Audio-visual content, such as television programming, movies, digital versatile discs (DVD), and the like, sometimes contain content which certain people may find objectionable. It may be objectionable either for them personally or they may consider it objectionable for children or others to view. The above-referenced patent applications are related to a mechanism that can be used for replacement of objectionable content (or content replacement for any other reason).
Certain illustrative embodiments illustrating organization and method of operation, together with objects and advantages may be best understood by reference detailed description that follows taken in conjunction with the accompanying drawings in which:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure of such embodiments is to be considered as an example of the principles and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.
The terms “a” or “an”, as used herein, are defined as one or more than one. The term “plurality”, as used herein, is defined as two or more than two. The term “another”, as used herein, is defined as at least a second or more. The terms “including” and/or “having”, as used herein, are defined as comprising (i.e., open language). The term “coupled”, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The term “program” or “computer program” or similar terms, as used herein, is defined as a sequence of instructions designed for execution on a computer system. A “program”, or “computer program”, may include a subroutine, a function, a procedure, an object method, an object implementation, in an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.
The term “program”, as used herein, may also be used in a second context (the above definition being for the first context). In the second context, the term is used in the sense of a “television program”. In this context, the term is used to mean any coherent sequence of audio video content which would be interpreted as and reported in an electronic program guide (EPG) as a single television program, without regard for whether the content is a movie, sporting event, segment of a multi-part series, news broadcast, etc.
Reference throughout this document to “one embodiment”, “certain embodiments”, “an embodiment” or similar terms means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of such phrases or in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments without limitation.
The term “or” as used herein is to be interpreted as meaning either or all. Therefore, “A, B or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C”. An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
In order to provide content which can be manipulated to provide alternatives, e.g., in the case of providing alternative content to modify the rating of a movie or television program, an authoring tool is needed. Current linear and non-linear editing tools do not provide this capability.
The management of alternate content for use in dynamic substitution applications such as the removal/restoration of potentially objectionable content can be implemented during content authoring/editing using a nonlinear editing system consistent with certain embodiments of the present invention. Turing to
Nonlinear editing systems have become the prevalent method of content authoring for television and increasingly so for film. A nonlinear editing system can be used to select the desired portions of audio and video sequences (scenes) taken from a library containing all the raw footage/video and audio recordings under consideration for the project (e.g., video, movie or television program) and then establish their temporal relationships, both with the adjacent sequences of the same type (video, dialog, music score, etc.) as well as to establish the synchronization of the video with one or more corresponding audio tracks. Even though the end product appears as one continuous video sequence with a single synchronized audio track (containing a composite of multiple audio elements), all components that make up the content remain distinct and separate while being manipulated in the editing system.
When the final edited version of the content is completed, it can then be assembled into its final video and audio sequences and the audio mixed to its final monophonic, stereophonic or surround sound image at the output of digital mixdown 42. The various audio tracks (dialog, music, sound effects, etc.) are mixed down at a mixdown process depicted as a digital mixdown 42. The finished “cut” is then compressed using, for example without intent of any limitation using MPEG (e.g., MPEG-2) compression for the video at 46 and AC-3 audio compression at 50 for the video and audio content, respectively, to reduce the size of the file containing the final product. Any other suitable compression and encoding technique could be used including, but not limited to for example AAC, DTS, MPEG-1, etc. for audio, and AVC, VC-1, MPEG-4, etc. for video. Embodiments consistent with the present invention also contemplate use with other encoding and compression mechanisms, existing or not yet developed. Commonly, compression by a factor of 80 or greater is achieved. This reduction in storage makes the transmission, broadcast and/or storage of digital video content more practical, allowing it to fit on inexpensive media like DVDs or to be carried in a standard 6 MHz RF spectral channel concurrent with eight or more other A/V services with minimal degradation of quality. The final content can be stored at 54, and from there, may be used for any number of purposes including DVD mastering, satellite, cable, or terrestrial broadcasting.
A similar process can be followed in order to create an alternate audio track in a second language. In this case, the same audio tracks containing the musical score, sound effects, etc. are used but an alternate dialog track, edited to match the duration and context of the common video content, is substituted for the primary language dialog track. An alternate composite audio track can be created by a separate mixdown and encoding process, paralleling that used to create the primary audio track. The second audio track may then be either carried concurrently with the video and primary audio track for multilingual support or it can be substituted in its entirety for the primary audio for content intended exclusively for an alternate language.
It should be noted that in all cases, there is a single, continuous video/visual track running at a constant rate (e.g., 24 or 60 frames per second) that depends upon media type, in the final “cut”. This track is always present, even if the actual content of the visual track contains a black screen. All audio content is synchronized to the visual track to maintain proper lip to voice synchronization and appropriate timing of sound effect and musical score occurrence. Unlike the visual track, audio may or may not be present, depending upon the context of the scene. Once the final cut is produced and compressed, like the video track, there is a continuous audio track. During periods of silence, compressed audio data is still present, but the data values indicate a silent period. Hence, synchronization of the second audio track with the video is routine.
Now consider a content authoring process that supports dynamic content substitution. In order to support dynamic content substitution on a scene-by-scene basis, the authoring process described earlier must be substantially modified to allow concurrent editing of a second or alternate video track and additional audio tracks corresponding to scene substitutions (in contrast to a simple alternative audio track that runs the full length of the content. An example of such content with alternative audio and video is shown in
After post-processing, both video tracks 12 and 64 are carried in the final content using the techniques to be described later. The nonlinear editor can be extended in accordance with the present teachings to accommodate the additional tracks for alternate video and audio, and is complimentary to the editing paradigm established for conventional linear editing tools.
