This disclosure relates generally to data processing, and more specifically, to dynamic threat protection in a data network.
The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Within a modern threat protection system, a policy can be defined using Internet Protocol (IP) addresses to identify nodes to protect or block, or nodes against which a further policy can be executed. In general, the basis for the protection policy is defined statically by a user and then manually applied. The challenge, however, is that because service providing systems are dynamic with the state of services, clients, and servers in constant flux and, therefore, static policies can only be effective for a short period of time. Events within a service providing system can constantly change the state of the service providing system. User authentication, changes in reputation, mobile device roaming, and IP address lease expiration are all examples of events which negate the usefulness of a static policy.
As static policies lose their relevance, threat protection systems attempt to automatically ascertain the correct policy through active challenges and passive observation of flows. However, selecting the correct policy is a resource-intensive process that amounts to marginally effective “guess work” by the threat protection systems.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The present disclosure is related to approaches for a dynamic threat protection. Specifically, a method for a dynamic threat protection may commence with receiving real-time contextual data from at least one data source associated with a client. The method may further include analyzing the real-time contextual data to determine a security threat score associated with the client. The method may continue with assigning, based on the analysis, the security threat score to the client. The method may further include automatically applying a security policy to the client.
According to another approach of the present disclosure, there is provided a dynamic threat protection system. The system may include at least one data source, an analyzing module, an assignment module, and a mitigation device. The data source may be operable to provide real-time contextual data associated with a client. The analyzing module may be operable to analyze the real-time contextual data. Based on the analysis, a security threat score associated with the client can be determined. The assignment module may be operable to assign, based on the analysis, the security threat score to the client. Upon assigning the security threat score to the client, the mitigation device may automatically apply, based on the security threat score, a security policy to the client.
In further example embodiments of the present disclosure, the method operations are stored on a machine-readable medium comprising instructions, which, when implemented by one or more processors, perform the recited operations. In yet further example embodiments, hardware systems or devices can be adapted to perform the recited operations. Other features, examples, and embodiments are described below.
Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings.
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
The techniques of the embodiments disclosed herein can be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a disk drive, or computer-readable medium. It should be noted that methods disclosed herein can be implemented by a computer (e.g., a desktop computer, a tablet computer, a laptop computer, and a server), a game console, a handheld gaming device, a cellular phone, a smart phone, a smart television system, and so forth.
The present disclosure relates to methods and systems for dynamic threat protection. According to an example method, a client can send a service request to a server in a data network. The service request may include one or more data packets. The client may be associated with a data source operable to collect real-time contextual data associated with the client. In particular, the data source may include a hardware node or a software node in the data network and may be in communication with the client. The data source may be operable to provide the real-time contextual data associated with the client to a dynamic threat protection system.
The dynamic threat protection system may be operable to select and apply a security policy with regard to a specific client. To this effect, the dynamic threat protection system may have a real-time understanding of the client-specific contextual data received from the data sources. The dynamic threat protection system may receive the service request from the client. Upon receiving the service request, the dynamic threat protection system may retrieve the real-time contextual data of the client from the data source associated with the client. Alternatively, the real-time contextual data may be retrieved from the service request received from the client. The real-time contextual data may include authenticated user data, IP address renewal, wireless roaming information, network path, updated payment information, age of an account, and the like.
Based on the real-time contextual data, the dynamic threat protection system may assign a security threat score to the client. The assigned security threat score may be used by the dynamic threat protection system to select and apply a specific security policy to the client. More specifically, by receiving the real-time contextual data, the dynamic threat protection system may update “on the fly” the security policy with respect to a specific client. Additionally, a common event bus may be created to group many disparate data sources associated with the clients to allow the dynamic threat protection system to apply the most relevant update to any particular security policy.
