1. Technical Field
The invention relates to user entry of information into a system with an input device.
More particularly, the invention relates to contextual prediction of intended user inputs and actions.
2. Description of the Prior Art
For many years, portable computers have been getting smaller and smaller. The principal size-limiting component in the effort to produce a smaller portable computer has been the keyboard. If standard typewriter-size keys are used, the portable computer must be at least as large as the keyboard. Miniature keyboards have been used on portable computers, but the miniature keyboard keys have been found to be too small to be easily or quickly manipulated by a user. Incorporating a full-size keyboard in a portable computer also hinders true portable use of the computer. Most portable computers cannot be operated without placing the computer on a flat work surface to allow the user to type with both hands. A user cannot easily use a portable computer while standing or moving.
In the latest generation of small portable computers, called Personal Digital Assistants (PDAs), companies have attempted to address this problem by incorporating handwriting recognition software in the PDA. A user may directly enter text by writing on a touch-sensitive panel or screen. This handwritten text is then converted by the recognition software into digital data. Unfortunately, in addition to the fact that printing or writing with a pen is in general slower than typing, the accuracy and speed of the handwriting recognition software has to date been less than satisfactory. Also, there are memory constraints. Recognition software often needs more memory than is available on the device. This is especially true with such devices as mobile telephones.
Presently, a tremendous growth in the wireless industry has spawned reliable, convenient, and very popular mobile communications devices available to the average consumer, such as cell phones, two-way pagers, PDAs, etc. These handheld wireless communications and computing devices requiring text input are becoming smaller still. Recent advances in two-way paging, cellular telephones, and other portable wireless technologies have led to a demand for small and portable two-way messaging systems, and especially for systems which can both send and receive electronic mail (“e-mail”). Some wireless communications device manufacturers also desire to provide to consumers devices with which the consumer can operate with the same hand that is holding the device.
Disambiguation Background
Prior development work has considered use of a keyboard that has a reduced number of keys. As suggested by the keypad layout of a touch-tone telephone, many of the reduced keyboards have used a 3-by-4 array of keys. Each key in the array of keys contains multiple characters. There is therefore ambiguity as a user enters a sequence of keys, since each keystroke may indicate one of several letters. Several approaches have been suggested for resolving the ambiguity of the keystroke sequence, referred to as disambiguation.
One suggested approach for unambiguously specifying characters entered on a reduced keyboard requires the user to enter, on average, two or more keystrokes to specify each letter. The keystrokes may be entered either simultaneously (chording) or in sequence (multiple-stroke specification). Neither chording nor multiple-stroke specification has produced a keyboard having adequate simplicity and efficiency of use. Multiple-stroke specification is inefficient, and chording is complicated to learn and use.
Other suggested approaches for determining the correct character sequence that corresponds to an ambiguous keystroke sequence are summarized in the artide “Probabilistic Character Disambiguation for Reduced Keyboards Using Small Text Samples,” published in the Journal of the International Society for Augmentative and Alternative Communication by John L. Arnott and Muhammad Y. Javad (hereinafter the “Arnott article”). The Arnott article notes that the majority of disambiguation approaches employ known statistics of character sequences in the relevant language to resolve character ambiguity in a given context.
Another suggested approach based on word-level disambiguation is disclosed in a textbook entitled Principles of Computer Speech, authored by I. H. Witten, and published by Academic Press in 1982 (hereinafter the “Witten approach”). Witten discusses a system for reducing ambiguity from text entered using a telephone touch pad. Witten recognizes that for approximately 92% of the words in a 24,500 word dictionary, no ambiguity will arise when comparing the keystroke sequence with the dictionary. When ambiguities do arise, however, Witten notes that they must be resolved interactively by the system presenting the ambiguity to the user and asking the user to make a selection between the number of ambiguous entries. A user must therefore respond to the system's prediction at the end of each word. Such a response slows the efficiency of the system and increases the number of keystrokes required to enter a given segment of text.
H. A. Gutowitz, Touch-Typable Devices Based on Ambiguous Codes and Methods to Design Such Devices, WO 00/35091 (Jun. 15, 2000) discloses that the design of typable devices, and, in particular, touch-type devices embodying ambiguous codes presents numerous ergonomical problems and proposes some solutions for such problems. Gutowitz teaches methods for the selection of ambiguous codes from the classes of strongly-touch-typable ambiguous codes and substantially optimal ambiguous codes for touch-typable devices such as computers, PDA's, and the like, and other information appliances, given design constraints, such as the size, shape and computational capacity of the device, the typical uses of the device, and conventional constraints such as alphabetic ordering or Qwerty ordering.
Eatoni Ergonomics Inc. provides a system called WordWise, (Copyright 2001 Eatoni Ergonomics Inc.), adapted from a regular keyboard, and where a capital letter is typed on a regular keyboard, and an auxiliary key, such as the shift key, is held down while the key with the intended letter is pressed. The key idea behind WordWise is to choose one letter from each of the groups of letters on each of the keys on the telephone keypad. Such chosen letters are typed by holding down an auxiliary key while pressing the key with the intended letter. WordWise does not use a vocabulary database/dictionary to search for words to resolve ambiguous, unambiguous, or a combination thereof entries.
Zi Corporation advertises a next word prediction, eZiText(R) (2002 Zi Corporation), but to our knowledge does not anywhere suggest the presentation of multiple predictions, or the reorder of selection lists to give precedence to words matching context.
