This disclosure relates generally to computing and, more particularly, to a context-based computing framework.
People often adapt their behavior to a particular social context. For example, context and context cues are learned over time and can serve as a frame of reference for human interactions when a person arrives in a new, and possibly unfamiliar, setting. In contrast, computing devices are often limited to performing a set of predefined tasks regardless of the context of the environment in which they are operating. Furthermore, because existing computing devices are typically unaware of the context of their operating environments, reconfiguring such a computing device after being placed in or moved to a different environment having a different context may involve significant manual intervention.
An example context-based computing framework that can be utilized by example disclosed methods, apparatus and articles of manufacture to provide context-based computing is disclosed herein. An example disclosed method to provide context-based computing includes a computing device receiving context information provisioned for a current location from a context service in response to a query. The example method also includes the computing device configuring interaction with a resource associated with the current location based on the context information received from the context service. For example, the context information can identify a set of resources available at the current location, and also specify an associated set of resource interaction characteristics for interacting with the set of resources. In some examples, receiving the context information involves receiving a context grant message including the context information when authorization based on identify information and/or application descriptive information included in the query is successful. In some examples, the context information returned by the context service is determined from one or more context profiles provisioned for the current location. For example, the context service can use information included in the query to determine a role classification specifying the extent with which the query source can interact with the resource, and then obtain from the context profile(s) the context information that is relevant to this role classification. In some examples, configuring interaction with the resource involves using the configuration information returned by the context service to configure an application to recognize the resource, and communicating with the context service to establish interaction with the resource.
Another example disclosed method to provide context-based computing includes a context service determining a location associated with a query received from a computing device requesting context information. The example method also includes the context service obtaining the context information from a context profile provisioned for the location. The example method further includes sending the context information to the computing device in response to the query to enable the device to configure interaction with a resource associated with the location based on the context information. As mentioned above, the context information can, for example, identify a set of resources available at the location, and also specify an associated set of resource interaction characteristics for interacting with the set of resources. In some examples, the method additionally includes obtaining multiple context profiles provisioned for the location and selecting a particular context profile from the plurality of context profiles based on selection criteria, such as selection based on a current time and/or information included in the query. In some examples, the method additionally or alternatively involves processing information included in the query to determine whether the query is authorized, and sending the context information to the device if the query is determined to be authorized, but not sending the context information to the device if the query is determined to not be authorized. In some examples, the method additionally or alternatively includes processing information included in the query to determine a role associated with the device for interacting with the resource, and then obtaining from the context profile the context information that is relevant to that role.
The foregoing example methods illustrate that the context-based computing framework disclosed herein enables the behavior of computing devices to adapt according to the context of their current operating environment. As noted above, from the perspective of human social interactions, human behavior often changes to adapt to a particular social context. Context and context cues are learned over time and serve as a frame of reference for social and physical interactions in a particular setting. From a human perspective, the context of a setting can be defined in terms of, for example, a location of the setting, objects within the setting, other people located in the setting, a time of day, roles played by people within the setting, actions performed by the participants, etc.
Human social interactions based on social context can be illustrated using the following example. During a guest's visit to a host's home, the guest is unlikely to ask the host, “Do you have a bathroom?” Instead, a more likely question is, “Where is your bathroom?” The reason the latter question is more likely is that individuals, through experience, learn that modern homes generally contain a bathroom. Thus, when a person is in the context of a home, the person knows that the home contains a bathroom. The question for the person then becomes where the bathroom is located, not whether the bathroom exists. In contrast, a visitor to a place of business may indeed ask, “Do you have a bathroom?” Unlike the home context, in the business context the existence of a bathroom is less certain and, thus, asking whether a bathroom exists may be appropriate. As can be seen from this example, a person's behavior changes as her context changes. Moreover, such an understanding of context can increase the overall efficiency of activity in a given context.
Unlike human beings that adapt to their current social context, existing computing devices are typically unaware of and, thus, do not adapt to the context of the environment in which they are currently operating. As such, reconfiguring such an existing device for use in a different environment having a different context may involve significant manual intervention and/or programmatic activity. For example, from a software development perspective, such reconfiguration may involve replication of code and processing across numerous applications, which can increase overall development costs and extend time to market. In contrast, the context-based computing framework disclosed herein treats computing devices as computing entities whose behavior can adapt to a particular operating environment context, much like social entities (e.g., human beings) whose social behavior adjusts to their current social context. By enabling computing devices to automatically adapt to their current context, the use of computing devices and services supporting the entity computing framework can be more intuitive and seamless than for existing computing devices, especially as a user moves among environments having different contexts.