Referring now to the drawings,
The network 110 may include the Internet or any other network capable of communicating data between devices. Suitable networks may include or interface with any one or more of, for instance, a local intranet, a PAN (Personal Area Network), a LAN (Local Area Network), a WAN (Wide Area Network), a MAN (Metropolitan Area Network), a virtual private network (VPN), a storage area network (SAN), a frame relay connection, an Advanced Intelligent Network (AIN) connection, a synchronous optical network (SONET) connection, a digital T1, T3, E1 or E3 line, Digital Data Service (DDS) connection, DSL (Digital Subscriber Line) connection, an Ethernet connection, an ISDN (Integrated Services Digital Network) line, a dial-up port such as a V.90, V.34 or V.34bis analog modem connection, a cable modem, an ATM (Asynchronous Transfer Mode) connection, or an FDDI (Fiber Distributed Data Interface) or CDDI (Copper Distributed Data Interface) connection. Furthermore, communications may also include links to any of a variety of wireless networks, including WAP (Wireless Application Protocol), GPRS (General Packet Radio Service), GSM (Global System for Mobile Communication), CDMA (Code Division Multiple Access) or TDMA (Time Division Multiple Access), cellular phone networks, GPS (Global Positioning System), CDPD (cellular digital packet data), RIM (Research in Motion, Limited) duplex paging network, Bluetooth radio, or an IEEE 802.11-based radio frequency network. The network 110 can further include or interface with any one or more of an RS-232 serial connection, an IEEE-1394 (FireWire) connection, a Fiber Channel connection, an IrDA (infrared) port, a SCSI (Small Computer Systems Interface) connection, a USB (Universal Serial Bus) connection or other wired or wireless, digital or analog interface or connection, mesh or Digi® networking. The network 110 may include a network of data processing nodes that are interconnected for the purpose of data communication.
The system 200 may further include an analyzing module 220. The analyzing module 220 may be operable to analyze the real-time contextual data to determine a security threat score associated with the client. The system 200 may further include an assignment module 230. The assignment module may be operable to assign, based on the analysis performed by the analyzing module 220, the security threat score to the client.
The system 200 may further include a mitigation device 240. The mitigation device 240 may be operable to receive a service request from the client. The service request may include one or more data packets. The mitigation device 240 may be operable to automatically apply, based on the security threat score, a security policy to the client. Furthermore, based on the security threat score, a quality of service is provided to the client. In an example embodiment, the mitigation device 240 may be operable to determine whether the security threat score assigned to the client is above a predetermined threshold threat score. Based on the determination, the mitigation device 240 may be operable to selectively apply additional security measures to the client. The additional security measures may include analyzing contents of data packets associated with the client for adherence to a predetermined standard.
The network module 320 may include a network interface, such as Ethernet, an optical network interface, a wireless network interface, T1/T3 interface, a WAN or LAN interface. In one embodiment, the network module 320 includes a network processor. In one embodiment, the computer storage module 330 includes RAM, DRAM, SRAM, SDRAM or memory utilized by the processor module 310 or the network module 320.
In one embodiment, the computer storage module 330 stores data utilized by processor module 310. In one embodiment, the computer storage module 330 includes a hard disk drive, a solid state drive, an external disk, a DVD, a CD, or a readable external disk. The computer storage module 330 may store one or more computer programming instructions which when executed by the processor module 310 or the network module 320 implement one or more of the functionalities of the present disclosure.
In one embodiment, the network node 300 further includes an input/output (I/O) module 340, which may include a keyboard, a keypad, a mouse, a gesture based input sensor, a microphone, a physical or sensory input peripheral, a display, a speaker, or a physical or sensual output peripheral.
The method 400 may commence with receiving, by at least one processor, real-time contextual data from at least one data source associated with a client at operation 402. The real-time contextual data may be received from the at least one data source via a common event bus. In an example embodiment, the real-time contextual data is received from a third-party system. In a further example embodiment, the real-time contextual data is obtained from at least one data protocol of data communications with the client. Optionally, the real-time contextual data may be received along with receiving a service request from the client. The service request may include one or more data packets.
Referring back to
In an example embodiment, the method 400 may further include determining whether the security threat score assigned to the client is above a predetermined threshold threat score. Based on the determination, additional security measures may be selectively applied to the client. The additional security measures may include analyzing contents of the data packets associated with the client for adherence to a predetermined standard.
The dynamic threat protection system 200 may be provided with the subscriber list 620 containing an updated list of authenticated subscribers 605, 610 with updated subscriber-specific information. Based on the provided subscriber-specific information, such as subscriber payment data 615 or indication 625 that no payment data is available for the subscriber 610, the dynamic threat protection system 200 may provide the subscriber 605 with preferential quality of service over the subscriber 610. For example, the subscriber 605 with valid payment data may be provided with a full access policy 630, while the subscriber 610 with no payment data may be provided with a restricted access policy 635. Therefore, using the subscriber-specific information, the dynamic threat protection system 200 may apply the security policy of extreme relevance to a specific subscriber.