Other next word production systems that are known include iTAP, which is offered by Motorola's Lexicus division (http://www.motorola.com/lexicus/), and the adaptive recognition technology offered by AIRTX (http://www.airtx.com/).
Disambiguating an ambiguous keystroke sequence continues to be a challenging problem. For example, known approaches to disambiguation focus primarily upon completion of a partially entered sequence, and not upon predicting an as yet unentered sequence. Further, the user context is not typically taken into account when disambiguating an entered sequence, nor does the disambiguation of an entered sequence result in the taking of an action on behalf of a user, but rather merely focuses on the completion and display to a user of an intended sequence.
It would be advantageous to provide an approach to processing user inputs that results in predicting an as yet unentered sequence. Further, it would be advantageous to provide an approach in which the user context is taken into account when disambiguating an entered sequence. Additionally, it would be advantageous to provide an approach in which the disambiguation of an entered sequence results in the taking of an action on behalf of a user.
The invention concerns user entry of information into a system with an input device. A scheme is provided in which an entire word that a user wants to enter is predicted after the user enters a specific symbol, such as a space character. If the user presses an ambiguous key thereafter, rather than accept the prediction, the selection list is reordered. For example, a user enters the phrase “Lets run to school. Better yet, lets drive to “.””” After the user presses the space, after first entering the second occurrence of the word “to,” the system predicts that the user is going to enter the word “school” based on the context in which the user has entered that word in the past. Other predictions may be available if the user had previously entered text with the same context (for example, “to work”, “to camp”). These predictions are presented if the user presses the “next” key; the key specified for scrolling through the list. Should the user enter an ambiguous key after the space, then a word list is reordered to give precedence to the words that match context. For example, if the user presses the ambiguous key that contains the letters ‘a’, ‘b’, and ‘c’, the word “camp” is given precedence in the list.
The invention can also make predictions on other forms of context, such as the person to whom the message is sent, the person writing the message, the day of the week, the time of the week, etc.
Other embodiments of the invention contemplate anticipation of user actions, as well as words, such as a user action in connection with menu items, or a user action in connection with form filling.
User actions or inputs can affect the automatic changing of the device's state based on context. For example, the system might use context to change a mobile telephone from ‘ring’ to ‘vibrate’, during the time that the calendar shows that the user is in a meeting. Another embodiment uses location context to increase the mobile telephone volume when the user is outside or when the telephone detects high levels of background noise.
In another embodiment, the system learns the user habits. For example, based on the learned user action, the system is able to offer services to the user that the user may not be aware of.
In another embodiment, word prediction is based on the previous word context (bigram context), but might also use the previous ‘n’ words (trigram context, etc).
The invention concerns user entry of information into a system with an input device. A scheme is provided in which an entire word that a user wants to enter is predicted after the user enters a specific symbol, such as a space character. If the user presses an ambiguous key thereafter, rather than accept the prediction, the selection list is reordered. For example, a user enters the phrase “Lets run to school. Better yet, lets drive to “.””” After the user presses the space, after first entering the second occurrence of the word “to,” the system predicts that the user is going to enter the word “school” based on the context in which the user has entered that word in the past. Other predictions may be available if the user had previously entered text with the same context (for example, “to work”, “to camp”). These predictions are presented if the user presses the “next”. key; the key specified for scrolling through the list. Should the user enter an ambiguous key after the space, then a word list is reordered to give precedence to the words that match context. For example, if the user presses the ambiguous key that contains the letters ‘a’, ‘b’, and ‘c’, the word “camp” is given precedence in the list.
The invention can also make predictions on other forms of context, such as the person to whom the message is sent, the person writing the message, the day of the week, the time of the week, etc.
In another embodiment of the invention, rather than explicitly define the context parameters, such as sender/recipient/email/SMS/reply/forward/new email etc, the system is passed a series of parameters by the device which may or may not be relevant and the system learns which of the parameters are relevant for prediction and which ones are not.
In other embodiments of the invention, prediction may go beyond words and predict phrases. Prediction also may depend on grammar, semantics etc.
Other embodiments of the invention contemplate anticipation of user actions, as well as words and phrases, such as a user action in connection with menu items, or a user action in connection with form filling.
In further embodiments, the knowledge gained from user patterns can be uploaded/downloaded and/or served from a server allowing this information to be shared between devices and applications.
Discussion
For purposes of the discussion herein, with regard to the contextual completion of words, the term ‘Next Word Prediction’ (NWP) means, inter alia:
Predictions are made when the context in the current message matches the context in text the user previously entered. The concept of context can be very general. Context can mean the nature of the text entered. Context can also be combined with other contexts, such as, for example:
Finally, the prediction system might not know what the most important factors are for context, e.g. are they:
A further embodiment starts with a very broad set of possible factors and performs on-the-fly factor analysis of the user behavior to determine the most effective factor to include as context. This system does more than adapt to user behavior based on a priori specified factors, such as text, recipient, author, day, that are recorded, but is also intelligent enough to determine which factors are most important and emphasize those. This allows for better prediction.
Another example of prediction contemplated by the invention is based upon time of day. For example, when entering a message “let's meet for” at lunchtime, the word “lunch” is automatically predicted as the next word in the phrase. Later in the day the word “dinner” is predicted. The phrases stored also can have time of day associated with them as one of their attributes. This can be used to decide which phrases are relevant when the user is entering text.