Turning to the figures, a block diagram of an example system 100 implementing context-based computing in accordance with an example disclosed context-based computing framework is illustrated in
Base context, which is also referred to as semi-fixed context, reference context, etc., represents stable information associated with a particular environment. For example: while a bathroom in a home can be remodeled, the bathroom occupies a relatively stable position with in a home. Similarly, in the electronic context of a home, devices such as stereos, televisions, appliances, etc., have relatively stable positions in the environment and, as such, define the base context for that environment. In the case of mobile devices, which can move from place to place, the device's home context is associated with the base context of the environment in which the device primarily resides (e.g., such as the subscriber domain associated with the residence of the owner of the mobile device). Following the human social model, people are strongly associated with their residences, and an individual's residence can serve as an identifier even when the individual is a great distance away. The home context of a device serves a similar purpose and can enable the projection and/or sharing of resident services across subscriber domains.
Transient context represents information about an environment that is time dependent, such as information concerning devices, services, etc., that are present for a limited period of time in the environment and are no longer present in the environment after that time. For example, consider a scenario in which a household has a child's birthday party with temporary sources of entertainment, such as a jukebox, a karaoke machine, etc. The transient context in this case includes the guests (and their respective personal electronic devices) and the temporary entertainment devices. The devices, services, etc., specific to the objective of the party are associated with a transient context, which will be valid for a fixed period time, and then the environment returns to its base context. However, an environment's transient context can have lasting effect on its base context, for example, by augmenting or reducing the base context. For example, is the child receives a video game at the party as a birthday gift, the video game becomes part to the ongoing base context of the environment. The disclosed framework enable such changes to the base context to be captured and used to update the base context.
Thus, context sessions with a particular computing device, such as the computing device 105, can be dynamic and based on both base context information and transient context information provided the context service 110 and tailored to a particular environment (e.g., subscriber domain), to the capabilities of the particular device 105, and/or to the particular user of the particular device 105, etc. Context sessions can also be adaptive. For example, similar to how a party or a game changes as the number of participants change, context sessions with a particular computing device can change over the period of the session. As such, the context service 110 can redistribute roles and responsibilities among the devices participating in a particular context session.
With the foregoing in mind, the context service 110 can provide context information (e.g., obtained from context profiles) for example subscriber domains 115-125, which can also be referred to as electronic places 115-125. Although
For example, in the system 100 of
The context information for a particular subscriber domain, such as the subscriber domain 115, can be specified by, for example, a service provider and/or an authorized subscriber/user associated with the subscriber domain 115. As described in greater detail below, the example disclosed framework also allows or the updating of the external context servers with the local context changes, thereby maintaining a consistent model and history of activity. Referring to the subscriber domain 115 for ease of discussion and without loss of generality, the context information for the subscriber domain 115 is generally associated with a particular location (e.g., the location of the subscriber domain 115) and defines what a computing device, such as the computing device 105, can do at that particular location. For example, the context information for the subscriber domain 115 can specify resources, such as one or more device(s), service(s), etc., that can be accessed at the subscriber domain 115. In some examples, the context information for the subscriber domain 115 can also specify role classifications for different categories of computing devices and/or for different applications that can be executed on the computing devices. For example, a role classification can specify a role that a particular computing device, such as the computing device 105, can have when interacting with a particular resource (e.g., a particular device and/or service) at the subscriber domain 115. Additionally or alternatively, in some examples the context information provided by the context service 110 for the subscriber domain 115 can depend on specified personalization information (e.g., such as user permissions, user preferences, etc.). Context information can also be time dependent.
In some examples, the context service 110 resides in an example computing cloud 130 and is queried by the computing device 105 to obtain context information when the computing device 105 (or a context client executing on the computing device 105) detects a change in location (e.g., such as when the computing device moves from one subscriber domain 115-125 to another subscriber domain 115-125). For example, the computing device 105 can detect a location change associated with moving from the subscriber domain 120 to the subscriber domain 115 by detecting a change in the global positioning system (GPS) location of the computing device 105. Additionally or alternatively, the computing device 105 can detect a location change by detecting that it has changed the routing gateway with which it is registered to obtain network access (e.g., assuming that the different subscriber domains 115-120 employ different routing gateways to obtain network access). In some examples, responsibility for providing context services for a particular subscriber domain can be delegated to the subscriber domain (e.g., to one or more devices in the domain) provided that context changes in the domain are promulgated back to a context authority, such as the context service 110.
