The present invention describes context awareness techniques, as well as devices, systems and software which can implement actions which are responsive to context awareness, including (but not limited to) smart televisions.
Technologies associated with the communication of information have evolved rapidly over the last several decades. Television, cellular telephony, the Internet and optical communication techniques (to name just a few modes of communications) combine to inundate consumers with available information and entertainment options. Taking television as an example, the last three decades have seen the introduction of cable television service, satellite television service, pay-per-view movies and video-on-demand, both of the latter being made available by cable, fiber-optic, and satellite service providers, as well as over the internet (e.g., Netflix®). Whereas television viewers of the 1960s could typically receive perhaps four or five over-the-air TV channels on their television sets, today's TV watchers have the opportunity to select from hundreds, thousands, and potentially millions of channels of shows and information. Video-on-demand technology, currently used primarily in hotels and the like, provides the potential for in-home entertainment selection from among thousands of movie titles.
The technological ability to provide so much information and content to end users provides both opportunities and challenges to system designers and service providers. One challenge is that while end users typically prefer having more choices rather than fewer, this preference is counterweighted by their desire that the selection process be both fast and simple. Unfortunately, the development of the systems and interfaces by which end users access media items has resulted in selection processes which are neither fast nor simple. Consider again the example of television programs. When television was in its infancy, determining which program to watch was a relatively simple process primarily due to the small number of choices. One would consult a printed guide that was formatted, for example, as series of columns and rows which showed the correspondence between (1) nearby television channels, (2) programs being transmitted on those channels and (3) date and time. The television was tuned to the desired channel by adjusting a tuner knob and the viewer watched the selected program. Later, remote control devices were introduced that permitted viewers to tune the television from a distance. This addition to the user-television interface created the phenomenon known as “channel surfing” whereby a viewer could rapidly view short segments being broadcast on a number of channels to quickly learn what programs were available at any given time.
Despite the fact that the number of channels and amount of viewable content has dramatically increased, the generally available user interface, control device options and frameworks for televisions has not changed much over the last 30 years. Printed guides, and their displayed counterparts on a guide channel, are still the most prevalent mechanism for conveying programming information. The multiple button remote control 100, an example of which is illustrated in
Some attempts have also been made to modernize the screen interface between end users and media systems. However, these attempts typically suffer from, among other drawbacks, an inability to easily scale between large collections of media items and small collections of media items. For example, interfaces which rely on lists of items may work well for small collections of media items, but are tedious to browse for large collections of media items. Interfaces which rely on hierarchical navigation (e.g., tree structures) may be speedier to traverse than list interfaces for large collections of media items, but are not readily adaptable to small collections of media items. Additionally, users tend to lose interest in selection processes wherein the user has to move through three or more layers in a tree structure. For all of these cases, current remote units make this selection process even more tedious by forcing the user to repeatedly depress the up and down buttons to navigate the list or hierarchies. When selection skipping controls are available such as page-up and page-down, the user usually has to look at the remote to find these special buttons or be trained to know that they even exist. Accordingly, organizing frameworks, techniques and systems that simplify the control and screen interface between users and media systems as well as accelerate the selection process, while at the same time permitting service providers to take advantage of the increases in available bandwidth to end user equipment by facilitating the supply of a large number of media items and new services to the user have been proposed in the Assignee's earlier U.S. patent application Ser. No. 10/768,432, filed on Jan. 30, 2004, entitled “A Control Framework with a Zoomable Graphical User Interface for Organizing, Selecting and Launching Media Items”, the disclosure of which is incorporated here by reference.
In addition to improving the screen interface by which the user interacts with a television, other updates are being made to the television. For example, so-called “smart TVs” now include a number of new features and capabilities which enable them to more easily adapt to the move away from traditional broadcast media, and toward, e.g., online interactive media and on-demand streaming media. The next generation of smart TV's will thus have a number of new data processing and acquisition capabilities, as well as incorporating various sensors and communication technologies which traditional TV's did not possess.
Accordingly, it would be desirable to take advantage of the new capabilities of smart televisions (or other devices) to introduce context awareness and context aware functionality.
Context awareness enables devices, e.g., smart televisions, to perform context-based actions without requiring user interaction. This enables users to more rapidly access desired content or applications via these devices without needing to navigate complicated user interfaces.
According to an embodiment, a method for performing a context-based action in a television includes the steps of determining, by the television, at least one piece of context information associated with a current usage of the television; and performing, by the television, the context-based action based on the at least one piece of context information.