Prediction of User Actions
Prediction can also be applied to other concepts as well, such as menus and user actions. When a user clicks a menu, the context module is provided with a keyword for that menu as the preceding context word. The context module then produces the entries previously selected from that menu because they are in the context database as entries preceded by that keyword, and those words can be re-ordered to the top of the menu. When a menu entry is selected, the context module then automatically notes it as having occurred with the menu tag as context for re-ordering to the front next time.
For example, when the user clicks the “Edit” menu, the context module is provided “Edit:” as context. If the last time a user clicked “Edit” the user chose “Find,” then “Find” is shown at the front of the menu. If the user moves past that to “Replace,” then a use of “Replace” in the context of “Edit:” is marked, so that the next time the user selects the “Edit” menu, “Replace” becomes the first entry, followed by “Find” and the other less-frequently used entries.
Note that for cell phones with limited screen space, moving commonly used entries to the front of a menu can make them immediately visible when they otherwise are not visible without scrolling.
In one embodiment, learning is used, in simple case context and reorder, to predict the next macro-level user interface (UI) behavior the user is expected to perform. Instead of reordering menus based on past usage, the normal menu format is superceded entirely by reordering immediate options for the next state/application the user is expected to go to, and the most likely option can be performed automatically, if desired.
For example, consider the situation where the system knows that whenever a user is n the settings mode on the phone, and they are choosing an input method or language, they are very likely to move next to their favorite messaging application. Then, instead of presenting the user with the normal menu tree to get to the messaging application, the system:
The last option would be “go to standard menu tree.” This way, the user is presented with the most likely next end state, rather than the most likely behavior directly from here, which in a normal phone would be going back to the menu tree. The user does not have to navigate a menu tree at all, but rather has one click (or no click) to go to the next task.
Additional embodiments of the invention apply to contexts that, for example pose any of the following questions:
Form filling is another useful function performed by the invention. Context sensitivity by field attribute, e.g. date only predicts months, day switches to numeric mode etc. This can similarly be applied to form input. The browser, or other form-input software, can provide the prompt for the input cell as context for text entry of the cell. Thus, for example, when a form prompts for “Name:” the user's name is available with few to no keystrokes, and other names he might fill in on forms are also made easier to enter.
Implementation of Contextual Word Prediction in Tegic T9 Technology
The herein disclosed next word prediction invention has been applied to Tegic Corporation's T9 technology (see www.tegic.com and www.t9.com). T9 technology combines the groups of letters found on each key of an input device, e.g. each phone key, with a fast-access dictionary of words, and recognizes what a user wants to input as text as he types. T9 offers the most commonly-used word for every key sequence entered by default and then lets the user access other choices with one or more presses of the NEXT or space key.
A block diagram of a preferred embodiment of a reduced keyboard disambiguating system hardware for a T9 implementation of the invention is provided in
It should be appreciated and understood by one of ordinary skill in the art that the discussion herein applies to symbols and sequences of symbols, which, when combined, make an object or part of an object. A typical example of a symbol is a character in any language, such as a letter, digit, punctuation mark, or any other symbol from a language. A typical example of an object or part of an object is a word or part of a word. However, the discussion herein equally applies to Japanese kana and Korean jamos. Also, it should be noted that the objects do not have to be linguistic, as the claimed disambiguating system herein can be used to predict icons, phone numbers, or inventory records, as long as a type of symbolic string representation is present. Therefore, it should be appreciated that use of the terms such as letter, word, word stem, and the like are not limited to only those applications, and are used to facilitate ease of reading and understanding the discussion herein.
For purposes of the discussion herein, T9 systems comprise at least three components:
Alphabetic T9 and Chinese T9 implementations can include the following supplemental databases:
When the user enters an active key sequence, Alphabetic T9 checks its databases (LDB, UDB, CDB, and MDB) for words that match the key sequence.
The Alphabetic T9 selection list is designed to provide the words a user most likely desires, based on 1) how frequently the user enters the word, 2) how common the word is in the language and 3) the previous context in which the keys were entered, so that the words appear at the beginning of the selection list.
The relative order of selection-list items depends on which databases are enabled and which features, such as selection list reordering and word completion and word prediction, are enabled.
The first word in Alphabetic T9's selection list is active by default. The term active word refers to the currently active selection-list word.
An example of the selection list order is given below. It is assumed that keys have been entered and no T9 database or database features are disabled.
When the user accepts the active word by moving the cursor off the word (pressing keys that correspond to the T9 key values T9KEYRIGHT, or T9KEYLEFT) Alphabetic T9:
When the user accepts the active word by entering a space (pressing keys that correspond to the T9 key value T9KEYSPACE) Alphabetic T9 performs the actions above, as well as the following actions:
Alphabetic T9 creates a selection list of predicted words. The maximum number of predicted words in the selection list depends on the literal value of the #define constant T9MAXCDBMATCHES. Unless a different value is assigned, this constant is set to 6.
The user selects and accepts a predicted word using the same process used in T9 for selecting and accepting a word. After the user accepts a predicted word (310), Alphabetic T9 processes the word (312). It will be appreciated by those skilled in the art that the invention may be applied to other disambiguation systems than T9, as well as other forms of T9 than Alphabetic T9.