In the illustrated example, the computing devices 105 and 135 can correspond to any type of computing device, such as, but not limited to, a mobile phone/smartphone, a personal digital assistant (PDA), a tablet computer, a set-top box, a personal computer, a server, etc. In some examples, the computing devices 105 and/or 135 includes device descriptive information, such as device capacity/capabilities, identity information, application descriptive information (e.g., in the form of one or more application signatures for a respective one or more applications currently being executed on the device), etc., in the context query sent to the context service 110. In some examples, the disclosed framework can use this device descriptive information to group devices into groups of electronic entities having different levels of computing power. Many electronic devices have some amount/form of processing capability. The disclosed framework assigns different levels of capabilities and associates these different capability levels with roles that can be performed by devices in a given environment. For example, devices having substantial processing capability, such as desktop computers, Apple iPads® and iPhones®, Google Android™-based mobile devices, etc., may be assigned tasks or allowed to bid on tasks within a subscriber domain, thereby moving computing activity to a local environment to offload this activity from the computing cloud 130.
In response to the context query, the context service 110 resolves (e.g., determines) a location of the context query and, thus, the location of the computing device 105. The context service 110 then identifies the subscriber domain corresponding to the location of the computing device 105. In some examples, the context service 110 determines the location of the context query and, thus, the computing device 105 based on GPS information included in the context query. In some examples, the context service 110 additionally or alternatively determines the location of the context query and, thus, the computing device 105 based on an originating Internet protocol (IP) address determined for the computing device. For example, when the computing device 105 obtains network access via a routing gateway associated with a particular subscriber domain, the originating IP address assigned to the computing device 105 by the routing gateway can indicate that the computing device is located at that particular subscriber domain. In some examples, the context service 110 additionally or alternatively determines the location of the context query and, thus, the computing device 105 based on other information identifying the computing device 105 (e.g., such as a globally unique identifier (GUID) or other device identifier, etc.) and/or other information reference another address associated with the computing device 105 (e.g., such as an originating gateway IP address, a medium access control (MAC) address, etc.).
Assume for ease of discussion, and without loss of generality, that the context service 110 identifies that subscriber domain 115 corresponds to the location of the context query and, thus, the location of the computing device 105. The context service 110 then retrieves one or more context profiles associated with the subscriber domain 115. In some examples, the context service 110 examines the information provided by the computing device 105 in the context query to determine what context information to return in a response. For example, the context service 110 can authenticate the computing device 105 (or a user of the computing device 105) using identification and/or application descriptive information included in the query. Additionally or alternatively, the context service 110 can determine a role classification for the computing device 105 using, for example, device descriptive information and/or application descriptive information provided in the context query.
In some examples, if authentication is performed and is successful, the context service 110 replies to the query with a context grant indicating that the computing device 105 has been granted access to the context service. Additionally, the context service 110 returns context information (e.g., such as key(s), token(s), configuration information, etc.) for the subscriber domain 115 that is relevant to the role classification determined for the computing device 105. For example, the context information can identify the resources (e.g., device(s), service(s), etc.) associated with the subscriber domain 115 with which the computing device 105 may interact (e.g., also referred to herein as the identified resources) and to what extent the computing device 105 may interact with the identified resource(s) (e.g., also referred to herein as the resource interaction characteristics). In some examples, the identified resource(s) and resource interaction characteristics specified in the context information returned by the context service 110 for the subscriber domain 115 may differ for different computing devices in accordance with the different role classifications of the device. For example, the context service 110 can evaluate the device descriptive information and/or application descriptive information included in a context query to determine the capabilities and capacity of a computing device sending the context query. The context service 110 can also associate certain identified resources and certain associated resource interaction characteristics with specified ranges of device capabilities and/or capacities. In such examples, the different specified ranges of device capabilities and/or capacities are associated with different role classifications, with each role classification being associated with a respective set of identified resources and corresponding resource interaction characteristics that are to be included in the context information provided to computing devices falling into the respective role classification. For example, more powerful devices could be associated with roles having more identified resources and more extensive resource interaction characteristics than for less powerful devices. Additionally, in some examples, more powerful devices residing within the subscriber domain 115 may assume the processing responsibility for one or more services to be provided at the domain 115 and, thus, host those services for use by other devices (e.g., the device 135) in the domain 115. In some examples, if no device of sufficient capability is available to assume the processing responsibility for these services, such service can be identified as external services and provided by external resources, such as the computing cloud 130, during the current context session.