According to another embodiment, a smart television system includes a television display; at least one television media input configured to receive television programming signals from at least one of a cable TV network and a satellite TV network; at least one Internet media input configured to receive Internet content; a plurality of sensors including at least two of: a camera, a microphone, an infrared device, and a motion sensor; a processor configured to output television programming or Internet content to the display and further configured to receive inputs from the plurality of sensors, and to determine a context associated with a current usage of the smart television system based, at least in part, on the received inputs, wherein the processor is further configured to use the determined context to perform a context-based action.
According to still another embodiment, a method for performing context based actions by a smart television includes the steps of determining an identity of a user of the smart television; evaluating one or more subcontexts associated with the identified user; and performing the context-based action based on the evaluating.
According to yet another embodiment, a context repository system associated with household devices includes a memory device configured to store a database of context information associated with the household devices, their environment and their users; a plurality of interfaces, each associated with one of the household devices, for receiving context information from the household devices and for transmitting context information to the household devices; a processor configured to receive the context information from the household devices, to store the received context information in the database, and further configured to receive requests for context information from the household devices, to retrieve the requested context information from the database and to transmit the requested context information back to the requesting household devices.
The accompanying drawings illustrate exemplary embodiments, wherein:
a)-7(c) depict various aspects of smart TVs according to exemplary embodiments;
a)-9(b) depict exemplary context/action pairings according to embodiments;
a)-11(b) show various aspects of context repositories according to embodiments.
The following detailed description of the invention refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
In order to provide some context for this discussion, an exemplary aggregated media system 200 in which the present invention can be implemented will first be described with respect to
In this exemplary embodiment, the media system 200 includes a television (TV)/monitor 212, a video cassette recorder (VCR) 214, digital video disk (DVD) recorder/playback device 216, audio/video tuner 218 and compact disk player 220 coupled to the I/O bus 210. The VCR 214, DVD 216 and compact disk player 220 may be single disk or single cassette devices, or alternatively may be multiple disk or multiple cassette devices. They may be independent units or integrated together. In addition, the media system 200 includes a microphone/speaker system 222, video camera 224 and a wireless I/O control device 226. According to exemplary embodiments of the present invention, the wireless I/O control device 226 is a 3D pointing device according to one of the exemplary embodiments described below. The wireless I/O control device 226 can communicate with the entertainment system 200 using, e.g., an IR or RF transmitter or transceiver. Alternatively, the I/O control device can be connected to the entertainment system 200 via a wire.
The entertainment system 200 also includes a system controller 228. According to one exemplary embodiment of the present invention, the system controller 228 operates to store and display entertainment system data available from a plurality of entertainment system data sources and to control a wide variety of features associated with each of the system components. As shown in
As further illustrated in
More details regarding this exemplary entertainment system and frameworks associated therewith can be found in the above-incorporated by reference U.S. patent application “A Control Framework with a Zoomable Graphical User Interface for Organizing, Selecting and Launching Media Items”. Alternatively, remote devices in accordance with the present invention can be used in conjunction with other systems, for example computer systems including, e.g., a display, a processor and a memory system or with various other systems and applications.
A remote control device can also be provided to assist the user in controlling the system 200 or components thereof, e.g., a smart TV. According to one embodiment, remote devices which operate as 3D pointers can be used as such remote control devices, although this is not a requirement of the invention. Such devices enable the translation of movement, e.g., gestures, into commands to a user interface. An exemplary 3D pointing device 400 is depicted in
According to exemplary embodiments, it is anticipated that 3D pointing devices 400 will be held by a user in front of a display or smart TV 408 and that motion of the 3D pointing device 400 will be translated by the 3D pointing device into output which is usable to interact with the information displayed on display 408, e.g., to move the cursor 410 on the display 408. For example, rotation of the 3D pointing device 400 about the y-axis can be sensed by the 3D pointing device 400 and translated into an output usable by the system to move cursor 410 along the y2 axis of the display 408. Likewise, rotation of the 3D pointing device 408 about the z-axis can be sensed by the 3D pointing device 400 and translated into an output usable by the system to move cursor 410 along the x2 axis of the display 408. It will be appreciated that the output of 3D pointing device 400 can be used to interact with the display 408 in a number of ways other than (or in addition to) cursor movement, for example it can control cursor fading, volume or media transport (play, pause, fast-forward and rewind). Input commands may include operations in addition to cursor movement, for example, a zoom in or zoom out on a particular region of a display. A cursor may or may not be visible. Similarly, rotation of the 3D pointing device 400 sensed about the x-axis of 3D pointing device 400 can be used in addition to, or as an alternative to, y-axis and/or z-axis rotation to provide input to a user interface.