One departure from the conventional process is the handling of the content comprising the final product or “cut”. As described earlier, the final cut is assembled, mixed (audio) and streamed to compression equipment (encoders). A conventional video encoder can only accept a single, continuous video stream. The primary video stream meets that criterion. The alternate video stream can be characterized as a non-continuous (staccato) sequence of video to be transmitted or played concurrently with the primary video so that the receiving devices may elect whether or not to substitute the alternate versions for the primary. In the example content shown in
As shown in
The two compressed audio outputs and the two compressed video outputs and the synchronization information are processed using a device referred to herein as an A/V processor 90, whose operation is depicted in connection with
The two compressed content multiplexes, original (primary) version and the second stream containing only the portions available for substitution, both with added synchronization marks, are inserted into a A/V processor. The operation of this processor 90 is shown in
The alternate content contains blank video (black screen) and muted audio between segments of alternate content. This is a byproduct of preparing the content for compression. The A/V processor 90 trims all black screen content and muted audio at 92 to allow the alternative content to be multiplexed into a primary transport stream in a manner similar to that described in connection with selective multiple encrypted content described in the applications above.
Next, at 94, the processor uses synchronization marks inserted by the encoders to allow the alternate content to be correctly located temporally within the primary transport stream so that primary audio and/or video content having alternate audio and/or video content can be contextually located in adjacent positions. That is to say, if the data are stored in packets, the primary audio or video and alternate audio or video are preferably situated in adjacent packets or nearby packets for ease of retrieval. This information is obtained from the synchronization information derived at 88 for the two video streams.
At 96, the PIDs for the audio and video streams may be remapped to provide PIDs which uniquely identify the primary and secondary audio and primary and secondary video. This provides individually identifiable packets of content that can be multiplexed together. At 98, the A/V processor 90 then merges the alternate content into the primary transport or program stream and provides signaling and formatting that enables suitably equipped playback devices to dynamically select any combination of primary/alternate content during broadcast or playback of the resultant composite content. As part of the merging process, the remultiplexer corrects Program Clock References (PCR) and other tasks normally encountered and associated with digital remultiplexing processes.
The composite, homogeneous output of the processor is then returned to the normal content process flow, where it is stored or forwarded to the distribution phase, either in mastering of package media, like DVD or to a broadcast source such as a video spooler for video on demand (VOD) or terrestrial broadcast & cable or uplink to satellite for Direct Broadcast Satellite service (DBS).
While the illustrative embodiment shown herein depicts providing a single set of alternate content, the process is readily incremented to provide several sets of alternate content using the same principles described.
Thus, in accordance with certain embodiments consistent with the present invention, a method providing alternate digital audio and video content in a segment of content containing compressed primary audio and encoded primary video involves inserting blank audio in an alternate audio track between segments of alternate audio; inserting black video in an alternate video track between segments of alternate video; synchronizing the alternate audio track to a master timeline; synchronizing the alternate video track to the master timeline; compressing the alternate audio track; compressing the alternate video track; trimming the blank audio from the compressed alternate audio track; trimming the black video from the compressed alternate video track; synchronizing the trimmed compressed alternate audio to locate the trimmed compressed alternate audio temporally with the primary compressed audio; synchronizing the trimmed compressed alternate video to locate the trimmed compressed alternate video temporally with the primary encoded video; and multiplexing the trimmed compressed alternate audio and the trimmed compressed alternate video with the primary compressed audio and the primary encoded video.
In certain embodiments, the primary audio and the alternate audio are compressed sequentially using a single audio compressor such as an AC-3, MPEG-1, AAC or DTS (by way of example). In other embodiments, the primary audio and the alternate audio are compressed using a primary and secondary audio compressor. In certain embodiments, the primary video and the alternate video are compressed using primary and alternate video encoders such as MPEG-2, AVC, VC-1 or MPEG-4, compliant video encoders (by way of example). In other embodiments, the primary video and the alternate video are encoded sequentially using a single video encoder. According to certain embodiments, a PID remapper maps the primary audio, the alternate audio, the primary video and the alternate video each to separate PID values. A computer readable storage medium can be used for storing instructions which, when executed on a programmed processor, carry out these processes.
In another embodiment, a video editor that provides alternate digital audio and video content in a segment of content containing compressed primary audio and encoded primary video has an audio sequencer that inserts blank audio in an alternate audio track between segments of alternate audio, wherein the alternate audio track is synchronized to a master timeline. A video sequencer inserts black video in an alternate video track between segments of alternate video, wherein the alternate video track is synchronized to the master timeline. A compressor compresses the alternate audio track and an encoder encodes and compresses the alternate video track. The blank audio is trimmed from the compressed alternate audio track and the black video is trimmed from the compressed alternate video track. A synchronizer is used to synchronize the trimmed compressed alternate audio to locate the trimmed compressed alternate audio temporally with the compressed primary audio. A synchronizer is also used for synchronizing the trimmed compressed alternate video to locate the trimmed compressed alternate video temporally with the encoded and compressed primary video. A multiplexer that multiplexes the trimmed compressed alternate audio and the trimmed compressed alternate video with the primary audio and the primary video.
Another video editor consistent with certain embodiments, provides alternate digital audio and video content in a segment of content containing primary audio and primary video has an audio sequencer that inserts blank audio in an alternate audio track between segments of alternate audio, wherein the alternate audio track is synchronized to a master timeline. A video sequencer inserts black video in an alternate video track between segments of alternate video, wherein the alternate video track is synchronized to the master timeline. A compressor mechanism for compressing the primary audio and alternate audio track. An encoder encodes and compresses the primary video and the alternate video track. The blank audio is trimmed from the compressed alternate audio track and the black video is trimmed from the compressed alternate video track. The compressed alternate audio is synchronized so that the trimmed compressed alternate audio can be temporally situated with the primary audio. The trimmed compressed alternate video is synchronized to locate the trimmed compressed alternate video temporally with the primary video. A multiplexer multiplexes the trimmed compressed alternate audio and the trimmed compressed alternate video with the compressed primary audio and the encoded and compressed primary video.