In some examples, the computing device 105 uses the returned context information to configure the functionality of the computing device (and/or one or more applications executing on the computing device) to adapt to the current context of the subscriber domain 115. For example, the computing device 105 can use the context information to configure an interface for interacting with one or more of the identified resources associated with the subscriber domain 115 in accordance with the resource interaction characteristics specified for the identified resource(s). The computing device then further interacts with the context service 110, as appropriate, to configure and enable access to and interaction with the resource(s) available at subscriber domain 115.
As an illustrative example, consider a scenario in which the subscriber domains 115-125 are associated with university classrooms. Each classroom can have different, time-dependent contexts associated with the different classes taught in each classroom at different times throughout the day. Each classroom context also has a distinct set of roles associated with it. For example, an instructor leads the classroom, whereas students follow the instructor's lecture and lesson plan. Current trends in education are leveraging use of tablet devices, such as the Apple iPad®, in the classroom. Using a context-based computing framework such as that illustrated in
After receiving the context information, the computing device 105 can use the context information to automatically configure one or more applications executing on the computing device 105 to, for example, interact with the teacher's computing device (not shown) and/or another resource specified in the context information to obtain notes, class assignments, presentations and reading materials as specified by the teacher for the particular subject. In such an example, the context service 110 would include the teacher's computing device in the identified resources provided in the context information, with the level of interaction with the teacher's computing device being restricted based on the associated resource interaction characteristics provided in the context information. Later, when the student moves to her next class associated with a different subscriber domain (e.g., such as the subscriber domain 120), the classroom context changes and new roles are established. In such an example, the student's computing device 105 could detect the change in location and query the context service 110 to obtain context information for the new subscriber domain. The student's computing device 105 uses the obtained context information to adapt to the new classroom environment, as described above. For example, the notes, class assignments, presentations and reading materials presented by the student's computing device 105 could adapt to be relevant to the new classroom venue (e.g., by being obtained from a different resource associated with the new subscriber domain).
A further extension of the above example leverages the fact that each student in a class may have her enrollment in the class as part of her personal context. Because students can share their personal contexts, a social networking service opportunity exists for the formation of study groups gated by roles and class enrollment, and/or other identifying factors. When a study group is formed (e.g., an agreed upon meeting time is reached) that group formation and activity becomes its own discreet context.
A block diagram of an example implementation of the computing device 105 of
The example computing device 105 of
To support context-based computing, the example computing device 105 of
In some examples, the context querier 220 sends a context query to a context service in response to detecting a change in the location of the computing device 105. For example, if the computing device 105 includes GPS location capabilities, the context querier 220 can detect such a location change by detecting a change in GPS data that indicates movement of the computing device has exceeded a threshold distance. Additionally or alternative, the context querier 220 can detect a location change by detecting that the computing device 105 as changed the routing gateway with which it is registered to gain network access. In some examples, the context querier 220 includes query information, such as the device descriptive information, the application descriptive information and/or the identity information described above, in the context query sent to the context service to enable the context service to authenticate the query and return context information that is relevant to the computing device 105. For example, context information that is relevant to the computing device 105 may be a portion of the context profile provisioned for the current subscriber domain that specifies those resources and associated resource interaction characteristics with which the computing device 105 is actually capable of supporting interaction (e.g., based on the device's capacity, capabilities and/or available applications).
