The present disclosure relates generally to the field of presenting information. More specifically, the present disclosure relates to a position, orientation, and situation dependent display system.
In order to communicate with large groups of people, many systems are commonly employed. For advertisements, common methods include flyers, billboards, illuminated displays, shifting monitor displays, and more. Similar methods are commonly utilized to provide publicly necessary information, such as maps or other signage, in highly populated areas. The most convenient way of communicating information to a crowd is often by presenting the information on a flat surface in a visible location. To be visible, information is generally mounted at high traffic areas at some height above the ground.
The convention means of communicating advertisements and other information is therefore highly limited by its geolocation. Advertisements are often static, presenting information at a given height that does not change or adapt to crowd sizes or types. The content of immobile displays may in some cases be changed periodically or sequentially, but still generally result in a stationary display with repeated contents. The message supports take up space on the ground or on a building, which could otherwise be better utilized.
Therefore, there is a need for improved methods and systems to efficiently display information to audiences that may overcome one or more of the above-mentioned problems and/or limitations.
This summary is provided to introduce a selection of concepts in a simplified form, that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter. Nor is this summary intended to be used to limit the claimed subject matter's scope.
According to some embodiments, a contextual presentation system is disclosed. The contextual presentation system may include a communication device. Further, the communication device may be configured for receiving the at least one presentation content from an external content providing device. Further, the contextual presentation system may include a storage device configured for storing each of at least one presentation content and at least one presentation criteria. Further, the contextual presentation system may include at least one sensor configured for sensing at least one contextual data associated with the contextual presentation system. Further, the contextual presentation system may include a processing device communicatively coupled with each of the communication device, the storage device and the at least one sensor. Further, the processing device may be configured for analyzing the at least one contextual data and the at least one presentation criteria. Further, the contextual presentation system may include at least one presentation device configured for presenting the at least one presentation content based on the analyzing. Further, the at least one presentation device may be communicatively coupled to the processing device.
Further, according to some embodiments, a contextual presentation system comprising a vehicle is also disclosed. The vehicle may be configured for providing locomotion to the contextual presentation system. Further, the contextual presentation system may include a storage device configured for storing each of at least one presentation content and at least one presentation criteria. Further, the contextual presentation system may include at least one sensor configured for sensing at least one contextual data. Further, the contextual data may include one or more of a position of the vehicle, an orientation of the vehicle, a current way-point associated with a trajectory of the vehicle and a distance travelled by the vehicle from a reference location. Further, the contextual presentation system may include a processing device communicatively coupled with each of the storage device and the at least one sensor. Further, the processing device may be configured for analyzing the at least one contextual data and the at least one presentation criteria. Further, the contextual presentation system may include at least one presentation device configured for presenting the at least one presentation content based on the analyzing. Further, the at least one presentation device may be communicatively coupled to the processing device.
Both the foregoing summary and the following detailed description provide examples and are explanatory only. Accordingly, the foregoing summary and the following detailed description should not be considered to be restrictive. Further, features or variations may be provided in addition to those set forth herein. For example, embodiments may be directed to various feature combinations and sub-combinations described in the detailed description.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various embodiments of the present disclosure. The drawings contain representations of various trademarks and copyrights owned by the Applicants. In addition, the drawings may contain other marks owned by third parties and are being used for illustrative purposes only. All rights to various trademarks and copyrights represented herein, except those belonging to their respective owners, are vested in and the property of the applicants. The applicants retain and reserve all rights in their trademarks and copyrights included herein, and grant permission to reproduce the material only in connection with reproduction of the granted patent and for no other purpose.
Furthermore, the drawings may contain text or captions that may explain certain embodiments of the present disclosure. This text is included for illustrative, non-limiting, explanatory purposes of certain embodiments detailed in the present disclosure.
As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art that the present disclosure has broad utility and application. As should be understood, any embodiment may incorporate only one or a plurality of the above-disclosed aspects of the disclosure and may further incorporate only one or a plurality of the above-disclosed features. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the embodiments of the present disclosure. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present disclosure.
Accordingly, while embodiments are described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present disclosure, and are made merely for the purposes of providing a full and enabling disclosure. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded in any claim of a patent issuing here from, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.
Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present disclosure. Accordingly, it is intended that the scope of patent protection is to be defined by the issued claim(s) rather than the description set forth herein.
Additionally, it is important to note that each term used herein refers to that which an ordinary artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the ordinary artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the ordinary artisan should prevail.
Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.”
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar elements. While many embodiments of the disclosure may be described, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be modified by substituting, reordering, or adding stages to the disclosed methods. Accordingly, the following detailed description does not limit the disclosure. Instead, the proper scope of the disclosure is defined by the appended claims. The present disclosure contains headers. It should be understood that these headers are used as references and are not to be construed as limiting upon the subjected matter disclosed under the header.
The present disclosure includes many aspects and features. Moreover, while many aspects and features relate to, and are described in the context of presenting information, embodiments of the present disclosure are not limited to use only in this context.
