Modern telemetric mobile-based technologies typically rely on data provided by power-demanding modules (e.g. the built-in GPS) to facilitate the car/driver localization process. One of the main issues with this approach is the consequent high power consumption of the system, which if not managed properly can result in a significant reduction of the battery lifetime. Users have to manually start/shut down the telematics application to avoid the aforementioned problem.
An efficient telematics device (e.g. cell phone) deploys the power-efficient accelerometer module available in most modern cell phones today to analyze and identify the activity context (state) of a mobile user and activates the power-demanding modules only if the user is determined to be in need of the location information, e.g. in the driving state. This enables a more efficient deployment of the telematics systems and hence extends the battery lifetime of the host platform without the need for the user intervention.
The disclosed method supports the recognition of four user states, namely, walking, stopped, halted, and driving. The method deploys a state-machine architecture to keep track of the user state/activity. To effectively and efficiently track the user state the method mainly relies on a power-efficient module (e.g. accelerometer) to identify the walking state of the user. The power-demanding modules (e.g. GPS) are used only if the user is in activity that requires them. This method requires very little power to operate and is thus can run in the background and control the starting and shutdown of the power demanding modules according to the detected user state
The relevant walking features are extracted from both the time, as well as frequency domain signals of the accelerometer. These features are integrated together in order to come up with the state of the user. The fusion process improves the reliability and robustness of detecting the user walking state.
This disclosure provides a system to automatically detect one or more human activities. The system automatically classifies one or more human activities. Measurements may be obtained from one or more mobile devices. Measurements may be obtained from one or more external sensors. Measurements may be obtained from one or more body-attached or internal sensors.
As an example, human activity of walking may be detected. As another example, the human activity of standing may be detected. The human activity of sitting may be detected. The human activity of driving may be detected. The human may be identified as being either a driver or a passenger. The human activities of riding on a bus, train, or subway may be detected. The system may dynamically select the appropriate data sources to detect human activity based on power consumption. The system may select a method to detect human activity based on power consumption.
The system may use power consumption patterns to detect or classify human activity. The system may manage power consumption based on human activity.
The system may prioritize activation and operation of tasks based on power consumption patterns, and if needed, terminate lower priority tasks to prolong the ability of the system to operate high priority tasks. Historical power consumption patterns may be used. Current power consumption patterns may be used. The system may adapt data collection frequency based on recent human activity.
Cues of human activity may be obtained from nearby wireless sources. Cues of human activity may be obtained from in-vehicle presence detection.
These and other features of the invention can be best understood from the following specification and drawings.
Optionally, the mobile device 10 may include a magnetometer which could be used to detect whether the mobile device 10 is currently inside a vehicle (the magnetometer can detect the “metal cage” of the vehicle vs open sky). This information (inside vehicle/outside vehicle) can also be used as criteria in transitions and whether to change states (e.g. from stopped to driving (going into a vehicle) and from driving to halted (exiting the vehicle).
State Recognition Method
There are ten transitions in the state-machine of
Other optional high power modules (in addition or instead of gps receiver 16) or activities include triangulation using the cellular signal and wifi. Optionally, these could be deactivated in the minimum power states. Note that even in the minimum power states the high power module(s) may periodically switch on. For example, the gps receiver 16 may switch on periodically to scan.
The following details the state transitions involved:
It is important to note that estimating the user speed relies on the data from the GPS receiver 16. However, the speed is only required if the user is determined not to be in a walking state. Although only one speed threshold Th_ds is shown in
Walking Detection Method
The walking features are extracted from the acceleration signals collected from inertial sensors 14 over a predefined period of time T_collect and sampled at the rate specified by R_as.
In accordance with the provisions of the patent statutes and jurisprudence, exemplary configurations described above are considered to represent a preferred embodiment of the invention. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
Number | Name | Date | Kind |
---|---|---|---|
9305317 | Grokop et al. | Apr 2016 | B2 |
20040212494 | Stilp | Oct 2004 | A1 |
20110228753 | Polito et al. | Sep 2011 | A1 |
20120146848 | Ezer et al. | Jun 2012 | A1 |
20130137450 | Dai et al. | May 2013 | A1 |
20130307722 | Rezaei | Nov 2013 | A1 |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2014/067916, dated Feb. 20, 2015. |
Number | Date | Country | |
---|---|---|---|
20150156725 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61910215 | Nov 2013 | US |