The context configurer 225 included in the context client 215 of the illustrated example is to configure interaction with one or more resources identified in the context information received from the context service for the subscriber domain associated with the device's current location. For examples, the context configurer 225 can translate the received context information into one or more format(s), parameter(s), data structure(s), etc., for configuring one or more respective application(s) included in the application set 205, and/or for configuring the device 105 itself, to be able to interact with the resource(s) identified in the received context information. As described above, the context information received from the context service identifies a set of resources available at the current location, and can also specify an associated set of resource interaction characteristics for interacting with this set of resources. The context configurer 225 uses this context information, for example, to configure application(s) in the application set 205, and/or the device 105 itself, to recognize one or more of the resources (e.g., device(s), service(s), etc.) identified in the context information. Furthermore, the context configurer 225 can configure/adapt one or more of the applications in the application set 205, and/or the device 105 itself, to provide interface(s) for interacting with the resource(s) at level(s) consistent with the resource interaction characteristics specified in the received context information. In some examples, the context configurer 225 can communicate with the context service to establish interaction with one or more of the resources (e.g., such as when a resource is to be commanded/configured by the context service 110 to recognize the computing device 105 before interaction is possible).
In some examples, the context information provided by the context service 110 may specify a set of different roles (also referred to as role classifications) for interacting with a particular resource. Each role can correspond to a respective level of interaction with the resource (e.g., which may be specified as one or more resource interaction characteristics) and may be defined in terms of a set of device capacity, characteristic(s) and/or available application(s) required to be classified into the respective role. For example, more powerful devices capable of executing certain applications may be classified into roles supporting more resource interaction than less powerful devices that do not have the requisite application(s). In such an example, the context configurer 225 may evaluate the roles specified in the received context information against the device information stored in the storage 210 to determine the appropriate role(s) for interacting with the identified resource(s) and then configure/adapt the computing device 105 accordingly.
A block diagram of an example implementation of the context service 110 of
The example context service 110 of
The example context service 110 of
To determine the context information to be returned by the context granter 315 in response to a context query, the example context service 110 of
In some examples, multiple context profiles may be provisioned for the same subscriber domain. For example, different context profiles may be specified for use at different times during the day, on different days during the year (e.g., seasonally), etc. Additionally or alternatively, different context profiles may be specified for use with different applications, with different device types and/or devices with different characteristics, with different users, etc. In such examples, the context retriever 320 retrieves the context profiles for the subscriber domain at which the computing device that sent the query is located, and then selects one of the retrieved context profiles using one or more selection criteria. For example, the context retriever 320 can use one or more of a current time, application descriptive information included in the query, device descriptive information included in the query, identification information included in the query, etc., as selection criteria for selecting an appropriate context profile for the subscriber domain at which the computing device that sent the query is located.
As noted above, the context profile(s) provisioned by the context provisioner 305 can incorporate user preferences, device characteristics (e.g., capacity and/or capabilities), application characteristics (e.g., types and/or features), etc., to be used to specify different computing device roles for interacting with resources associated with a particular subscriber domain. Accordingly, in some examples, the context retriever 320 uses one or more of the device descriptive information, application descriptive information, identity information, etc., included in the context query to determine a role (or role classification) for the computing device in that subscriber domain. The context retriever 320 then uses the determined role for the computing device to obtain (e.g., extract, formulate, etc.) the context information relevant to that role (and, thus, relevant to the computing device) from the context profile retrieved/selected for that particular subscriber domain.
In some examples, the context service 110 of
While example manners of implementing the computing device 105 and the context service 110 of
An example system 400 illustrating a portion of the example system 100 of
The computing device 105 includes the context client 215 described above and, thus, is a context-aware computing device. An example of context-based computing that can performed in the example system 400 of
Next, the context service 110 uses the information provided in the context query 510 to determine from the context profile whether the computing device 105 is authorized to control one or more of the STBs 405-415 at the subscriber domain 115. Assuming this authentication is successful, the context service 110 then determines the appropriate context information to include in the query response (represented by directed line 525 in
In response to receiving the context grant 530 and associated context information from the context service 110, the computing device 105 adapts its configuration in accordance with the received context information (represented as directed line 535 in
Another example system 600 illustrating a portion of the example system 100 of
Additionally, and unlike the example of
Flowcharts representative of example processes involving machine readable instructions that may be executed to implement the example computing device 105, the example context service 110, the example application set 205, the example storage 210, the example context client 215, the example context querier 220, the example context configurer 225, the example context provisioner 305, the example storage 310, the example context granter 315, the example context retriever 320 and/or the example interaction processor 325 are shown in
As mentioned above, the example processes of
Example machine readable instructions 700 that may be executed to provide context-based computing in the example systems 100, 400 and/or 600 in accordance with the context-based computing framework disclosed herein are illustrated in
Example machine readable instructions 800 that may be executed to provision context profiles for use by the example context service 110 in accordance with the context-based computing framework disclosed herein are illustrated in
At block 810, the context provisioner 305 stores the context profile(s) obtained at block 805 in the storage 310 included in the context service 110. For example, at block 810 the storage 310 can represent and store the context profile(s) obtained at block 805 using any number and/or types of data formations, data structures, databases, etc., as described above. The context profile(s) stored in the storage 310 can be retrieved by the context service 110 at a later time to provide context-based computing as described herein.