Processing Words
The following discussion describes how to implement and operate an Alphabetic T9 Context Database (CDB). A CDB contains information on recently entered words. Alphabetic T9 uses this information to include predicted and completed words in the selection list. Whereas Alphabetic T9 checks its other databases only for words that match the current active key sequence, Alphabetic T9 also checks the CDB for the most recently accepted word, i.e. the most recently entered non-active word. CDB words do not necessarily have to match the active word to be included in the selection list. For predicted words, which appear in the preferred embodiment only when there is no active key sequence, the CDB match depends on the word before the active word. For completed CDB words, the match depends on both the word before the active word and the key sequence of the active word.
If Alphabetic T9 finds in the CDB the word the user has entered, Alphabetic T9 suggests the word that immediately follows in the CDB as a predicted word. For example, if the CDB contains the word pair “text message” and the user enters the word “text” and then presses the Space key, Alphabetic T9 places “message” in the selection list as a predicted word.
Also, if Alphabetic T9 finds in the CDB the word the user has entered, Alphabetic T9 suggests the word that immediately follows in the CDB as a completed word if the word matches the active key sequence, although the completed word contains additional characters. For example, if the CDB contains the word pair “text message” and the user enters the word “text,” adds a space, and then enters the key sequence 6-3-7-7, which corresponds to the first four letters in the word “message”, Alphabetic T9 places “message” in the selection list as a completed word.
In the preferred embodiment, CDB word completion operates independently of UDB custom-word completion, LDB word completion, and MDB word completion.
Implementing a CDB
To implement an Alphabetic T9 CDB, the integration layer should:
The implementation process described above assumes the CDB is stored in non-volatile memory and that CDB data are copied to RAM before activating CDB operations. If a different storage model is used, some of the steps above may not apply.
Allocating Persistent Memory
The integration layer must allocate persistent memory to store the CDB. When the integration layer activates CDB operations by calling T9AWCdbActivate, it copies the CDB from persistent memory to RAM. The database is referenced as an instance of the CDB Data Structure (T9AWCdbInfo).
Activating CDB Operations
If there is no existing CDB, e.g. the first time CDB operations are activated on the device, the integration layer must initialize all T9AWCdbInfo structure fields values to 0. If the integration layer has copied an existing CDB from persistent memory to RAM, it should not modify any T9AWCdbInfo structure field values.
The integration layer activates CDB operations by calling T9AWCdbActivate. When the integration layer calls this function, it provides a pointer to an instance of the C D B Data Structure (T9AWCdbInfo) for which it has allocated memory.
After the integration layer has activated enabled CDB operations, Alphabetic T9 automatically searches the CDB. The type of information Alphabetic T9 searches the CDB for depends on whether there is an active key sequence:
A CDB's size is indicated by the value of T9AWCdbInfo.wDataSize. The wDataSize field indicates the total size of T9AWCdbInfo. This includes the data area, where CD B data are stored, several related variables used by T9, and any structure-padding bytes added by the compiler environment.
If T9's Function API is used, it is not necessary to set the value of T9AWCdbInfo.wDataSize directly. Instead, the size of the CDB data area is provided as an argument to the function T9AWCdbActivate. While handling the function, T9 sets the value of T9AWCdbInfo.wDataSize.
One can make the CDB area as large wanted, but it must be at least T9MINCDBDATABYTES bytes. It is recommended, however, that the CDB be 1800*T9SYMBOLWIDTH bytes in size.
Resetting the CDB
When the integration layer activates CDB operations, Alphabetic T9 ensures the integrity of the database by:
If Alphabetic T9 detects a problem, it resets the CDB, which deletes all CDB data. This process occurs without any action by the integration layer, and Alphabetic T9 does not notify the integration layer that the CDB has been reset. The integration layer can explicitly reset the CDB by calling T9AWCdbReset. Under most circumstances, the integration layer does not need to call this function.
Indicating the Integration Layer Writes Data to the CDB
If the CDB is stored in a memory area that Alphabetic T9 cannot write to, the integration layer must write data to the database. Also, one may wish to have the integration layer write data to the CDB if it is desired to monitor what is written to the database or maintain a shadow copy of the CDB in non-volatile storage.
The integration layer informs Alphabetic T9 that it writes data by calling T9AWSetCdbWriteByOEM.
After the integration layer calls this event, Alphabetic T9 requests that the integration layer write data by calling T9REQCDBWRITE. If it is no longer necessary for the integration layer to write data to the CDB, the integration layer calls T9AWClrCdbWriteByOEM to indicate that Alphabetic T9 can write data directly.
Disabling Next-Word Prediction
When CDB operations are activated, T9 by default provides predicted words, i.e. words the user may want to enter, based on the words the user has already entered. Next-word prediction is available in both Ambiguous and Multitap text-entry modes.
Alphabetic T9 places predicted words in the selection list when the word the user has just entered is found in the CDB as the first part of one or more word pairs. Whatever word appears in the CDB after each instance of the word the user has just entered is provided as a predicted word.
It is possible to disable this functionality if one wants to use only CDB word completion, and not next-word prediction, in an Alphabetic T9 implementation. To disable CD B word completion, the integration layer calls T9AWClrCdbPrediction. To re-enable next-word prediction, the integration layer calls T9AWSetCdbPrediction.