Other embodiments will occur to those skilled in the art in view of the above teachings.
Those skilled in the art will recognize, upon consideration of the above teachings, that certain of the above exemplary embodiments are or can be based upon use of a programmed processor. However, the invention is not limited to such exemplary embodiments, since other embodiments could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors, application specific circuits and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments.
Similarly, certain embodiments herein were described in conjunction with specific circuitry that carries out the functions described, but other embodiments are contemplated in which the circuit functions are carried out using equivalent software or firmware embodiments executed on one or more programmed processors. General purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors, application specific circuits and/or dedicated hard wired logic and analog circuitry may be used to construct alternative equivalent embodiments. Other embodiments could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors.
Certain embodiments described herein, are or may be implemented using a programmed processor executing programming instructions that are broadly described above in process flow diagrams that can be stored on any suitable electronic or computer readable storage medium and/or can be transmitted over any suitable electronic communication medium. However, those skilled in the art will appreciate, upon consideration of the present teaching, that the processes described above can be implemented in any number of variations and in many suitable programming languages without departing from embodiments of the present invention. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from certain embodiments of the invention. Error trapping can be added and/or enhanced and variations can be made in user interface and information presentation without departing from certain embodiments of the present invention. Such variations are contemplated and considered equivalent.
While certain illustrative embodiments have been described, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description.
This application is a continuation-in-part of pending U.S. patent application Ser. No. 11/292,256 filed Dec. 1, 2005 which claims priority benefit of U.S. Provisional Patent Applications 60/636,504 filed Dec. 15, 2004 and 60/637,305 filed Dec. 16, 2004; and this application is related to U.S. patent application Ser. Nos. 10/319,066; 10/667,614; and 10/822,891 relate to mechanisms for content replacement and which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3852519 | Court | Dec 1974 | A |
4374399 | Ensinger | Feb 1983 | A |
4381519 | Wilkinson et al. | Apr 1983 | A |
4419693 | Wilkinson | Dec 1983 | A |
4521853 | Guttag | Jun 1985 | A |
4634808 | Moerder | Jan 1987 | A |
4700387 | Hirata | Oct 1987 | A |
4703351 | Kondo | Oct 1987 | A |
4703352 | Kondo | Oct 1987 | A |
4710811 | Kondo | Dec 1987 | A |
4712238 | Gilhousen et al. | Dec 1987 | A |
4722003 | Kondo | Jan 1988 | A |
4739510 | Jeffers et al. | Apr 1988 | A |
4772947 | Kondo | Sep 1988 | A |
4785361 | Brotby | Nov 1988 | A |
4788589 | Kondo | Nov 1988 | A |
4815078 | Shimura | Mar 1989 | A |
4845560 | Kondo et al. | Jul 1989 | A |
4881263 | Herbison et al. | Nov 1989 | A |
4887296 | Horne | Dec 1989 | A |
4890161 | Kondo | Dec 1989 | A |
4914515 | Van Luyt | Apr 1990 | A |
4924310 | von Brandt | May 1990 | A |
4944006 | Citta et al. | Jul 1990 | A |
4953023 | Kondo | Aug 1990 | A |
4964126 | Musicus et al. | Oct 1990 | A |
4989245 | Bennett | Jan 1991 | A |
4995080 | Bestler et al. | Feb 1991 | A |
5018197 | Jones et al. | May 1991 | A |
5023710 | Kondo et al. | Jun 1991 | A |
5091936 | Katznelson | Feb 1992 | A |
5122873 | Golin | Jun 1992 | A |
5138659 | Kelkar et al. | Aug 1992 | A |
5142537 | Kutner et al. | Aug 1992 | A |
5144662 | Welmer | Sep 1992 | A |
5144664 | Esserman et al. | Sep 1992 | A |
5151782 | Ferraro | Sep 1992 | A |
5159452 | Kinoshita et al. | Oct 1992 | A |