The components shown in
Mass data storage 830, which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 810. Mass data storage 830 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 820.
Portable storage device 840 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disc, digital video disc, or Universal Serial Bus (USB) storage device, to input and output data and code to and from the computer system 800 of
User input devices 860 provide a portion of a user interface. User input devices 860 include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 860 can also include a touchscreen. Additionally, the computer system 800 as shown in
Graphics display system 870 includes a liquid crystal display (LCD) or other suitable display device. Graphics display system 870 receives textual and graphical information and processes the information for output to the display device.
Peripheral devices 880 may include any type of computer support device to add additional functionality to the computer system.
The components provided in the computer system 800 of
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the embodiments provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media, such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a Compact Disc Read Only Memory (CD-ROM) disk, digital video disc (DVD), Blu-ray Disc (BD), any other optical storage medium, Random-Access Memory (RAM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), Electronically Erasable Programmable Read Only Memory (EEPROM), flash memory, and/or any other memory chip, module, or cartridge.
In some embodiments, the computer system 800 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computer system 800 may itself include a cloud-based computing environment, where the functionalities of the computer system 800 are executed in a distributed fashion. Thus, the computer system 800, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.
In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners, or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud may be formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computer system 800, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.
Thus, methods and systems for dynamic threat protection are disclosed. While the present embodiments have been described in connection with a series of embodiments, these descriptions are not intended to limit the scope of the subject matter to the particular forms set forth herein. It will be further understood that the methods are not necessarily limited to the discrete components described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the subject matter as disclosed herein and defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.
The present application is a continuation of, and claims the priority benefit of, U.S. Nonprovisional patent application Ser. No. 15/480,212, filed on Apr. 5, 2017, entitled “Context Aware Threat Protection”, which is a continuation of, and claims the priority benefit of, U.S. Nonprovisional patent application Ser. No. 14/584,987, filed Dec. 29, 2014, now U.S. Pat. No. 9,621,575 issued on Apr. 11, 2017 and titled “Context Aware Threat Protection”. The disclosures of the above applications are hereby incorporated by reference in their entirety, including all references cited therein.