Example machine readable instructions 900 that may be executed to perform context client processing in the example computing device 105 in accordance with the context-based computing framework disclosed herein are illustrated in
If a location change is detected (block 910), then at block 915 the context querier 220 included in the context client 215 of the computing device 105 prepares a context query, such as the context query 510. For example, at block 915 the context querier 220 can prepare query information that describes the computing device 105 for inclusion in the context query 510. As described above, the query information can include, for example, device descriptive information, application descriptive information, identity information, etc.
At block 920, the context querier 220 sends the context query 510 prepared at block 915 to the context service 110 (or, in some examples, the context server 605 providing context services locally at the subscriber domain 115). For example, the context querier 220 may be pre-configured with a network address for accessing the context service 110, and/or may query a domain name system (DNS) or similar system to obtain the network address for accessing the context service 110, etc. Additionally or alternatively, when registering with the RG 420, the context client 215 may determine the presence of the local context server 605 and configure the context querier 220 to send context queries to the local context server 605 instead of, or in addition to, sending the queries to the remote context service 110.
At block 925, the context querier 220 receives a response to the context query 510 sent at block 930. For example, the response can correspond to the context grant 530 if the context query 510 is successfully authenticated by the context service 110. Alternatively, the response can correspond to a context denial or similar message if, for example, authentication of the context query 510 is unsuccessful or otherwise not accepted by the context service 110.
If the received response is the context grant 530 (block 930), then at block 935 the context configurer 225 included in the context client 215 of the computing device 105 extracts or otherwise obtains the context information included in the received query response, and uses the context information to update the context configuration of the computing device 105. For example, the context configurer 225 can translate the context information into configuration data for configuring/adapting one or more applications executing on the computing device to recognize the resource(s) specified in the context information. The context configurer 225 may also configure these application(s) to provide resource interface(s) consistent with the resource interaction characteristics included in the context information. For example, the context configurer 225 may configure an interface of an application to provide access to a subset of features, data, etc., of a resource in accordance with the resource interaction characteristics specified for this resource in the received context information.
At block 940, the computing device 105 interacts with the local resource(s) (e.g., local device(s), service(s), etc.) based on the context configuration performed at block 935 by the context configurer 225. For example, the computing device 105 may interact with devices, such as the STBs 405-415 described above, the instructor's computing device described above, etc., and/or network-based services accessible at and tailored to the subscriber location 115, etc. In some examples, the context con
Example machine readable instructions 1000 that may be executed to implement the example context service 110 in accordance with the context-based computing framework disclosed herein are illustrated in
At block 1015, the context retriever 320 retrieves from the storage 310 one or more context profiles associated with the location determined at block 1010. Assuming that the location corresponds to the subscriber domain 115, the context retriever 320 retrieves the context profile(s) provisioned for the subscriber domain 115. Assuming multiple context profiles are retrieved, at block 1020 the context retriever 320 obtains selection criteria for selecting one of the context profiles. For example, the selection criteria can correspond to a current time if different context profiles are to be active at different times. Additionally or alternatively, the selection criteria can correspond to, for example, application descriptive information included in the context query 510, device descriptive information included in the context query 510, identification information included in the context query 510, etc., which are compared to user preferences and/or role information specified for each context profile. At block 1025, the context retriever 320 selects a context profile from the context profiles retrieved at block 1015 using the selection criteria determined at block 1020.