5159633 | Nakamura | Oct 1992 | A |
5195135 | Palmer | Mar 1993 | A |
5196931 | Kondo | Mar 1993 | A |
5208816 | Seshardi et al. | May 1993 | A |
5237424 | Nishino et al. | Aug 1993 | A |
5237610 | Gammie et al. | Aug 1993 | A |
5241381 | Kondo | Aug 1993 | A |
5247575 | Sprague et al. | Sep 1993 | A |
5258835 | Kato | Nov 1993 | A |
5319707 | Wasilewski et al. | Jun 1994 | A |
5319712 | Finkelstein et al. | Jun 1994 | A |
5325432 | Gardeck et al. | Jun 1994 | A |
5327502 | Katata et al. | Jul 1994 | A |
5341425 | Wasilewski et al. | Aug 1994 | A |
5359694 | Concordel | Oct 1994 | A |
5379072 | Kondo | Jan 1995 | A |
5381481 | Gammie et al. | Jan 1995 | A |
5398078 | Masuda et al. | Mar 1995 | A |
5400401 | Wasilewski et al. | Mar 1995 | A |
5414852 | Kramer et al. | May 1995 | A |
5416651 | Uetake et al. | May 1995 | A |
5416847 | Boze | May 1995 | A |
5420866 | Wasilewski | May 1995 | A |
5428403 | Andrew et al. | Jun 1995 | A |
5434716 | Sugiyama et al. | Jul 1995 | A |
5438369 | Citta et al. | Aug 1995 | A |
5444491 | Lim | Aug 1995 | A |
5444782 | Adams, Jr. et al. | Aug 1995 | A |
5455862 | Hoskinson | Oct 1995 | A |
5469216 | Takahashi et al. | Nov 1995 | A |
5471501 | Parr et al. | Nov 1995 | A |
5473692 | Davis | Dec 1995 | A |
5477263 | O'Callaghan et al. | Dec 1995 | A |
5481554 | Kondo | Jan 1996 | A |
5481627 | Kim | Jan 1996 | A |
5485577 | Eyer et al. | Jan 1996 | A |
5491748 | Auld, Jr. et al. | Feb 1996 | A |
5515107 | Chiang et al. | May 1996 | A |
5526427 | Thomas et al. | Jun 1996 | A |
5528608 | Shimizume | Jun 1996 | A |
5535276 | Ganesan | Jul 1996 | A |
5539823 | Martin et al. | Jul 1996 | A |
5539828 | Davis | Jul 1996 | A |
5553141 | Lowry et al. | Sep 1996 | A |
5555305 | Robinson et al. | Sep 1996 | A |
5561713 | Suh | Oct 1996 | A |
5568552 | Davis | Oct 1996 | A |
5574787 | Ryan | Nov 1996 | A |
5582470 | Yu | Dec 1996 | A |
5583576 | Perlman et al. | Dec 1996 | A |
5583863 | Darr, Jr. et al. | Dec 1996 | A |
5590202 | Bestler et al. | Dec 1996 | A |
5594507 | Hoarty | Jan 1997 | A |
5598214 | Kondo et al. | Jan 1997 | A |
5600378 | Wasilewski | Feb 1997 | A |
5600721 | Kitazato | Feb 1997 | A |
5606359 | Youden et al. | Feb 1997 | A |
5608448 | Smoral et al. | Mar 1997 | A |
5615265 | Coutrot | Mar 1997 | A |
5617333 | Oyamada et al. | Apr 1997 | A |
5625715 | Trew et al. | Apr 1997 | A |
5629866 | Carrubba et al. | May 1997 | A |
5629981 | Nerlikar | May 1997 | A |
5652615 | Bryant et al. | Jul 1997 | A |
5652795 | Dillon et al. | Jul 1997 | A |
5663764 | Kondo et al. | Sep 1997 | A |
5666293 | Metz et al. | Sep 1997 | A |
5696906 | Peters et al. | Dec 1997 | A |
5699429 | Tamer et al. | Dec 1997 | A |
5703889 | Shimodo et al. | Dec 1997 | A |
5717814 | Abecassis | Feb 1998 | A |
5726702 | Hamaguchi et al. | Mar 1998 | A |
5726711 | Boyce | Mar 1998 | A |
5732346 | Lazaridis et al. | Mar 1998 | A |
5742680 | Wilson | Apr 1998 | A |
5742681 | Giachetti et al. | Apr 1998 | A |
5751280 | Abbott et al. | May 1998 | A |
5751743 | Takizawa | May 1998 | A |
5751813 | Dorenbos | May 1998 | A |
5754650 | Katznelson | May 1998 | A |
5754658 | Aucsmith | May 1998 | A |
5757417 | Aras et al. | May 1998 | A |
5757909 | Park | May 1998 | A |
5761180 | Murabayashi et al. | Jun 1998 | A |
5768539 | Metz et al. | Jun 1998 | A |
5796786 | Lee | Aug 1998 | A |
5796829 | Newby et al. | Aug 1998 | A |
5796840 | Davis | Aug 1998 | A |
5802176 | Audebert | Sep 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5805712 | Davis | Sep 1998 | A |
5805762 | Boyce et al. | Sep 1998 | A |
5809147 | De Lange et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5818934 | Cuccia | Oct 1998 | A |
5825879 | Davis | Oct 1998 | A |
5835668 | Yanagihara | Nov 1998 | A |
5838873 | Blatter et al. | Nov 1998 | A |
5850218 | LaJoie et al. | Dec 1998 | A |
5852290 | Chaney | Dec 1998 | A |
5852470 | Kondo et al. | Dec 1998 | A |
5870474 | Wasilewski et al. | Feb 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
5894516 | Brandenburg | Apr 1999 | A |
5905732 | Fimoff et al. | May 1999 | A |
5915018 | Aucsmith | Jun 1999 | A |
5917830 | Chen et al. | Jun 1999 | A |