Number | Name | Date | Kind |
---|---|---|---|
4001819 | Wise | Jan 1977 | A |
4780905 | Cruts et al. | Oct 1988 | A |
5101402 | Chiu et al. | Mar 1992 | A |
5163088 | LoCascio | Nov 1992 | A |
5359659 | Rosenthal | Oct 1994 | A |
5414833 | Hershey et al. | May 1995 | A |
5584023 | Hsu | Dec 1996 | A |
5684875 | Ellenberger | Nov 1997 | A |
5757908 | Cooper et al. | May 1998 | A |
5940002 | Finn et al. | Aug 1999 | A |
5960177 | Tanno | Sep 1999 | A |
5963625 | Kawecki | Oct 1999 | A |
6088804 | Hill et al. | Jul 2000 | A |
6108583 | Schneck et al. | Aug 2000 | A |
6119236 | Shipley | Sep 2000 | A |
6185681 | Zizzi | Feb 2001 | B1 |
6205115 | Ikebe et al. | Mar 2001 | B1 |
6237036 | Ueno et al. | May 2001 | B1 |
6249866 | Brundrett et al. | Jun 2001 | B1 |
6259789 | Paone | Jul 2001 | B1 |
6304975 | Shipley | Oct 2001 | B1 |
6324286 | Lai et al. | Nov 2001 | B1 |
6347376 | Attwood et al. | Feb 2002 | B1 |
6363486 | Knapton, III | Mar 2002 | B1 |
6449651 | Dorfman et al. | Sep 2002 | B1 |
6505192 | Godwin et al. | Jan 2003 | B1 |
6519703 | Joyce | Feb 2003 | B1 |
6594780 | Shen et al. | Jul 2003 | B1 |
6715081 | Attwood et al. | Mar 2004 | B1 |
6732279 | Hoffman | May 2004 | B2 |
6735702 | Yavatkar et al. | May 2004 | B1 |
6754832 | Godwin et al. | Jun 2004 | B1 |
6757822 | Feiertag et al. | Jun 2004 | B1 |
6779117 | Wells | Aug 2004 | B1 |
6988106 | Enderwick et al. | Jan 2006 | B2 |
7013296 | Yemini | Mar 2006 | B1 |
7092357 | Ye | Aug 2006 | B1 |
7159237 | Schneier et al. | Jan 2007 | B2 |
7194766 | Noehring et al. | Mar 2007 | B2 |
7200760 | Riebe et al. | Apr 2007 | B2 |
7221757 | Alao | May 2007 | B2 |
7222366 | Bruton, III et al. | May 2007 | B2 |
7296283 | Hrastar et al. | Nov 2007 | B2 |
7372809 | Chen et al. | May 2008 | B2 |
7392241 | Lin et al. | Jun 2008 | B2 |
7409712 | Brooks et al. | Aug 2008 | B1 |
7418733 | Connary et al. | Aug 2008 | B2 |
7543052 | Cesa Klein | Jun 2009 | B1 |
7565549 | Satterlee et al. | Jul 2009 | B2 |
7577833 | Lai | Aug 2009 | B2 |
7596695 | Liao et al. | Sep 2009 | B2 |
7620733 | Tzakikario et al. | Nov 2009 | B1 |
7640591 | Tripathi et al. | Dec 2009 | B1 |
7653633 | Villella et al. | Jan 2010 | B2 |
7665138 | Song et al. | Feb 2010 | B2 |
7676566 | Lund | Mar 2010 | B2 |
7739494 | McCorkendale et al. | Jun 2010 | B1 |
7739736 | Tripathi et al. | Jun 2010 | B1 |
7809131 | Njemanze et al. | Oct 2010 | B1 |
7870203 | Judge | Jan 2011 | B2 |
7895649 | Brook et al. | Feb 2011 | B1 |
7925766 | Jayawardena et al. | Apr 2011 | B2 |
7953855 | Jayawardena et al. | May 2011 | B2 |
8037532 | Haswell | Oct 2011 | B2 |
8089871 | Iloglu et al. | Jan 2012 | B2 |
8220056 | Owens, Jr. | Jul 2012 | B2 |
8239670 | Kaufman et al. | Aug 2012 | B1 |
8276203 | Nakhre et al. | Sep 2012 | B2 |
8286227 | Zheng | Oct 2012 | B1 |
8289981 | Wei et al. | Oct 2012 | B1 |
8301802 | Wei et al. | Oct 2012 | B2 |
8448245 | Banerjee et al. | May 2013 | B2 |
8478708 | Larcom | Jul 2013 | B1 |
8484066 | Miller | Jul 2013 | B2 |
8566932 | Hotta | Oct 2013 | B1 |
8595845 | Basavapatna et al. | Nov 2013 | B2 |
8683598 | Cashin | Mar 2014 | B1 |
8706762 | Patzer | Apr 2014 | B1 |
8719446 | Spatscheck et al. | May 2014 | B2 |
8756691 | Nachenberg | Jun 2014 | B2 |
8800034 | McHugh et al. | Aug 2014 | B2 |
8813228 | Magee et al. | Aug 2014 | B2 |
8832832 | Visbal | Sep 2014 | B1 |