At block 1030, the context granter 315 authenticates the context query 510 based on information included in the query, as described above. If query authorization is unsuccessful (block 1035), then at block 1040 the context granter 315 returns a context denial message to the computing device 105 that sent the context query 510. However, if query authorization is successful (block 1035), then at block 1045 the context granter 315 returns a context grant message, such as the context grant 530, to the computing device 105 that sent the context query 510. The context grant 530 also includes context information for the subscriber domain 115 that is relevant to the particular computing device 105 that sent the context query 510. For example, and as described above, the context retriever 320 can determine a role (or role classification) for the computing device 105 based on information included in the context query 510 and obtain context information relevant to the determined role from the context profile selected at block 1025. As described above, the context-aware computing device 105 uses the returned context information to configure interaction with the resource(s) at the subscriber domain 115 that are specified in the context information.
Sometime later, at block 1050 the interaction processor 325 of the context service 110 receives one or more interactions requests, such as the interaction requests 545, from the computing device 105 indicating that the computing device 105 is requesting to interact with one or more resources specified in the context information returned at block 1045. At block 1055, the interaction processor 325 configures context-based computing with the requested resource(s) by, for example, issuing one or more commands to the resource(s) instructing them to recognize and accept communications from the computing device 105.
The system 1100 of the instant example includes a processor 1112 such as a general purpose programmable processor. The processor 1112 includes a local memory 1114, and executes coded instructions 1116 present in the local memory 1114 and/or in another memory device. The processor 1112 may execute, among other things, the machine readable instructions represented in
The processor 1112 is in communication with a main memory including a volatile memory 1118 and a non-volatile memory 1120 via a bus 1122. The volatile memory 1118 may be implemented by Static Random Access Memory (SRAM), Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRAM) and/or any other type of random access memory device. The non-volatile memory 1120 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 1118, 1120 is typically controlled by a memory controller (not shown).
The processing system 1100 also includes an interface circuit 1124. The interface circuit 1124 may be implemented by any type of interface standard, such as an Ethernet interface, a universal serial bus (USB), and/or a third generation input/output (3GIO) interface.
One or more input devices 1126 are connected to the interface circuit 1124. The input device(s) 1126 permit a user to enter data and commands into the processor 1112. The input device(s) can be implemented by, for example, a keyboard, a mouse, a touchscreen, a track-pad, a trackball, an isopoint and/or a voice recognition system.
One or more output devices 1128 are also connected to the interface circuit 1124. The output devices 1128 can be implemented, for example, by display devices (e.g., a liquid crystal display, a cathode ray tube display (CRT)), by a printer and/or by speakers. The interface circuit 1124, thus, typically includes a graphics driver card.
The interface circuit 1124 also includes a communication device such as a modem or network interface card to facilitate exchange of data with external computers via a network (e.g., an Ethernet connection, a digital subscriber line (DSL), a telephone line, coaxial cable, a cellular telephone system, etc.).
The processing system 1100 also includes one or more mass storage devices 1130 for storing machine readable instructions and data. Examples of such mass storage devices 1130 include floppy disk drives, hard drive disks, compact disk drives and digital versatile disk (DVD) drives. In some examples, the mass storage device 1130 may implement the storage 210 and/or the storage 310. Additionally or alternatively, in some examples the volatile memory 1118 may implement the storage 210 and/or the storage 310.
The coded instructions 1132 of
At least some of the above described example methods and/or apparatus are implemented by one or more software and/or firmware programs running on a computer processor. However, dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement some or all of the example methods and/or apparatus described herein, either in whole or in part. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the example methods and/or apparatus described herein.
To the extent the above specification describes example components and functions with reference to particular standards and protocols, it is understood that the scope of this patent is not limited to such standards and protocols. For instance, each of the standards for Internet and other packet switched network transmission (e.g., Transmission Control Protocol (TCP)/Internet Protocol (IP), User Datagram Protocol (UDP)/IP, HyperText Markup Language (HTML), HyperText Transfer Protocol (HTTP)) represent examples of the current state of the art. Such standards are periodically superseded by faster or more efficient equivalents having the same general functionality. Accordingly, replacement standards and protocols having the same functions are equivalents which are contemplated by this patent and are intended to be included within the scope of the accompanying claims.
Additionally, although this patent discloses example systems including software or firmware executed on hardware, it should be noted that such systems are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of these hardware and software components could be embodied exclusively in hardware, exclusively in software, exclusively in firmware or in some combination of hardware, firmware and/or software. Accordingly, while the above specification described example systems, methods and articles of manufacture, the examples are not the only way to implement such systems, methods and articles of manufacture. Therefore, although certain example methods, apparatus and articles of manufacture have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the claims either literally or under the doctrine of equivalents.