5920625 | Davies | Jul 1999 | A |
5920626 | Durden et al. | Jul 1999 | A |
5922048 | Emura | Jul 1999 | A |
5923755 | Birch et al. | Jul 1999 | A |
5930361 | Hayashi et al. | Jul 1999 | A |
5933498 | Schneck et al. | Aug 1999 | A |
5933500 | Blatter et al. | Aug 1999 | A |
5940738 | Rao | Aug 1999 | A |
5943605 | Koepele, Jr. | Aug 1999 | A |
5949877 | Traw et al. | Sep 1999 | A |
5949881 | Davis | Sep 1999 | A |
5963909 | Warren et al. | Oct 1999 | A |
5973679 | Abbott et al. | Oct 1999 | A |
5973722 | Wakai et al. | Oct 1999 | A |
5973726 | Iijima et al. | Oct 1999 | A |
5999622 | Yasukawa et al. | Dec 1999 | A |
5999698 | Nakai et al. | Dec 1999 | A |
6005561 | Hawkins et al. | Dec 1999 | A |
6005940 | Kulinets | Dec 1999 | A |
6011849 | Orrin | Jan 2000 | A |
6012144 | Pickett | Jan 2000 | A |
6016348 | Blatter et al. | Jan 2000 | A |
6021199 | Ishibashi | Feb 2000 | A |
6021201 | Bakhle et al. | Feb 2000 | A |
6026164 | Sakamoto et al. | Feb 2000 | A |
6028932 | Park | Feb 2000 | A |
6049613 | Jakobsson | Apr 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6055315 | Doyle et al. | Apr 2000 | A |
6057832 | Lev et al. | May 2000 | A |
6057872 | Candelore | May 2000 | A |
6058186 | Enari | May 2000 | A |
6058192 | Guralnick et al. | May 2000 | A |
6061451 | Muratani et al. | May 2000 | A |
6061471 | Coleman, Jr. | May 2000 | A |
6064676 | Slattery et al. | May 2000 | A |
6064748 | Hogan | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6069647 | Sullivan et al. | May 2000 | A |
6070245 | Murphy, Jr. et al. | May 2000 | A |
6072872 | Chang et al. | Jun 2000 | A |
6072873 | Bewick | Jun 2000 | A |
6073122 | Wool | Jun 2000 | A |
6088450 | Davis et al. | Jul 2000 | A |
6105134 | Pinder et al. | Aug 2000 | A |
6108422 | Newby et al. | Aug 2000 | A |
6115821 | Newby et al. | Sep 2000 | A |
6118873 | Lotspiech et al. | Sep 2000 | A |
6134237 | Brailean et al. | Oct 2000 | A |
6134551 | Aucsmith | Oct 2000 | A |
6138237 | Ruben et al. | Oct 2000 | A |
6148082 | Slattery et al. | Nov 2000 | A |
6154206 | Ludtke | Nov 2000 | A |
6157719 | Wasilewski et al. | Dec 2000 | A |
6160548 | Lea et al. | Dec 2000 | A |
6170075 | Schuster et al. | Jan 2001 | B1 |
6181334 | Freeman et al. | Jan 2001 | B1 |
6181364 | Ford | Jan 2001 | B1 |
6185369 | Ko et al. | Feb 2001 | B1 |
6185546 | Davis | Feb 2001 | B1 |
6189096 | Haverty | Feb 2001 | B1 |
6192131 | Geer, Jr. et al. | Feb 2001 | B1 |
6199053 | Herbert et al. | Mar 2001 | B1 |
6201927 | Comer | Mar 2001 | B1 |
6204843 | Freeman et al. | Mar 2001 | B1 |
6209098 | Davis | Mar 2001 | B1 |
6215484 | Freeman et al. | Apr 2001 | B1 |
6219358 | Pinder et al. | Apr 2001 | B1 |
6222924 | Salomaki | Apr 2001 | B1 |
6223290 | Larsen et al. | Apr 2001 | B1 |
6226385 | Taguchi et al. | May 2001 | B1 |
6226618 | Downs et al. | May 2001 | B1 |
6229576 | Tarr et al. | May 2001 | B1 |
6229895 | Son et al. | May 2001 | B1 |
6230194 | Frailong et al. | May 2001 | B1 |
6230266 | Perlman et al. | May 2001 | B1 |
6236727 | Ciacelli et al. | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6246720 | Kutner et al. | Jun 2001 | B1 |
6256747 | Inohara et al. | Jul 2001 | B1 |
6263506 | Ezaki et al. | Jul 2001 | B1 |
6266416 | Sigbjornsen et al. | Jul 2001 | B1 |
6266480 | Ezaki et al. | Jul 2001 | B1 |
6272538 | Holden et al. | Aug 2001 | B1 |
6278783 | Kocher et al. | Aug 2001 | B1 |
6289455 | Kocher et al. | Sep 2001 | B1 |
6292568 | Atkins, III et al. | Sep 2001 | B1 |
6292892 | Davis | Sep 2001 | B1 |
6307939 | Vigarie | Oct 2001 | B1 |
6311012 | Cho et al. | Oct 2001 | B1 |
6314111 | Nandikonda et al. | Nov 2001 | B1 |
6314409 | Schneck et al. | Nov 2001 | B2 |
6323914 | Linzer | Nov 2001 | B1 |
6324288 | Hoffman | Nov 2001 | B1 |
6327421 | Tiwari et al. | Dec 2001 | B1 |
6337947 | Porter et al. | Jan 2002 | B1 |
6351538 | Uz | Feb 2002 | B1 |
6351813 | Mooney et al. | Feb 2002 | B1 |
6377589 | Knight et al. | Apr 2002 | B1 |
6378130 | Adams | Apr 2002 | B1 |
6389533 | Davis et al. | May 2002 | B1 |
6389537 | Davis et al. | May 2002 | B1 |
6415031 | Colligan et al. | Jul 2002 | B1 |
6415101 | deCarmo et al. | Jul 2002 | B1 |