8881284 | Gabriel | Nov 2014 | B1 |
8904520 | Nachenberg | Dec 2014 | B1 |
8948380 | Goto | Feb 2015 | B2 |
9129116 | Wiltzius | Sep 2015 | B1 |
9165064 | Brown | Oct 2015 | B2 |
9215208 | Fraize et al. | Dec 2015 | B2 |
9245121 | Luo et al. | Jan 2016 | B1 |
9294503 | Thompson et al. | Mar 2016 | B2 |
9300623 | Earl et al. | Mar 2016 | B1 |
9418213 | Roth | Aug 2016 | B1 |
9491155 | Johansson | Nov 2016 | B1 |
9621575 | Jalan et al. | Apr 2017 | B1 |
9722918 | Oshiba | Aug 2017 | B2 |
9832532 | Agabob | Nov 2017 | B1 |
9838425 | Jalan et al. | Dec 2017 | B2 |
9843599 | Jalan et al. | Dec 2017 | B2 |
9860271 | Thompson et al. | Jan 2018 | B2 |
20010042204 | Blaker et al. | Nov 2001 | A1 |
20020087708 | Low et al. | Jul 2002 | A1 |
20020108059 | Canion et al. | Aug 2002 | A1 |
20020165912 | Wenocur et al. | Nov 2002 | A1 |
20020188839 | Noehring et al. | Dec 2002 | A1 |
20030016636 | Tari et al. | Jan 2003 | A1 |
20030018908 | Mercer et al. | Jan 2003 | A1 |
20030023726 | Rice | Jan 2003 | A1 |
20030023846 | Krishna et al. | Jan 2003 | A1 |
20030028585 | Yeager et al. | Feb 2003 | A1 |
20030046332 | Riegel | Mar 2003 | A1 |
20030061507 | Xiong et al. | Mar 2003 | A1 |
20030069973 | Ganesan et al. | Apr 2003 | A1 |
20030123667 | Weber et al. | Jul 2003 | A1 |
20030149880 | Shamsaasef | Aug 2003 | A1 |
20030187688 | Fey et al. | Oct 2003 | A1 |
20030196081 | Savarda et al. | Oct 2003 | A1 |
20030200456 | Cyr et al. | Oct 2003 | A1 |
20030204752 | Garrison | Oct 2003 | A1 |
20040006508 | Gullo | Jan 2004 | A1 |
20040008711 | Lahti et al. | Jan 2004 | A1 |
20040038690 | Lee | Feb 2004 | A1 |
20040044912 | Connary | Mar 2004 | A1 |
20040054807 | Harvey et al. | Mar 2004 | A1 |
20040057579 | Fahrny | Mar 2004 | A1 |
20040059943 | Marquet et al. | Mar 2004 | A1 |
20040059951 | Pinkas et al. | Mar 2004 | A1 |
20040059952 | Newport et al. | Mar 2004 | A1 |
20040091114 | Carter et al. | May 2004 | A1 |
20040093524 | Sakai | May 2004 | A1 |
20040111635 | Boivie et al. | Jun 2004 | A1 |
20040143751 | Peikari | Jul 2004 | A1 |
20040148520 | Talpade et al. | Jul 2004 | A1 |
20040158817 | Okachi | Aug 2004 | A1 |
20040172538 | Satoh et al. | Sep 2004 | A1 |
20040242200 | Maeoka et al. | Dec 2004 | A1 |
20050021999 | Touitou et al. | Jan 2005 | A1 |
20050036501 | Chung et al. | Feb 2005 | A1 |
20050041584 | Lau et al. | Feb 2005 | A1 |
20050044068 | Lin et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050044352 | Pazi et al. | Feb 2005 | A1 |
20050108434 | Witchey | May 2005 | A1 |
20050125684 | Schmidt | Jun 2005 | A1 |
20050193199 | Asokan et al. | Sep 2005 | A1 |
20050198099 | Motsinger et al. | Sep 2005 | A1 |
20050210243 | Archard et al. | Sep 2005 | A1 |
20050235145 | Slick et al. | Oct 2005 | A1 |
20050257093 | Johnson et al. | Nov 2005 | A1 |
20050278527 | Liao et al. | Dec 2005 | A1 |
20060015354 | Shrum et al. | Jan 2006 | A1 |
20060056297 | Bryson et al. | Mar 2006 | A1 |
20060061507 | Mohamadi | Mar 2006 | A1 |
20060129627 | Phillips | Jun 2006 | A1 |
20060143707 | Song et al. | Jun 2006 | A1 |
20060185014 | Spatscheck et al. | Aug 2006 | A1 |
20060206936 | Liang et al. | Sep 2006 | A1 |
20060230444 | Iloglu et al. | Oct 2006 | A1 |
20060251057 | Kwon et al. | Nov 2006 | A1 |
20060253902 | Rabadan et al. | Nov 2006 | A1 |
20060256716 | Caci | Nov 2006 | A1 |