Disabling CDB Word Completion
When CDB operations are activated, Alphabetic T9 by default places in the selection list completed CDB words that match the active sequence (and contain additional characters) if the word immediately before the active word is in the CDB immediately before the completed word(s). One can disable this functionality if one want to use only next-word prediction, and not CDB word completion, in an Alphabetic T9 implementation. To disable CDB word completion, the integration layer calls T9AWClrCdbCompletion. To re-enable CDB word completion, the integration layer calls T9AWSetCdbCompletion.
Note that CDB word completion operates independently of UDB custom word completion, LDB word completion, and MDB word completion. Many of the words in a CDB are also in other Alphabetic T9 databases. Alphabetic T9 suppresses these duplicates from the selection list. However, the potential effect of this duplication on other API events functions should be noted. For example, a UDB custom word that is deleted from the database still appears in the selection list if that word is also in the CDB. Likewise, if one were to disable LDB word completion, words in the LDB still appear in the selection list as completed words if they are also in the CDB and CD B word completion is enabled.
Handling T9 Requests
Depending on how the CDB is implemented, the integration layer may need to handle the following T9 request:
The integration layer should copy the CDB data to persistent memory when it terminates Alphabetic T9 if the database has been modified during the T9 session. T9 increments the value of T9AWCdbInfo.wUpdateCounter whenever it modifies the database. The integration layer can determine whether the database has been modified by comparing the value of wUpdateCounter after the session to its value before the session. If the value is different, the integration layer must copy the updated CDB data to persistent memory. Note that it is likely that T9 modifies the CDB during every session.
Operating an Alphabetic T9 CDB
Alphabetic T9 CDB operations consist of the following tasks:
Adding Data to a CDB
Alphabetic T9 automatically adds data to the CDB. Note that if the CDB is stored in a memory area that T9 cannot write to, the integration layer must write data to the CDB.
Retrieving Data from a CDB
Alphabetic T9 automatically retrieves data from the CDB.
Deleting Data from a CDB
Alphabetic T9 does not permit users or the integration layer to delete words from the database. Instead, Alphabetic T9 automatically begins deleting the oldest words in the database when it is nearly full. This removal process is referred to as garbage collection, and it occurs without any action by the user or integration layer.
Operation
In the presently preferred embodiment of the invention, saved context data are used to return a prediction of the next word upon pressing the space, and to filter the word completions after entering key strokes. This, in principle, allows a user to reduce the number of keystrokes by quickly retrieving words that are correctly predicted based on the previous word or words. This completion feature is presently implemented by saving user entered text in a Context DataBase (CDB), and returning those words that match context and keystrokes.
NWP saves the recently entered user text and uses that text to predict the next word that the user enters. For example, if the user has typed the phrases ‘hello Leslie,’ hello Inger,’ and ‘Hello Helena’ in the recent past, when the user types and accepts the word ‘hello’ by hitting space, the invention suggests:
If the user does not accept one of these words, but rather continues typing, the invention uses context to prioritize completions presented to the user. In an embodiment employing a 12-key input device, if the above user types the 4 key after hitting space, the selection list presented to the user is:
If the above user types the 43 key after hitting space, selection list presented to the user is:
After a space, the context database (CDB) objects make up the entire selection list. After pressing ambiguous keys, CDB objects appears as follows:
System state tracks completions after space with:
After a user selects ambiguous keys, system state tracks CDB completions in the preexisting way:
The T9 API consists of a global structure which holds word, wordlist, and buffer information that is used by the customer, and a set of events or functions for building, accepting, and deleting words, scrolling through word lists, and more. In alphabetic T9, the API structure is referred to as the T9AWFieldInfo structure (often referred to as pAWFieldInfo). The T9AWFieldInfo contains data that is specific to alphabetic T9. The T9AWFieldInfo structure contains another structure, T9FieldInfo (often referred to as pFieldInfo), which contains general word data that is also used in Japanese, Chinese, and Korean T9.
New API structure data and functions were added to T9 to implement NWP. The NWP feature is active if the host has allocated space for the context database and set the pFieldInfo->pCdbInfo to a non-zero value.
The following function API event is added to activate the CDB:
To set writing configuration:
To clear writing configuration:
To reset the CDB:
To break CDB context:
To fill context buffer:
To get word prediction:
To clear buffer but retain context:
To turn off CDB completion:
To turn on CDB completion:
To turn off CDB completion:
To turn on CDB completion:
The following request type is added:
This is used to request writes to CDB if external write is on.
There is no additional direct access to write to the CDB through the API.
Internal CDB Interfaces
Two interfaces to the CDB exist in the T9 embodiment of the invention:
Adds Saves word to context buffer and add to context database. This function is called only after a space has been entered.
This function retrieves context matches from the CDB.
This function resets the CDB.
This function activates the CDB.
Database
Present minimum database size requirements are 1800*symbol width (300 words*6 chars/word*symbolwidth bytes/char). This is 1800 for one-byte systems, and 3600 for two-byte systems.
The CDB saves recently entered text in the same form that the user enters it. The text is stored in a circular buffer. New words overwrite the least recent word in the CDB.
The CDB has global information in its header:
When requesting a word from the CDB, the system word builder passes a context buffer. Using the context buffer the CDB retrieves context matches in order of recency.