6418169 | Datari | Jul 2002 | B1 |
6424717 | Pinder et al. | Jul 2002 | B1 |
6430361 | Lee | Aug 2002 | B2 |
6445738 | Zdepski et al. | Sep 2002 | B1 |
6449718 | Rucklidge et al. | Sep 2002 | B1 |
6452923 | Gerszberg et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6453116 | Ando et al. | Sep 2002 | B1 |
6456985 | Ohtsuka | Sep 2002 | B1 |
6459427 | Mao et al. | Oct 2002 | B1 |
6460018 | Kasai et al. | Oct 2002 | B1 |
6463445 | Suzuki et al. | Oct 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6473459 | Sugano et al. | Oct 2002 | B1 |
6480551 | Ohishi et al. | Nov 2002 | B1 |
6490728 | Kitazato et al. | Dec 2002 | B1 |
6505032 | McCorkle et al. | Jan 2003 | B1 |
6505299 | Zeng et al. | Jan 2003 | B1 |
6510554 | Gordon et al. | Jan 2003 | B1 |
6519693 | Debey | Feb 2003 | B1 |
6526144 | Markandey et al. | Feb 2003 | B2 |
6529526 | Schneidewend | Mar 2003 | B1 |
6543053 | Li et al. | Apr 2003 | B1 |
6549229 | Kirby et al. | Apr 2003 | B1 |
6550008 | Zhang et al. | Apr 2003 | B1 |
6557031 | Mimura et al. | Apr 2003 | B1 |
6587561 | Sered et al. | Jul 2003 | B1 |
6590979 | Ryan | Jul 2003 | B1 |
6621866 | Florencio et al. | Sep 2003 | B1 |
6621979 | Eerenberg et al. | Sep 2003 | B1 |
6640145 | Hoffberg et al. | Oct 2003 | B2 |
6640305 | Kocher et al. | Oct 2003 | B2 |
6643298 | Brunheroto et al. | Nov 2003 | B1 |
6650754 | Akiyama et al. | Nov 2003 | B2 |
6654389 | Brunheroto et al. | Nov 2003 | B1 |
6678740 | Rakib et al. | Jan 2004 | B1 |
6681326 | Son et al. | Jan 2004 | B2 |
6684250 | Anderson et al. | Jan 2004 | B2 |
6697489 | Candelore | Feb 2004 | B1 |
6697944 | Jones et al. | Feb 2004 | B1 |
6701258 | Kramb et al. | Mar 2004 | B2 |
6704733 | Clark et al. | Mar 2004 | B2 |
6707696 | Turner et al. | Mar 2004 | B1 |
6714650 | Maillard et al. | Mar 2004 | B1 |
6741795 | Takehiko et al. | May 2004 | B1 |
6754276 | Harumoto et al. | Jun 2004 | B1 |
6771285 | McGrath et al. | Aug 2004 | B1 |
6772340 | Peinado et al. | Aug 2004 | B1 |
6788690 | Harri | Sep 2004 | B2 |
6788882 | Geer et al. | Sep 2004 | B1 |
6826185 | Montanaro et al. | Nov 2004 | B1 |
6853728 | Kahn et al. | Feb 2005 | B1 |
6883050 | Safadi | Apr 2005 | B1 |
6891565 | Dietrich | May 2005 | B1 |
6895128 | Bohnenkamp | May 2005 | B2 |
6904520 | Rosset et al. | Jun 2005 | B1 |
6917684 | Tatebayashi et al. | Jul 2005 | B1 |
6925180 | Iwamura | Aug 2005 | B2 |
6938162 | Nagai et al. | Aug 2005 | B1 |
6973187 | Gligor et al. | Dec 2005 | B2 |
6976166 | Herley et al. | Dec 2005 | B2 |
6988238 | Kovacevic et al. | Jan 2006 | B1 |
7023924 | Keller et al. | Apr 2006 | B1 |
7039802 | Eskicioglu et al. | May 2006 | B1 |
7039938 | Candelore | May 2006 | B2 |
7055166 | Logan et al. | May 2006 | B1 |
7065213 | Pinder | Jun 2006 | B2 |
7079752 | Leyendecker | Jul 2006 | B1 |
7089579 | Mao et al. | Aug 2006 | B1 |
7096481 | Forecast et al. | Aug 2006 | B1 |
7096487 | Gordon et al. | Aug 2006 | B1 |
7110659 | Fujie et al. | Sep 2006 | B2 |
7120250 | Candelore | Oct 2006 | B2 |
7124303 | Candelore | Oct 2006 | B2 |
7127619 | Unger et al. | Oct 2006 | B2 |
7139398 | Candelore et al. | Nov 2006 | B2 |
7146007 | Maruo et al. | Dec 2006 | B1 |
7151831 | Candelore et al. | Dec 2006 | B2 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7155012 | Candelore et al. | Dec 2006 | B2 |
7158185 | Gastaldi | Jan 2007 | B2 |
7194758 | Waki et al. | Mar 2007 | B1 |
7221706 | Zhao et al. | May 2007 | B2 |
7292692 | Bonan et al. | Nov 2007 | B2 |
7298959 | Hallberg et al. | Nov 2007 | B1 |
7336785 | Lu et al. | Feb 2008 | B1 |
7391866 | Fukami et al. | Jun 2008 | B2 |
7490236 | Wasilewski | Feb 2009 | B2 |
7490344 | Haberman et al. | Feb 2009 | B2 |
7496198 | Pinder et al. | Feb 2009 | B2 |
7508454 | Vantalon et al. | Mar 2009 | B1 |
7555123 | Pinder et al. | Jun 2009 | B2 |
20010013123 | Freeman et al. | Aug 2001 | A1 |
20010017885 | Asai et al. | Aug 2001 | A1 |
20010024471 | Bordes et al. | Sep 2001 | A1 |
20010030959 | Ozawa et al. | Oct 2001 | A1 |
20010036271 | Javed | Nov 2001 | A1 |
20010051007 | Teshima | Dec 2001 | A1 |
20020003881 | Reitmeier et al. | Jan 2002 | A1 |
