | Isaji | Jun 2010 | A1 |
20100158109 | Dahlby et al. | Jun 2010 | A1 |
20100161825 | Ronca et al. | Jun 2010 | A1 |
20100186092 | Takechi et al. | Jul 2010 | A1 |
20100189183 | Gu et al. | Jul 2010 | A1 |
20100228795 | Hahn et al. | Sep 2010 | A1 |
20100235472 | Sood et al. | Sep 2010 | A1 |
20100290761 | Drake et al. | Nov 2010 | A1 |
20100313225 | Cholas et al. | Dec 2010 | A1 |
20100313226 | Cholas et al. | Dec 2010 | A1 |
20100319014 | Lockett et al. | Dec 2010 | A1 |
20100319017 | Cook | Dec 2010 | A1 |
20110047209 | Lindholm et al. | Feb 2011 | A1 |
20110066673 | Outlaw | Mar 2011 | A1 |
20110080940 | Bocharov et al. | Apr 2011 | A1 |
20110082924 | Gopalakrishnan | Apr 2011 | A1 |
20110107379 | Lajoie et al. | May 2011 | A1 |
20110126191 | Hughes et al. | May 2011 | A1 |
20110129011 | Cilli et al. | Jun 2011 | A1 |
20110135090 | Chan | Jun 2011 | A1 |
20110142415 | Rhyu | Jun 2011 | A1 |
20110145726 | Wei et al. | Jun 2011 | A1 |
20110149753 | Bapst et al. | Jun 2011 | A1 |
20110150100 | Abadir | Jun 2011 | A1 |
20110153785 | Minborg et al. | Jun 2011 | A1 |
20110191803 | Baldwin et al. | Aug 2011 | A1 |
20110197237 | Turner | Aug 2011 | A1 |
20110225315 | Wexler et al. | Sep 2011 | A1 |
20110225417 | Maharajh et al. | Sep 2011 | A1 |
20110239078 | Luby et al. | Sep 2011 | A1 |
20110246657 | Glow | Oct 2011 | A1 |
20110246659 | Bouazizi | Oct 2011 | A1 |
20110252118 | Pantos et al. | Oct 2011 | A1 |
20110264530 | Santangelo et al. | Oct 2011 | A1 |
20110268178 | Park et al. | Nov 2011 | A1 |
20110302319 | Ha et al. | Dec 2011 | A1 |
20110305273 | He et al. | Dec 2011 | A1 |
20110314176 | Frojdh et al. | Dec 2011 | A1 |
20110314500 | Gordon et al. | Dec 2011 | A1 |
20120023251 | Pyle et al. | Jan 2012 | A1 |
20120093214 | Urbach | Apr 2012 | A1 |
20120170642 | Braness et al. | Jul 2012 | A1 |
20120170643 | Soroushian et al. | Jul 2012 | A1 |
20120170906 | Soroushian et al. | Jul 2012 | A1 |
20120170915 | Braness et al. | Jul 2012 | A1 |
20120173751 | Braness et al. | Jul 2012 | A1 |
20120177101 | Van Der | Jul 2012 | A1 |
20120179834 | Van Der et al. | Jul 2012 | A1 |
20120233345 | Hannuksela | Sep 2012 | A1 |
20120254455 | Adimatyam et al. | Oct 2012 | A1 |
20120260277 | Kosciewicz | Oct 2012 | A1 |
20120278496 | Hsu | Nov 2012 | A1 |
20120294355 | Holcomb et al. | Nov 2012 | A1 |
20120307883 | Graves | Dec 2012 | A1 |
20120311094 | Biderman et al. | Dec 2012 | A1 |
20120314778 | Salustri et al. | Dec 2012 | A1 |
20130019107 | Grab et al. | Jan 2013 | A1 |
20130044821 | Braness et al. | Feb 2013 | A1 |
20130046902 | Villegas Nuñez et al. | Feb 2013 | A1 |
20130051554 | Braness et al. | Feb 2013 | A1 |
20130054958 | Braness et al. | Feb 2013 | A1 |
20130058480 | Ziskind et al. | Mar 2013 | A1 |
20130061040 | Kiefer et al. | Mar 2013 | A1 |
20130061045 | Kiefer et al. | Mar 2013 | A1 |
20130114944 | Soroushian et al. | May 2013 | A1 |
20130166765 | Kaufman | Jun 2013 | A1 |
20130166906 | Swaminathan et al. | Jun 2013 | A1 |
20130226578 | Bolton et al. | Aug 2013 | A1 |
20130311670 | Tarbox et al. | Nov 2013 | A1 |
20130329781 | Su et al. | Dec 2013 | A1 |
20140003516 | Soroushian | Jan 2014 | A1 |
20140101722 | Moore | Apr 2014 | A1 |
20140189065 | Schaar et al. | Jul 2014 | A1 |
20140201382 | Shivadas et al. | Jul 2014 | A1 |
20140241420 | Orton-jay et al. | Aug 2014 | A1 |
20140241421 | Orton-jay et al. | Aug 2014 | A1 |