According to one purely illustrative exemplary embodiment, two rotational sensors 420 and 422 and one accelerometer 424 can be employed as sensors in 3D pointing device 400 as shown in
Unlike traditional gyroscopes, these exemplary rotational sensors use micro electromechanical systems (MEMS) technology to provide a resonating mass which is attached to a frame so that it can resonate only along one direction. The resonating mass is displaced when the body to which the sensor is affixed is rotated around the sensor's sensing axis. This displacement can be measured using the Coriolis acceleration effect to determine an angular velocity associated with rotation along the sensing axis. If the rotational sensors 420 and 422 have a single sensing axis (as for example the ADXRS150s), then they can be mounted in the 3D pointing device 400 such that their sensing axes are aligned with the rotations to be measured. For this exemplary embodiment of the present invention, this means that rotational sensor 422 is mounted such that its sensing axis is parallel to the y-axis and that rotational sensor 420 is mounted such that its sensing axis is parallel to the z-axis as shown in
It will be appreciated that different sensor packages may be available which could lead to other exemplary implementations. For example, the two 1-D rotational sensors 420 and 422 could be replaced by a single, 2D rotational sensor package which provides outputs of rotational motion along, e.g., the y and z axes. One exemplary 2-D rotational sensor is the InvenSense IDG-300, although it will be appreciated that other sensors/sensor packages may also be used. The rotational sensors 420, 422 can be 1-D, 2-D or 3-D sensors. The accelerometer 424 can, for example, be a 3-axis linear accelerometer, although a 2-axis linear accelerometer could be used by assuming that the device is measuring gravity and mathematically computing the remaining 3rd value. Additionally, the accelerometer(s) and rotational sensor(s) could be packaged together into a single sensor package. Other variations of sensors and sensor packages may also be used in conjunction with these exemplary embodiments.
The exemplary embodiments are not limited to the industrial design illustrated in
Such 3D pointing devices have numerous applications including, for example, usage in the so-called “10 foot” interface between a sofa and a television in the typical living room as shown in
Smart television 620 can include various processing elements, sensors and transmitters which are not normally found in “regular” TVs. Like a smartphone, a smart TV offers a number of “Internet-connected services” that normal televisions can't offer. Smart TVs have processing power which can be substantially similar to that of a computer built into them, giving users a greater number of services. As shown in
As shown in
With the advent of smart TVs (and more generally, other smart devices) and their enhanced capabilities, comes the possibility for the smart TV to determine a context in which it is being used and then to use the determined context to adjust the manner in which the smart TV is operating and/or outputting content to the user. Embodiments described herein explore the potential types of interesting, new user experiences which can be provided by the system if the smart TV knows the context of the user(s) which are interacting with the smart TV. Thus, in terms of these embodiments, the concept of context awareness describes the capability of a device, e.g., a smart TV, to determine a context associated with its usage/the user(s) who are interacting with it and then to adjust the user experience in some way based on the determined context.
In this regard, context can include, for example and in general, who is interacting with the device, where the device is located, and/or when the interaction is occurring.
Once the system or device has determined a context associated with the user or users that are interacting with that system or device, one or more actions can be taken by the system or device (e.g., smart TV) to adjust the user experience. A few examples include:
Adjust TV Settings (picture, volume, performance, on/off, etc.)
Customize Remote Control Features and Performance
Control Room Environment
Onscreen and External Alerts
Personalize Experience
User Interface Enhancements
Content Recommendations and Offers
Tuned Advertising
If a remote control device which is used in conjunction with the smart TV includes motion sensing capabilities, e.g., as described above, or if the smart TV otherwise possesses the capability to determine movement of the remote control device, then context aware actions which can be performed by the smart TV can include, for example, those illustrated in Table 1 below.
In Table 1, some potential actions based on remote control and usage context are listed. Some comments are provided below about these context-based actions.
Another class of context aware action can, for example, involve user identification use cases. For such cases, once the smart TV has determined a particular context associated with the user(s)' identity(ies), then the smart TV can take a context aware action in response to that determination. Examples of such paired contexts/actions are illustrated in Table 2 below.
It will be appreciated by those skilled in the art that numerous other types of context/action pairings can be identified and implemented in devices such as smart TVs. Further examples are illustrated below in Table 3.
Still further examples of context aware state/action pairings are provided in
According to one embodiment, context awareness and subsequent context aware actions can be ordered in a predetermined manner. For example, the smart TV can first determine who the user or users are, i.e., perform an identification of the users, e.g., using any of the technologies discussed above. Then, based on which user or users are identified, the smart TV can evaluate one or more subcontexts which are identified specifically based on the identity of the user currently interacting with the smart TV.