20020021805 | Schumann et al. | Feb 2002 | A1 |
20020023013 | Hughes et al. | Feb 2002 | A1 |
20020026478 | Rodgers et al. | Feb 2002 | A1 |
20020026587 | Talstra et al. | Feb 2002 | A1 |
20020036717 | Abiko et al. | Mar 2002 | A1 |
20020044558 | Gobbi et al. | Apr 2002 | A1 |
20020046406 | Chelehmal et al. | Apr 2002 | A1 |
20020047915 | Misu | Apr 2002 | A1 |
20020056093 | Kunkel et al. | May 2002 | A1 |
20020059425 | Belfiore et al. | May 2002 | A1 |
20020065678 | Peliotis et al. | May 2002 | A1 |
20020066101 | Gordon et al. | May 2002 | A1 |
20020067436 | Shirahama et al. | Jun 2002 | A1 |
20020083317 | Ohta et al. | Jun 2002 | A1 |
20020083438 | So et al. | Jun 2002 | A1 |
20020083439 | Eldering | Jun 2002 | A1 |
20020097322 | Monroe et al. | Jul 2002 | A1 |
20020100054 | Feinberg et al. | Jul 2002 | A1 |
20020108035 | Herley et al. | Aug 2002 | A1 |
20020109707 | Lao et al. | Aug 2002 | A1 |
20020116705 | Perlman et al. | Aug 2002 | A1 |
20020126890 | Katayama et al. | Sep 2002 | A1 |
20020129243 | Nanjundiah | Sep 2002 | A1 |
20020144116 | Giobbi | Oct 2002 | A1 |
20020144260 | Devara | Oct 2002 | A1 |
20020150239 | Carny et al. | Oct 2002 | A1 |
20020157115 | Lu | Oct 2002 | A1 |
20020164022 | Strasser et al. | Nov 2002 | A1 |
20020170053 | Peterka et al. | Nov 2002 | A1 |
20020184506 | Perlman | Dec 2002 | A1 |
20020194589 | Cristofalo et al. | Dec 2002 | A1 |
20020194613 | Unger | Dec 2002 | A1 |
20020196939 | Unger et al. | Dec 2002 | A1 |
20030002854 | Belknap et al. | Jan 2003 | A1 |
20030009669 | White et al. | Jan 2003 | A1 |
20030012286 | Ishtiaq et al. | Jan 2003 | A1 |
20030021412 | Candelore et al. | Jan 2003 | A1 |
20030026423 | Unger et al. | Feb 2003 | A1 |
20030028879 | Gordon et al. | Feb 2003 | A1 |
20030034997 | McKain et al. | Feb 2003 | A1 |
20030035482 | Klompenhouwer et al. | Feb 2003 | A1 |
20030035540 | Freeman et al. | Feb 2003 | A1 |
20030035543 | Gillon | Feb 2003 | A1 |
20030046687 | Hodges et al. | Mar 2003 | A1 |
20030059047 | Iwamura | Mar 2003 | A1 |
20030063615 | Luoma et al. | Apr 2003 | A1 |
20030072555 | Yap et al. | Apr 2003 | A1 |
20030077071 | Lin et al. | Apr 2003 | A1 |
20030081630 | Mowery et al. | May 2003 | A1 |
20030081776 | Candelore | May 2003 | A1 |
20030084284 | Ando et al. | May 2003 | A1 |
20030097662 | Russ et al. | May 2003 | A1 |
20030108199 | Pinder et al. | Jun 2003 | A1 |
20030112333 | Chen et al. | Jun 2003 | A1 |
20030118243 | Sezer et al. | Jun 2003 | A1 |
20030123664 | Pedlow, Jr. et al. | Jul 2003 | A1 |
20030123849 | Nallur et al. | Jul 2003 | A1 |
20030126086 | Safadi | Jul 2003 | A1 |
20030133570 | Candelore et al. | Jul 2003 | A1 |
20030140257 | Peterka et al. | Jul 2003 | A1 |
20030152224 | Candelore et al. | Aug 2003 | A1 |
20030152232 | Pirila et al. | Aug 2003 | A1 |
20030156718 | Candelore et al. | Aug 2003 | A1 |
20030159139 | Candelore et al. | Aug 2003 | A1 |
20030159140 | Candelore | Aug 2003 | A1 |
20030159152 | Lin et al. | Aug 2003 | A1 |
20030174837 | Candelore et al. | Sep 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030188154 | Dallard | Oct 2003 | A1 |
20030188164 | Okimoto et al. | Oct 2003 | A1 |
20030190054 | Troyansky et al. | Oct 2003 | A1 |
20030193973 | Takashimizu et al. | Oct 2003 | A1 |
20030198223 | Mack et al. | Oct 2003 | A1 |
20030204717 | Kuehnel | Oct 2003 | A1 |
20030222994 | Dawson | Dec 2003 | A1 |
20030226149 | Chun et al. | Dec 2003 | A1 |
20030228018 | Vince | Dec 2003 | A1 |
20040003008 | Wasilewski et al. | Jan 2004 | A1 |
20040010717 | Simec et al. | Jan 2004 | A1 |
20040021764 | Driscoll, Jr. et al. | Feb 2004 | A1 |
20040028227 | Yu | Feb 2004 | A1 |
20040037421 | Truman | Feb 2004 | A1 |
20040047470 | Candelore | Mar 2004 | A1 |
20040049688 | Candelore | Mar 2004 | A1 |
20040049690 | Candelore et al. | Mar 2004 | A1 |
20040049694 | Candelore | Mar 2004 | A1 |
20040064688 | Jacobs | Apr 2004 | A1 |
20040068659 | Diehl | Apr 2004 | A1 |
20040073917 | Pedlow, Jr. et al. | Apr 2004 | A1 |
20040078575 | Morten et al. | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040083177 | Chen et al. | Apr 2004 | A1 |
20040086127 | Candelore | May 2004 | A1 |