20060265585 | Lai | Nov 2006 | A1 |
20060282660 | Varghese | Dec 2006 | A1 |
20060288076 | Cowings | Dec 2006 | A1 |
20060288411 | Garg et al. | Dec 2006 | A1 |
20070056038 | Lok | Mar 2007 | A1 |
20070079379 | Sprosts et al. | Apr 2007 | A1 |
20070143769 | Bu et al. | Jun 2007 | A1 |
20070166691 | Epstein | Jul 2007 | A1 |
20070169194 | Church et al. | Jul 2007 | A1 |
20070186282 | Jenkins | Aug 2007 | A1 |
20070214088 | Graham et al. | Sep 2007 | A1 |
20070280114 | Chao et al. | Dec 2007 | A1 |
20070291773 | Khan et al. | Dec 2007 | A1 |
20080065645 | Eichhorn | Mar 2008 | A1 |
20080104180 | Gabe | May 2008 | A1 |
20080183885 | Durrey et al. | Jul 2008 | A1 |
20080229418 | Chen et al. | Sep 2008 | A1 |
20080256623 | Worley et al. | Oct 2008 | A1 |
20080301794 | Lee | Dec 2008 | A1 |
20090049198 | Blinn et al. | Feb 2009 | A1 |
20090070470 | Bauman et al. | Mar 2009 | A1 |
20090077663 | Sun et al. | Mar 2009 | A1 |
20090083537 | Larsen et al. | Mar 2009 | A1 |
20090150996 | Haswell | Jun 2009 | A1 |
20090168995 | Banga et al. | Jul 2009 | A1 |
20090227228 | Hu et al. | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090287941 | Shouno | Nov 2009 | A1 |
20100048167 | Chow | Feb 2010 | A1 |
20100070405 | Joa et al. | Mar 2010 | A1 |
20100106833 | Banerjee et al. | Apr 2010 | A1 |
20100138921 | Na et al. | Jun 2010 | A1 |
20100284300 | Deshpande et al. | Nov 2010 | A1 |
20100286998 | Picken | Nov 2010 | A1 |
20110029599 | Pulleyn et al. | Feb 2011 | A1 |
20110082947 | Szeto et al. | Apr 2011 | A1 |
20110093785 | Lee et al. | Apr 2011 | A1 |
20110131646 | Park et al. | Jun 2011 | A1 |
20110153744 | Brown | Jun 2011 | A1 |
20110188452 | Borleske et al. | Aug 2011 | A1 |
20110213751 | Iorio | Sep 2011 | A1 |
20110249572 | Singhal et al. | Oct 2011 | A1 |
20110282997 | Prince et al. | Nov 2011 | A1 |
20120036272 | El Zur | Feb 2012 | A1 |
20120042006 | Kiley | Feb 2012 | A1 |
20120042060 | Jackowski et al. | Feb 2012 | A1 |
20120096546 | Dilley et al. | Apr 2012 | A1 |
20120110472 | Amrhein et al. | May 2012 | A1 |
20120144461 | Rathbun | Jun 2012 | A1 |
20120151554 | Tie et al. | Jun 2012 | A1 |
20120155274 | Wang et al. | Jun 2012 | A1 |
20120159623 | Choi | Jun 2012 | A1 |
20120163186 | Wei et al. | Jun 2012 | A1 |
20120173684 | Courtney et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120222092 | Rabii | Aug 2012 | A1 |
20120226582 | Hammad | Sep 2012 | A1 |
20120227109 | Dimuro | Sep 2012 | A1 |
20120233656 | Rieschick | Sep 2012 | A1 |
20120257499 | Chatterjee et al. | Oct 2012 | A1 |
20120266242 | Yang et al. | Oct 2012 | A1 |
20130019025 | Chaturvedi et al. | Jan 2013 | A1 |
20130124713 | Feinberg et al. | May 2013 | A1 |
20130139245 | Thomas | May 2013 | A1 |
20130167230 | Etchegoyen | Jun 2013 | A1 |
20130173795 | McPherson | Jul 2013 | A1 |
20130198385 | Han et al. | Aug 2013 | A1 |
20130198845 | Anvari | Aug 2013 | A1 |
20130212265 | Rubio Vidales et al. | Aug 2013 | A1 |
20130212693 | Etchegoyen | Aug 2013 | A1 |
20130243194 | Hawkes et al. | Sep 2013 | A1 |
20130263256 | Dickinson et al. | Oct 2013 | A1 |
20140006508 | Goyet et al. | Jan 2014 | A1 |
20140025568 | Smith et al. | Jan 2014 | A1 |
20140114965 | Balduzzi | Apr 2014 | A1 |
20140114985 | Mok | Apr 2014 | A1 |
20140137190 | Carey et al. | May 2014 | A1 |
20140258536 | Chiong | Sep 2014 | A1 |
20140279703 | Irisarri | Sep 2014 | A1 |