Writes
When the space key is hit, or white space is entered explicitly, the built word is written to the CDB. This happens in both ambiguous and multitap (MT) modes. The word also goes through its normal RUDB processing. There is no garbage cleanup in the CDB.
Context Buffer
A context buffer is maintained. The context buffer is updated on the pressing of space key and is cleared with any action that tends to lose context, such as cursoring and clearing. In a word API this is attached to the flushword function of a separate confirm function.
Functional Description
In the T9 embodiment, the NWP feature is active if:
The functional elements that apply when the next word prediction feature is active in T9 are listed below:
CDB completions appear ahead of UDB completions.
Use Case:
4) Expect selection list:
Leading word is agnostic to case, trailing word is case sensitive. If space is hit with caps-lock on, the predicted word is entirely in upper case.
Use Case:
CDB Completions Appear Ahead of UDB Completions.
Use Case:
CDB Completions Appear Ahead of UDB Completions.
Use Case:
CDB is language independent.
Reorder of Non-Completed Words
RUDB processes around reordering of non-completed words remain unchanged.
Clearing
Context predictions are not delivered after clearing a current word, but are delivered as the user begins typing again.
Punctuation
No context predictions are delivered across sentence punctuation.
Aging
There is no aging of the CDB, the least recent word is replaced by the most recent word entered.
Garbage Collection
When space is needed to enter a new word into the CDB, the least recent word in the CDB is removed to make room.
Entering Words in MT
Data for CDB is collected while in MT, and context predictions/completions are delivered in MT.
My Words
CDB processing occurs on the addition of space character, whether or not the context word was entered in a user maintained MyWords database.
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. For example, user actions or inputs can effect the automatic changing of the device's state based on context. For example, the system might use context to change a mobile telephone from ‘ring’ to ‘vibrate’, during the time that the calendar shows that the user is in a meeting. Another embodiment uses location context to increase the mobile telephone volume when the user is outside or when the telephone detects high levels of background noise.
In another embodiment, the system learns the user habits. For example, based on the learned user action, the system is able to offer services to the user that the user may not be aware of.
In another embodiment, word prediction is based on the previous word context (bigram context), but might also use the previous ‘n’ words (trigram context, etc).
Accordingly, the invention should only be limited by the Claims included below.
This application is a continuation-in-part of the following application, and claims the benefit thereof in accordance with 35 USC 120: U.S. application Ser. No. 10/176,933, filed Jun. 20, 2002, entitled “Explicit Character Filtering of Ambiguous Text Entry.” The '933 application was a continuation-in-part of U.S. application Ser. No. 09/454,406, filed on Dec. 31, 1999. The '933 application also claimed the benefit under 35 USC 119 of U.S. Provisional Application No. 60/110,890 which was filed on Dec. 4, 1998. The present application also claims the benefit under 35 USC 119 of U.S. Provisional Application No. 60/504,240, which was filed on Sep. 19, 2003. The entirety of the foregoing applications is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3967273 | Knowlton | Jun 1976 | A |
4164025 | Dubnowski et al. | Aug 1979 | A |
4191854 | Coles | Mar 1980 | A |
4339806 | Yoshida | Jul 1982 | A |
4360892 | Endfield | Nov 1982 | A |
4396992 | Hayashi et al. | Aug 1983 | A |
4427848 | Tsakanikas | Jan 1984 | A |
4442506 | Endfield | Apr 1984 | A |
4464070 | Hanft et al. | Aug 1984 | A |
4481508 | Kamei et al. | Nov 1984 | A |
4544276 | Horodeck | Oct 1985 | A |
4586160 | Amano et al. | Apr 1986 | A |
4649563 | Riskin | Mar 1987 | A |