From the foregoing, it will be appreciated that there are potentially a large number of contexts which may be of interest to track, and corresponding context information data elements from which those contexts may be determined. For example, the identity or identities of the person or people in the room with the smart TV can be derived from a number of different pieces of information, e.g., facial recognition from data received from camera in smart TV, gesture input from the remote control device, presence of users personal devices (cell phone, tablet, etc.) in the room and/or numerous other pieces of information. According to some embodiments, it is contemplated that providing a centralized context repository 1100 for the smart TV and/or other devices may be useful to store and provide access to context data, as shown in
Similarly, some applications (Appl-Appm) will be concerned with only a few pieces of context information from which they can determine a relevant context of a current user of the smart TV and can request that context data from the context repository 1100 as shown in
As shown in
First, a system which implements context-based actions measures, senses or collects the particular context information that is relevant. If a system wants to know if a person (user) is walking or not, the system needs to measure one or more characteristics from which the state “walking” can be determined or inferred. This measurement could, for example, be performed using an accelerometer and/or gyroscope detecting movement and/or gait, e.g., the motion sensor(s) provided in a remote control device as described above, or a sensor provided in or on the smart television described earlier.
As another example, suppose that weather was a context of interest. If a system according to these embodiments wants to determine, e.g., if it is raining as context information to store in the context repository 1100 (or in its own local context database if a centralized context repository is not used), the system can, for example, either directly use a sensor for detecting moisture or, instead, rely on a weather reporting service for the area received over the Internet. For the purposes of these embodiments, it is not necessarily important how context information is gathered since there exists a vast multitude of ways to do that.
Second, they system makes the context information accessible to a consuming application. This means a database or data storage mechanism of some form whether centralized or distributed.
Third, such systems according to embodiments have one or more consuming applications that determine which of the nearly infinite amount of context information available is, in fact, relevant to that application. The set of applications and how they might connect to the Context Repository is shown in
Each individual application typically only needs a subset of contextual information in order to perform its function. So, for example, if the application is a thermostat control system for a house, the unit may only need to know which rooms in the house are occupied, the temperature preferences of the individuals in those rooms, the current temperature in those rooms and potentially the temperature outside along with perhaps overall power consumption and cost goals. Information on the latest show of American Idol or the Facebook status of a particular user is not relevant to this application and so is ignored, not directly obtained by the application or not requested from the Context Repository 1100.
Systems and methods for processing data according to exemplary embodiments of the present invention can be performed by one or more processors executing sequences of instructions contained in a memory device. Such instructions may be read into the memory device from other computer-readable mediums such as secondary data storage device(s). Execution of the sequences of instructions contained in the memory device causes the processor to operate, for example, as described above. In alternative embodiments, hard-wire circuitry may be used in place of or in combination with software instructions to implement the present invention. Such software may run on a processor which is housed within the device, e.g., a 3D pointing device or other device, which contains the sensors or the software may run on a processor or computer housed within another device, e.g., a system controller, a game console, a personal computer, etc., which is in communication with the device containing the sensors. In such a case, data may be transferred via wireline or wirelessly between the device containing the sensors and the device containing the processor which runs the software which performs the bias estimation and compensation as described above. According to other exemplary embodiments, some of the processing described above with respect to context awareness and associated actions may be performed in the device containing the sensors, while the remainder of the processing is performed in a second device after receipt of the partially processed data from the device containing the sensors.
Although the foregoing exemplary embodiments provide for remote devices having sensing packages including one or more rotational sensors and an accelerometer, these exemplary embodiments are not limited to only these types of sensors. Instead remote devices as described herein can be applied to devices which include, for example, only accelerometer(s), optical and inertial sensors (e.g., a rotational sensor, a gyroscope or an accelerometer), a magnetometer and an inertial sensor (e.g., a rotational sensor, a gyroscope or an accelerometer), a magnetometer and an optical sensor, or other sensor combinations.
Although the foregoing embodiments described context awareness with a focus on smart televisions, it will be appreciated that these techniques are not limited for use in conjunction with televisions but can be used with other smart devices, e.g., mobile phones, tablets, personal computers, refrigerators, cars, etc.
The above-described exemplary embodiments are intended to be illustrative in all respects, rather than restrictive, of the present invention. Thus the present invention is capable of many variations in detailed implementation that can be derived from the description contained herein by a person skilled in the art. For example, although the foregoing exemplary embodiments describe, among other things, the use of inertial sensors to detect movement of a device, other types of sensors (e.g., ultrasound, magnetic or optical) can be used instead of, or in addition to, inertial sensors in conjunction with the afore-described signal processing. All such variations and modifications are considered to be within the scope and spirit of the present invention as defined by the following claims. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/067024 | 10/28/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61719442 | Oct 2012 | US |