20140280832 | Oshiba | Sep 2014 | A1 |
20140283065 | Teddy et al. | Sep 2014 | A1 |
20140298091 | Carlen et al. | Oct 2014 | A1 |
20140310396 | Christoborescu et al. | Oct 2014 | A1 |
20140344925 | Muthiah | Nov 2014 | A1 |
20150033341 | Schmidtler et al. | Jan 2015 | A1 |
20150088597 | Doherty | Mar 2015 | A1 |
20150143118 | Sheller et al. | May 2015 | A1 |
20150180892 | Balderas | Jun 2015 | A1 |
20150193781 | Dave | Jul 2015 | A1 |
20150312268 | Ray | Oct 2015 | A1 |
20150333988 | Jalan et al. | Nov 2015 | A1 |
20160036651 | Sureshchandra et al. | Feb 2016 | A1 |
20160378978 | Singla | Dec 2016 | A1 |
20170214711 | Arnell | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
1422468 | Jun 2003 | CN |
104106241 | Oct 2014 | CN |
1198848 | Jun 2015 | HK |
375721 | Dec 1999 | TW |
477140 | Feb 2002 | TW |
574655 | Feb 2004 | TW |
576066 | Feb 2004 | TW |
I225999 | Jan 2005 | TW |
I241818 | Oct 2005 | TW |
I252976 | Apr 2006 | TW |
WO1998042108 | Sep 1998 | WO |
WO2006039529 | Apr 2006 | WO |
WO2013112492 | Aug 2013 | WO |
WO2014150617 | Sep 2014 | WO |
WO2014151072 | Sep 2014 | WO |
WO2014176461 | Oct 2014 | WO |
WO2015030977 | Mar 2015 | WO |
Entry |
---|
Annexstein, et al., “Indexing Techniques for File Sharing in Scalable Peer-to-Peer Networks,” IEEE, 2002, pp. 10-15. |
Dainotti, et al., “Early Classification of Network Traffic through Multi-Classification,” International Workshop on Traffic Monitoring and Analysis, 2011, pp. 122-135. |
Dainotti, et al., “TIE: A Community-Oriented Traffic Classification Platform,” International Workshop on Traffic Monitoring and Analysis, 2009, pp. 64-74. |
F5 Networks Inc., “SOL11243: iRules Containing the RULE_INIT iRule Event do not Re-Initialize when a Syntax Error Is Corrected,” F5.support.com, 2010, pp. 1. |
Ganesan, et al., “YAPPERS: A Peer-to-Peer Lookup Service over Arbitrary Topology,” IEEE, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, 2003, vol. 2, pp. 1250-1260. |
How to Create a Rule in Outlook 2003, CreateaRule-Outlook2003.doc 031405 mad, pp. 3. |
Lee, et al., “On the Detection of Signaling DoS Attacks on 3G Wireless Networks,” IEEE International Conference on Computer Communications, 2007, pp. 1289-1297. |
Liebergeld, et al., “Cellpot: A Concept for Next Generation Cellular Network Honeypots,” Internet Society, 2014, pp. 1-6. |
Ling, et al., “A Content-Based Resource Location Mechanism in PeerIS,” IEEE, 2002, pp. 279-288. |
Long, et al., “ID-Based Threshold Decryption Secure Against Adaptive Chosen-Ciphertext Attack,” Computers and Electrical Engineering, 2007, vol. 33, pp. 166-176. |
Mutz, “Linux Encryption HOWTO,” http://encryptionhowto.sourceforge.net/Encryption-HOWTO.html, 2000, pp. 49. |
Obimbo, et al., “A Parallel Algorithm for Determining the Inverse of a Matrix for Use in Blockcipher Encryption/Decryption,” J. Supercomput, 2007, vol. 39, pp. 113-130. |
Oracle Corporation, “Oracle Intelligent Agents User's Guide,” Release 9.2.0, Part No. A96676-01, 2002, pp. 36. |
Popek, et al., “Encryption and Secure Computer Networks,” Computer Surveys, 1979, vol. 11 (4), pp. 331-356. |
Number | Date | Country | |
---|---|---|---|
20180083997 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15480212 | Apr 2017 | US |
Child | 15815455 | US | |
Parent | 14584987 | Dec 2014 | US |
Child | 15480212 | US |