20040088552 | Candelore | May 2004 | A1 |
20040088558 | Candelore | May 2004 | A1 |
20040091109 | Son et al. | May 2004 | A1 |
20040100510 | Milic-Frayling et al. | May 2004 | A1 |
20040123094 | Sprunk | Jun 2004 | A1 |
20040136532 | Pinder et al. | Jul 2004 | A1 |
20040139337 | Pinder et al. | Jul 2004 | A1 |
20040151314 | Candelore | Aug 2004 | A1 |
20040158721 | Candelore | Aug 2004 | A1 |
20040165586 | Read et al. | Aug 2004 | A1 |
20040168121 | Matz | Aug 2004 | A1 |
20040172650 | Hawkins et al. | Sep 2004 | A1 |
20040181666 | Candelore | Sep 2004 | A1 |
20040187161 | Cao | Sep 2004 | A1 |
20040193550 | Siegal | Sep 2004 | A1 |
20040240668 | Bonan et al. | Dec 2004 | A1 |
20040247122 | Hobrock et al. | Dec 2004 | A1 |
20040261099 | Durden et al. | Dec 2004 | A1 |
20040264924 | Campisano et al. | Dec 2004 | A1 |
20040267602 | Gaydos et al. | Dec 2004 | A1 |
20050004875 | Kontio et al. | Jan 2005 | A1 |
20050015816 | Cristofalo et al. | Jan 2005 | A1 |
20050028193 | Candelore et al. | Feb 2005 | A1 |
20050036067 | Ryal et al. | Feb 2005 | A1 |
20050063541 | Candelore | Mar 2005 | A1 |
20050066357 | Ryal | Mar 2005 | A1 |
20050071669 | Medvinsky et al. | Mar 2005 | A1 |
20050094808 | Pedlow, Jr. et al. | May 2005 | A1 |
20050094809 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097596 | Pedlow, Jr. | May 2005 | A1 |
20050097597 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097598 | Pedlow, Jr. et al. | May 2005 | A1 |
20050097614 | Pedlow, Jr. et al. | May 2005 | A1 |
20050102702 | Candelore et al. | May 2005 | A1 |
20050129233 | Pedlow, Jr. | Jun 2005 | A1 |
20050141713 | Genevois | Jun 2005 | A1 |
20050169473 | Candelore | Aug 2005 | A1 |
20050192904 | Candelore | Sep 2005 | A1 |
20050198586 | Sekiguchi et al. | Sep 2005 | A1 |
20050259813 | Wasilewski et al. | Nov 2005 | A1 |
20050265547 | Strasser et al. | Dec 2005 | A1 |
20050283797 | Eldering et al. | Dec 2005 | A1 |
20060115083 | Candelore et al. | Jun 2006 | A1 |
20060130119 | Candelore et al. | Jun 2006 | A1 |
20060130121 | Candelore et al. | Jun 2006 | A1 |
20060136976 | Coupe et al. | Jun 2006 | A1 |
20060153379 | Candelore et al. | Jul 2006 | A1 |
20060168616 | Candelore | Jul 2006 | A1 |
20060174264 | Candelore | Aug 2006 | A1 |
20060262926 | Candelore et al. | Nov 2006 | A1 |
20060269060 | Candelore et al. | Nov 2006 | A1 |
20070006253 | Pinder et al. | Jan 2007 | A1 |
20070091886 | Davis et al. | Apr 2007 | A1 |
20090210698 | Candelore | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
2389247 | May 2001 | CA |
0471373 | Feb 1992 | EP |
0527611 | Jul 1992 | EP |
0558016 | Feb 1993 | EP |
0596826 | Apr 1993 | EP |
0610587 | Dec 1993 | EP |
0680209 | Apr 1995 | EP |
0 696 141 | Jul 1995 | EP |
0674440 | Sep 1995 | EP |
0674441 | Sep 1995 | EP |
0720374 | Jul 1996 | EP |
0382764 | Apr 1997 | EP |
0833517 | Apr 1998 | EP |
0866615 | Sep 1998 | EP |
0 926 894 | Jun 1999 | EP |
1187483 | Mar 2002 | EP |
61-264371 | Nov 1986 | JP |
07-046575 | Feb 1995 | JP |
7067028 | Mar 1995 | JP |
10-336624 | Dec 1998 | JP |
2000-125260 | Apr 2000 | JP |
2001-69480 | Mar 2001 | JP |
2001-117809 | Apr 2001 | JP |
2001-242786 | Sep 2001 | JP |
11243534 | Oct 2002 | JP |
2003-122710 | Apr 2003 | JP |
299634 | Aug 2008 | KR |
WO 8607224 | Dec 1986 | WO |
WO 9309525 | May 1993 | WO |
WO 9410775 | May 1994 | WO |
WO 9413081 | Jun 1994 | WO |
WO 9413107 | Jun 1994 | WO |
WO 9528058 | Apr 1995 | WO |
WO 9738530 | Oct 1997 | WO |
WO 9746009 | Dec 1997 | WO |
WO 9808341 | Feb 1998 | WO |
WO 0031964 | Jun 2000 | WO |
WO 0059203 | Oct 2000 | WO |
WO 0060846 | Oct 2000 | WO |
WO 0064164 | Oct 2000 | WO |
WO 0070817 | Nov 2000 | WO |
WO 0126372 | Apr 2001 | WO |
WO 0135669 | May 2001 | WO |
WO 0165762 | Sep 2001 | WO |
WO 0167667 | Sep 2001 | WO |
WO 0178386 | Oct 2001 | WO |
WO 0251096 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070189710 A1 | Aug 2007 | US | |
20100322596 A9 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
60636504 | Dec 2004 | US | |
60637305 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11292256 | Dec 2005 | US |
Child | 11344292 | US |