4661916 | Baker et al. | Apr 1987 | A |
4669901 | Feng | Jun 1987 | A |
4674112 | Kondraske et al. | Jun 1987 | A |
4677659 | Dargan | Jun 1987 | A |
4744050 | Hirosawa et al. | May 1988 | A |
4754474 | Feinson | Jun 1988 | A |
RE32773 | Goldwasser et al. | Oct 1988 | E |
4791556 | Vilkaitis | Dec 1988 | A |
4807181 | Duncan, IV et al. | Feb 1989 | A |
4817129 | Riskin | Mar 1989 | A |
4866759 | Riskin | Sep 1989 | A |
4872196 | Royer et al. | Oct 1989 | A |
4891786 | Goldwasser | Jan 1990 | A |
4969097 | Levin | Nov 1990 | A |
5018201 | Sugawara | May 1991 | A |
5031206 | Riskin | Jul 1991 | A |
5041967 | Ephrath et al. | Aug 1991 | A |
5067103 | Lapeyre | Nov 1991 | A |
5131045 | Roth | Jul 1992 | A |
5133012 | Nitta | Jul 1992 | A |
5163084 | Kim et al. | Nov 1992 | A |
5200988 | Riskin | Apr 1993 | A |
5218538 | Zhang | Jun 1993 | A |
5229936 | Decker et al. | Jul 1993 | A |
5255310 | Kim et al. | Oct 1993 | A |
5258748 | Jones | Nov 1993 | A |
5289394 | Lapeyre | Feb 1994 | A |
5303299 | Hunt et al. | Apr 1994 | A |
5305205 | Weber et al. | Apr 1994 | A |
5339358 | Danish et al. | Aug 1994 | A |
5388061 | Hankes | Feb 1995 | A |
5392338 | Danish et al. | Feb 1995 | A |
5535421 | Weinreich | Jul 1996 | A |
5559512 | Jasinski et al. | Sep 1996 | A |
5642522 | Zaenen et al. | Jun 1997 | A |
5664896 | Blumberg | Sep 1997 | A |
5680511 | Baker et al. | Oct 1997 | A |
5748512 | Vargas | May 1998 | A |
5786776 | Kisaichi et al. | Jul 1998 | A |
5797098 | Schroeder et al. | Aug 1998 | A |
5805911 | Miller | Sep 1998 | A |
5818437 | Grover et al. | Oct 1998 | A |
5825353 | Will | Oct 1998 | A |
5847697 | Sugimoto | Dec 1998 | A |
5855000 | Waibel et al. | Dec 1998 | A |
5917890 | Brotman et al. | Jun 1999 | A |
5917941 | Webb et al. | Jun 1999 | A |
5926566 | Wang et al. | Jul 1999 | A |
5936556 | Sakita | Aug 1999 | A |
5937380 | Segan | Aug 1999 | A |
5937422 | Nelson et al. | Aug 1999 | A |
5952942 | Balakrishnan et al. | Sep 1999 | A |
5960385 | Skiena et al. | Sep 1999 | A |
5999950 | Krueger et al. | Dec 1999 | A |
6005498 | Yang et al. | Dec 1999 | A |
6009444 | Chen | Dec 1999 | A |
6041323 | Kubota | Mar 2000 | A |
6044347 | Abella et al. | Mar 2000 | A |
6054941 | Chen | Apr 2000 | A |
6098086 | Krueger et al. | Aug 2000 | A |
6120297 | Morse, III et al. | Sep 2000 | A |
6130628 | Schneider-Hufschmidt et al. | Oct 2000 | A |
6169538 | Nowlan et al. | Jan 2001 | B1 |
6172625 | Jin et al. | Jan 2001 | B1 |
6178401 | Franz et al. | Jan 2001 | B1 |
6204848 | Nowlan et al. | Mar 2001 | B1 |
6208966 | Bulfer | Mar 2001 | B1 |
6219731 | Gutowitz | Apr 2001 | B1 |
6223059 | Haestrup | Apr 2001 | B1 |
6246761 | Cuddy | Jun 2001 | B1 |
6304844 | Pan et al. | Oct 2001 | B1 |
6307548 | Flinchem et al. | Oct 2001 | B1 |
6362752 | Guo et al. | Mar 2002 | B1 |
6363347 | Rozak | Mar 2002 | B1 |
6377965 | Hachamovitch et al. | Apr 2002 | B1 |
6392640 | Will | May 2002 | B1 |
6424743 | Ebrahimi | Jul 2002 | B1 |
6466232 | Newell et al. | Oct 2002 | B1 |
6502118 | Chatterjee | Dec 2002 | B1 |
6542170 | Williams et al. | Apr 2003 | B1 |
6574597 | Mohri et al. | Jun 2003 | B1 |
6584179 | Fortier et al. | Jun 2003 | B1 |
6633846 | Bennett et al. | Oct 2003 | B1 |
6646573 | Kushler et al. | Nov 2003 | B1 |
6684185 | Junqua et al. | Jan 2004 | B1 |
6686852 | Guo | Feb 2004 | B1 |
6711290 | Sparr et al. | Mar 2004 | B2 |
6728348 | Denenberg et al. | Apr 2004 | B2 |
6734881 | Will | May 2004 | B1 |
6738952 | Yamamuro | May 2004 | B1 |
6751605 | Gunji et al. | Jun 2004 | B2 |
6757544 | Rangarjan et al. | Jun 2004 | B2 |
6801659 | O'Dell | Oct 2004 | B1 |
6807529 | Johnson et al. | Oct 2004 | B2 |
6864809 | O'Dell et al. | Mar 2005 | B2 |
6885317 | Gutowitz | Apr 2005 | B1 |
6912581 | Johnson et al. | Jun 2005 | B2 |
6934564 | Laukkanen et al. | Aug 2005 | B2 |
6947771 | Guo et al. | Sep 2005 | B2 |
6955602 | Williams | Oct 2005 | B2 |
6956968 | O'Dell et al. | Oct 2005 | B1 |
6973332 | Mirkin et al. | Dec 2005 | B2 |
6982658 | Guo | Jan 2006 | B2 |
6985933 | Singhal et al. | Jan 2006 | B1 |
7006820 | Parker et al. | Feb 2006 | B1 |
7020849 | Chen | Mar 2006 | B1 |