20140250473 | Braness et al. | Sep 2014 | A1 |
20140359678 | Shivadas et al. | Dec 2014 | A1 |
20140359680 | Shivadas et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1169229 | Dec 1997 | CN |
813167 | Dec 1997 | EP |
936812 | Aug 1999 | EP |
1056273 | Nov 2000 | EP |
1553779 | Jul 2005 | EP |
8111842 | Apr 1996 | JP |
09-037225 | Feb 1997 | JP |
2002518898 | Jun 2002 | JP |
2004013823 | Jan 2004 | JP |
2004515941 | May 2004 | JP |
2004172830 | Jun 2004 | JP |
2007036666 | Feb 2007 | JP |
2007235690 | Sep 2007 | JP |
2007535881 | Dec 2007 | JP |
2014506430 | Mar 2014 | JP |
669616 | Sep 2007 | KR |
9613121 | May 1996 | WO |
9965239 | Dec 1999 | WO |
0165762 | Sep 2001 | WO |
0237210 | May 2002 | WO |
0235832 | May 2002 | WO |
02054196 | Jul 2002 | WO |
2004102571 | Nov 2004 | WO |
2009065137 | May 2009 | WO |
2010060106 | May 2010 | WO |
2010122447 | Oct 2010 | WO |
2010147878 | Dec 2010 | WO |
2011068668 | Jun 2011 | WO |
2011103364 | Aug 2011 | WO |
2012094171 | Jul 2012 | WO |
2012094181 | Jul 2012 | WO |
2012094189 | Jul 2012 | WO |
2013032518 | Mar 2013 | WO |
2013032518 | Sep 2013 | WO |
Entry |
---|
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, 1 page. |
Microsoft, Microsoft Media Platform: Player Framework, Silverlight Media Framework v1.1, 2 pages. |
Microsoft, Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, 2 pages. |
The Official Microsoft IIS Site, Smooth Streaming Client, 4 pages. |
Written Opinion for International Application No. PT/US2005/025845 filed Jul. 21, 2005, report completed Feb. 5, 2007 and mailed May 10, 2007, 5 pgs. |
Written Opinion for International Application No. PCT/US2007/063950 filed Mar. 14, 2007, report completed Mar. 1, 2008, report mailed Mar. 19, 2008, 6 pgs. |
Written Opinion of the International Searching Authority for International Application No. PCT/US 08/87999, date completed Feb. 7, 2009, date mailed Mar. 19, 2009, 4 pgs. |
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs. |
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, 13 pgs. |
“IBM Spearheading Intellectual Property Protection Technology for Information on the Internet; Cryptolope Containers Have Arrived”, May 1, 1996, Business Wire, Retrieved from http://www.thefreelibrary.com/IBM+Spearheading+Intellectual+Property+Protection+Technology+for . . . -a018239381, 6pg. |
“Netflix turns on subtitles for PC, Mac Streaming”, Yahoo, 3 pgs. |
Supplementary European Search Report for Application No. EP 10834935, International Filing Date Nov. 15, 2010, Search Completed May 27, 2014, 9 pgs. |
“Thread: SSME (Smooth Streaming Medial Element) config.xml review (Smooth Streaming Client configuration file)”, 3 pgs. |
“Transcoding Best Practices”, From movideo, Nov. 27, 2013, 5 pgs. |
“Using HTTP Live Streaming”, iOS Developer Library, Retrieved from: http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple—ref/doc/uid/TP40008332-CH102-SW1, Updated Feb. 11, 2014, 10 pgs. |
Akhshabi et al. “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 24-25, 2011, 12 pgs. |
“Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2012, pp. 1-9. |
“Blu-ray Disc—Blu-ray Disc—Wikipedia, the free encyclopedia”, printed Oct. 30, 2008 from http://en.wikipedia.org/wiki/Blu-ray—Disc, 11 pgs. |
“Blu-ray Movie Bitrates Here—Blu-ray Forum”, printed Oct. 30, 2008 from http://forum.blu-ray.com/showthread.php?t=3338, 6 pgs. |