According to some embodiments, the present disclosure relates generally to an information display system mounted on a flying machine. More specifically, the disclosed display system for unmanned aerial system (UAS) is a means of displaying geolocation-and-orientation-based interactive information, images and multimedia to people within crowds and populated areas, thus enabling advertisements, maps, entertainment, event announcement, sports score, traffic information and more to be displayed while flying without consuming much ground space.
The disclosed position, orientation and situation dependent display system for unmanned aerial system (UAS) is a set of displays, including various monitors, projectors, and other illuminated screens, mounted to an unmanned aircraft such as a multi-copter drone or an airship. The unmanned aircraft can be any of a variety of airborne support means, including multi-propeller copters, fixed wing Unmanned Aerial Vehicle (UAV), manned or unmanned airship, balloon-based aerostat, and more. The given structure utilizes a series of sensors to determine aircraft orientation, geolocation position, and distance vector relative to groups of people. This data can then be utilized to change the image size and content accordingly, as well as to adjust the position of the aircraft to maximize content readability and visibility. The disclosed hardware and algorithm with Global Navigation Satellite System (GNSS) such as GPS and Inertial Measurement Unit (IMU) sensors enable the system to also be aware of the distance and direction to audience position, the types of audience groups within viewing proximity, and determine whether people are within viewing proximity or not. Correspondingly, the UAS mounted display system changes its multimedia contents, controls the brightness, or deactivates the display device to save energy. Further, an algorithm is disclosed to determine the viewing area of UAS display system to check whether specific audience group can see the display or not.
The disclosed system is configured to display information while moving close to large crowds and audiences without requiring ground space. Further, the disclosed system is a means of creating dynamic messages in which not only the content can be changed, but also the position and orientation of displays mat be changed in response to local and general data, thereby making the information presentation responsive to audience crowd densities and types.
Referring now to figures,
A user 112, such as the one or more relevant parties, may access online platform 100 through a web-based software application or browser. The web-based software application may be embodied as, for example, but not be limited to, a website, a web application, a desktop application, and a mobile application compatible with a computing device 2500.
Further, the contextual presentation system 200 may include a storage device 204 configured for storing each of at least one presentation content and at least one presentation criteria. The at least one presentation criteria may include rules that specify what is to be presented, to whom, where, when and how.
Further, the contextual presentation system 200 may include at least one sensor 206 configured for sensing at least one contextual data associated with the contextual presentation system 200.
In some embodiments, the at least one sensor 206 may include a location sensor configured for detecting a geographical location of the contextual presentation system 200 and an orientation sensor configured for detecting an orientation of the contextual presentation system 200 in relation to a reference plane, such as the ground. In further embodiments, the orientation may be a characteristic associated with the presentation device such as a display device. Accordingly, the plane of the display device may be determined to be in one of several possible orientations with respect to a reference place, such as the ground.
In some embodiments, the at least one sensor 206 may include a motion detector configured to detect motion of the contextual presentation system 200. This may include detection of any type of motion (such as translation, rotation, oscillation etc.) and any degree of motion (such as speed, velocity etc.).
In some embodiments, the at least one sensor 206 may be configured for sensing at least one environmental variable associated with an environment surrounding the contextual presentation system 200. This at least one environmental variable may include one or more of ambient light characteristics, ambient sound characteristics, characteristics of objects (e.g. buildings, poles, people) in the vicinity of the contextual presentation system and so on.
In some embodiments, the at least one sensor 206 may include an image capturing device configured for capturing an image. Further, a processing device 208 may be configured for detecting at least one object represented in the image.
Further, the contextual presentation system 200 may include the processing device 208 communicatively coupled with each of the communication device 202, the storage device 204 and the at least one sensor 206. Further, the processing device 208 may be configured for analyzing the at least one contextual data and the at least one presentation criteria. Further, the contextual presentation system 200 may include at least one presentation device 210 configured for presenting the at least one presentation content based on the analyzing. Further, the at least one presentation device 210 may be communicatively coupled to the processing device 208.
In some embodiments, the contextual presentation system 200 may be a vehicle. For example, the vehicle may be one or more of a land vehicle, a water craft, an aerial vehicle and a space vehicle. Further, the contextual data may include one or more of a position of the vehicle, an orientation of the vehicle, a current way-point associated with a trajectory of the vehicle and a distance travelled by the vehicle from a reference location. Further, the reference location may be, for example, an origin location from where the vehicle begins a journey. Alternatively, and/or additionally, the reference location may be a waypoint on the trajectory. Further, in some embodiments, the reference location may be any arbitrary location on the trajectory and/or in the vicinity of the trajectory.
In some embodiments, the at least one object may include a plurality of individuals. Further, the processing device 208 may be further configured for detecting a population size associated with the plurality of individuals.
In some embodiments, the processing device 208 may be configured for detecting at least one demographic characteristic associated with the plurality of individuals.
In some embodiments, the at least one sensor 206 may include a distance sensor configured to measure a distance between the contextual presentation system 200 and the plurality of individuals.