7027976 | Sites | Apr 2006 | B1 |
7057607 | Mayoraz et al. | Jun 2006 | B2 |
7061403 | Fux | Jun 2006 | B2 |
7075520 | Williams | Jul 2006 | B2 |
7095403 | Lyustin et al. | Aug 2006 | B2 |
7139430 | Sparr et al. | Nov 2006 | B2 |
7152213 | Pu et al. | Dec 2006 | B2 |
7256769 | Pun et al. | Aug 2007 | B2 |
7257528 | Ritchie et al. | Aug 2007 | B1 |
7272564 | Phillips et al. | Sep 2007 | B2 |
7313277 | Morwing et al. | Dec 2007 | B2 |
7349576 | Hotsberg | Mar 2008 | B2 |
7386454 | Gopinath et al. | Jun 2008 | B2 |
7389235 | Dvorak | Jun 2008 | B2 |
7395203 | Wu et al. | Jul 2008 | B2 |
7437001 | Morwing et al. | Oct 2008 | B2 |
7466859 | Chang et al. | Dec 2008 | B2 |
20020038207 | Mori et al. | Mar 2002 | A1 |
20020072395 | Miramontes | Jun 2002 | A1 |
20020119788 | Parupudi et al. | Aug 2002 | A1 |
20020135499 | Guo | Sep 2002 | A1 |
20020152075 | Kung et al. | Oct 2002 | A1 |
20020188448 | Goodman et al. | Dec 2002 | A1 |
20030011574 | Goodman | Jan 2003 | A1 |
20030023420 | Goodman | Jan 2003 | A1 |
20030023426 | Pun et al. | Jan 2003 | A1 |
20030054830 | Williams et al. | Mar 2003 | A1 |
20030078038 | Kurosawa et al. | Apr 2003 | A1 |
20030095102 | Kraft | May 2003 | A1 |
20030104839 | Kraft et al. | Jun 2003 | A1 |
20030119561 | Hatch et al. | Jun 2003 | A1 |
20030144830 | Williams | Jul 2003 | A1 |
20030179930 | Conrad et al. | Sep 2003 | A1 |
20030193478 | Ng | Oct 2003 | A1 |
20040049388 | Roth et al. | Mar 2004 | A1 |
20040067762 | Balle | Apr 2004 | A1 |
20040127197 | Rosking | Jul 2004 | A1 |
20040127198 | Roskind et al. | Jul 2004 | A1 |
20040135774 | La Monica | Jul 2004 | A1 |
20040153963 | Simpson et al. | Aug 2004 | A1 |
20040153975 | Williams et al. | Aug 2004 | A1 |
20040155869 | Robinson et al. | Aug 2004 | A1 |
20040163032 | Guo et al. | Aug 2004 | A1 |
20040169635 | Ghassabian | Sep 2004 | A1 |
20040201607 | Mulvey et al. | Oct 2004 | A1 |
20040203656 | Andrew et al. | Oct 2004 | A1 |
20040259598 | Wagner et al. | Dec 2004 | A1 |
20050017954 | Kay et al. | Jan 2005 | A1 |
20050114770 | Sacher et al. | May 2005 | A1 |
20060010206 | Apacible et al. | Jan 2006 | A1 |
20060129928 | Qiu | Jun 2006 | A1 |
20060136408 | Weir et al. | Jun 2006 | A1 |
20060155536 | Williams et al. | Jul 2006 | A1 |
20060158436 | LaPointe et al. | Jul 2006 | A1 |
20060173807 | Weir et al. | Aug 2006 | A1 |
20060190822 | Basson et al. | Aug 2006 | A1 |
20060193519 | Sternby | Aug 2006 | A1 |
20060236239 | Simpson et al. | Oct 2006 | A1 |
20060239560 | Sternby | Oct 2006 | A1 |
20070094718 | Simpson | Apr 2007 | A1 |
20070203879 | Templeton-Steadman et al. | Aug 2007 | A1 |
20070276814 | Williams | Nov 2007 | A1 |
20070285397 | LaPointe et al. | Dec 2007 | A1 |
20080130996 | Sternby | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
0319193 | Jun 1989 | EP |
0464726 | Jan 1992 | EP |
0540147 | May 1993 | EP |
0313975 | Dec 1994 | EP |
0651315 | May 1995 | EP |
0660216 | Jun 1995 | EP |
2298166 | Aug 1996 | EP |
0732646 | Sep 1996 | EP |
0751469 | Aug 2002 | EP |
1 296216 | Mar 2003 | EP |
1296216 | Mar 2003 | EP |
1031913 | Apr 2003 | EP |
1035712 | Apr 2003 | EP |
1320023 | Jun 2003 | EP |
1324573 | Jul 2003 | EP |
1 347362 | Sep 2003 | EP |
1347361 | Sep 2003 | EP |
2298166 | Aug 1996 | GB |
2383459 | Jun 2003 | GB |
1990-117218 | May 1990 | JP |
1993-265682 | Oct 1993 | JP |
8006939 | Jan 1996 | JP |
1997-114817 | May 1997 | JP |
1997-212503 | Aug 1997 | JP |
2002-351862 | Dec 2002 | JP |
WO8200442 | Feb 1982 | WO |
WO9007149 | Jun 1990 | WO |
WO9627947 | Sep 1996 | WO |
WO9704580 | Feb 1997 | WO |
WO9705541 | Feb 1997 | WO |
WO98-33111 | Jul 1997 | WO |
WO 03005842 | Jul 2003 | WO |
WO 0305842 | Jul 2003 | WO |
WO03058420 | Jul 2003 | WO |
WO03060451 | Jul 2003 | WO |
WO2004111871 | Jun 2004 | WO |
WO2006026908 | Aug 2005 | WO |
WO2004111812 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20050017954 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60110890 | Dec 1998 | US | |
60504240 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10176933 | Jun 2002 | US |
Child | 10866634 | US | |
Parent | 09454406 | Dec 1999 | US |
Child | 10176933 | US |