“Entropy and Source Coding (Compression)”, TCOM 570, Sep. 1999, pp. 1-22. |
“MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd. Publication date unknown, 15 pgs. |
“O'Reilly—802.11 Wireless Networks: The Definitive Guide, Second Edition”, printed Oct. 30, 2008 from http://oreilly.com/catalog/9780596100520, 2 pgs. |
“Tunneling QuickTime RTSP and RTP over HTTP”, Published by Apple Computer, Inc.: 1999, 6 pages. |
“Turbo-Charge Your Internet and PC Performance”, printed Oct. 30, 2008 from Speedtest.net—The Global Broadband Speed Test, 1 pg. |
“When is 54 Not Equal to 54? A Look at 802.11a, b and g Throughput”, printed Oct. 30, 2008 from http://www.oreillynet..com/pub/a/wireless/2003/08/08/wireless?throughput.htm., 4 pgs. |
“White paper, The New Mainstream Wirless LAN Standard”, Broadcom Corporation, Jul. 2, 2003, 12 pgs. |
Blasiak, Ph.D., Darek , “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pgs. |
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 17, 2010, 14 pgs. |
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pgs. |
Garg et al., “An Experimental Study of Throughput for UDP and VolP Traffic in IEEE 802.11b Networks”, Wireless Communications and Networkings, Mar. 2003, pp. 1748-1753. |
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 15 pgs. |
Inlet Technologies, “Adaptive Delivery to iDevices”, 2 pages. |
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2 pgs. |
Inlet Technologies, “HTTP versus RTMP”, 3 pages. |
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2 pages. |
Kim, Kyuheon , “MPEG-2 ES/PES/TS/PSI”, Kyung-Hee University, Oct. 4, 2010, 66 pages. |
Kozintsev et al., “Improving last-hop multicast streaming video over 802.11”, Workshop on Broadband Wireless Multimedia, Oct. 2004, pp. 1-10. |
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 58 pgs. |
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 20 pgs. |
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, source and date unknown, 42 pgs. |
MSDN, “Adaptive streaming, Expression Studio 2.0”, 2 pgs. |
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs. |
Nelson, Mark, “Arithmetic Coding + Statistical Modeling = Data Compression: Part 1—Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, printed from http://www.dogma.net/markn/articles/arith/part1.htm; printed Jul. 2, 2003, 12 pgs. |
Nelson, Michael “IBM's Cryptolopes,” Complex Objects in Digital Libraries Course, Spring 2001, Retrieved from http://www.cs.odu.edu/˜mln/teaching/unc/inls210/?method=display&pkg—name=cryptolopes.pkg&element—name=cryptolopes.ppt, 12 pages. |
Noé, Alexander, “Matroska File Format (under construction!)”, Jun. 24, 2007, XP002617671, Retrieved from: http://web.archive.org/web/20070821155146/www.matroska.org/technical/specs/matroska.pdf, Retrieved on Jan. 19, 2011, pp. 1-51. |
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pgs. |
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pgs. |
Pantos, R., “HTTP Live Streaming: draft-pantos-http-live-streaming-06”, Published by the Internet Engineering Task Force (IETF), Mar. 31, 2011, 24 pages. |
Papagiannaki et al., “Experimental Characterization of Home Wireless Networks and Design Implications”, INFOCOM 2006, 25th IEEE International Conference of Computer Communications, Proceedings, Apr. 2006, 13 pgs. |
Phamdo, Nam, “Theory of Data Compression”, printed from http://www.data-compression.com/theoroy.html on Oct. 10, 2003, 12 pgs. |
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pgs. |
Schulzrinne, H et al., “Real Time Streaming Protocol 2.0 (RTSP): draft-ietfmmusic-rfc2326bis-27”, MMUSIC Working Group of the Internet Engineering Task Force (IETF), Mar. 9, 2011, 296 pages. |
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 15 pages. |
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pgs. |
Tan, Yap-Peng et al., “Video Transcoding for Fast Forward/Reverse Video Playback”, IEEE ICIP, 2002, pp. I-713 to I-716. |
Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image Processing, Apr. 2004, vol. 13, No. 4, pp. 600-612. |
Wu, Feng et al., “Next Generation Mobile Multimedia Communications: Media Codec and Media Transport Perspectives”, In China Communications, Oct. 2006, pp. 30-44. |
Zambelli, Alex, “IIS Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 2009, 17 pgs. |
“IBM Closes Cryptolopes Unit,” Dec. 17, 1997, CNET News, Retrieved from http://news.cnet.com/IBM-closes-Cryptolopes-unit/2100-1001—3206465.html, 3 pages. |
“Information Technology-Coding of Audio Visual Objects- Part 2: Visual” International Standard, ISO/IEC 14496-2, Third Edition, Jun. 1, 2004, pp. 1-724. |
“Supported Media Formats”, Supported Media Formats, Android Developers, Nov. 27, 2013, 3 pgs. |
Cloakware Corporation, “Protecting Digital Content Using Cloakware Code Transformation Technology”, Version 1.2, May 2002, pp. 1-10. |
European Search Report Application No. EP 08870152, Search Completed May 19, 2011, Mailed May 26, 2011, 9 pgs. |
European Search Report for Application 11855103.5, search completed Jun. 26, 2014, 9 pgs. |
European Search Report for Application 11855237.1, search completed Jun. 12, 2014, 9 pgs. |
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pgs. |
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pages. |
Informationweek: Front End: Daily Dose, “Internet on Wheels”, Jul. 20, 1999, 3 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/068276, International Filing Date Dec. 31, 2011, Issue Date Mar. 4, 2014, 23 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/56733, International Filing Date Nov. 15, 2010, Search Completed Jan. 3, 2011, Mailed Jan. 14, 2011, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/043181, International Filing Date May 29, 2013, Search Completed Nov. 27, 2013, Mailed Dec. 6, 2013, 12 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/066927, International Filing Date Dec. 22, 2011, Report Completed Apr. 3, 2012, Mailed Apr. 20, 2012, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/067167, International Filing Date Dec. 23, 2011, Report Completed Jun. 19, 2012, Mailed Jul. 2, 2012, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/068276, International Filing Date Dec. 31, 2011, Report completed Jun. 19, 2013, Mailed Jul. 8, 2013, 24 pgs. |
International Search Report for International Application No. PCT/US 08/87999, date completed Feb. 7, 2009, mailed Mar. 19, 2009, 2 pgs. |
International Search Report for International Application No. PCT/US2005/025845 filed Jul. 21, 2005, report completed Feb. 5, 2007, mailed May 10, 2007, 3 pgs. |
International Search Report for International Application No. PCT/US2007/063950 filed Mar. 14, 2007, report completed Feb. 19, 2008, mailed Mar. 19, 2008, 3 pgs. |
Number | Date | Country | |
---|---|---|---|
20140359679 A1 | Dec 2014 | US |