In some embodiments, the processing device 208 may be configured for determining at least one presentation region based on the analyzing of the at least one contextual data.
In some embodiments, the processing device 208 may be configured for determining absence of an individual within the at least one presentation region.
In some embodiments, the processing device 208 may be configured for deactivating the at least one presentation device 210 based on determining the absence of an individual within the at least one presentation region.
In some embodiments, the communication device 202 may be further configured for receiving user data from a plurality of user devices. Further, the user data may include a plurality of locations corresponding to the plurality of user devices.
In some embodiments, the user data further may include a plurality of user preferences corresponding to the plurality of user devices.
In some embodiments, the at least one presentation device 210 may include a plurality of presentation devices configured for presenting a plurality of presentation content to a plurality of presentation regions. For example, the plurality of presentation regions may include a plurality of viewing areas corresponding to a plurality of display devices. Further, a first presentation device of the plurality of presentation devices may be configured for presenting a first presentation content consumable in a first presentation region. Further, a second presentation device of the plurality of presentation devices may be configured for presenting a second presentation content consumable in a second presentation region. Further, the first presentation content may be dissimilar to the second presentation content.
In an exemplary embodiment, the contextual presentation system 200 may be an unmanned aerial vehicle (UAV) 302 as shown in
Further, the processing device 208 may be further configured for controlling one or more of a position, an orientation, a speed, a velocity, an acceleration and a flight path of the UAV 302 in relation to a reference point.
Further, each of the quadcopter Unmanned Aerial System (UAS) 600 and the unmanned airship drone 1000 (hereon referred to as mobile UAS) enables the public display of information, such as advertisements, maps, event information, and more, by flying in public areas without consuming ground space such as a top of a building or a billboard stand.
Further, the mobile UAS may include one or more of a hovering means, a UAV body frame (such as a multi-copter or airship respectively), a flight and display control computer, GNSS & IMU sensor and display equipment such as the flat panel displays 602-604 and 1002-1004. Further, the flat panel displays 602-604 and 1002-1004 may include one or more LCD/LED TV, Organic LED (OLED) TV, e-ink panel, Electro-Luminescence (EL) panel, LED strips and LED image curtain or projectors.
The hovering means may enable the mobile UAS to float, suspended, in place in midair. For example, the hovering means may include a plurality of propellers and a plurality of motors, piston engines, or jet-turbines, as shown in
In an alternative embodiment, the hovering means may include a balloon 1006, as shown in
Further, the mobile UAS may include a rigid support fuselage frame that provides support to several features, and arrangement of those features relative to the hovering means. Further, the frame may include a power unit, a plurality of sensors, an on-board computer or micro controller unit (MCU), at least one display, and a machine vision camera. The power unit provides electrical power to components as necessary. The power unit comprises a battery, a plurality of solar panels, and a plurality of electrical connections. The battery is an electrical energy storage unit that enables collection and subsequent distribution of electrical power to the various components of the frame. Optionally, a plurality of solar panels can be mounted for a set of energy generation units that convert solar power into electrical power, thus providing a means for replacing energy lost during use of the battery. The plurality of electrical connections is a series of wires, resistors, and other common electrical components that enable connection of the plurality of sensors and the hovering means to the power unit. The plurality of sensors is a set of devices that enable the mobile UAS to respond to changes in its position and in its environment. The plurality of sensors and components comprises at least one local computer like on-board mini-PC or a micro controller unit (MCU), flight support sensor, environment sensor like ambient light detector, a global navigation satellite system, and an inertial measurement unit. Further, each environment sensor provides feedback from the immediate environment of mobile UAS, thus enabling it to respond to those changes, such as ambient light intensity. The at least one local data sensor may include one or more of a camera, an optical sensor, an acoustic sensor, a 2D/3D accelerometer, a 2D/3D gyroscope, and a 2D/3D magnetic compass. The camera enables capture of visual data relating to the proximal audience or environment. The optical sensor is a sensor that can measure distance of a solid object from the optical sensor. The acoustic sensor measures the decibel level of the environment. Data collected from the optical sensor and the acoustic sensor may be used to adjust the distance of the mobile UAS from objects and crowds. The 2D/3D accelerometer is a measurement device that tracks the orientation of the mobile UAS. The gyroscope similarly measures the angular orientation changes of the mobile UAS. Further, the magnetic compass determines overall orientation of the mobile UAS. Collected data from the 2D/3D accelerometer, the gyroscope, and the magnetic compass may be utilized to calibrate and control the balance and heading of the mobile UAS in the air as well as it may determine the viewing area in which the audience may see the display on UAS. The global navigation satellite system (GNSS) including GPS, Globalnaya Navigazionnaya Sputnikovaya Sistema (GLONASS), Galileo, and BeiDou Navigation Satellite System (BDS) is a means of acquiring geolocation data, often in the form of various styles of coordinates, to the computer of the mobile UAS for subsequent interpretation and adjustment. Similarly, the Inertial Measurement Unit (IMU) measures changes in the acceleration, rotation and orientation of the mobile UAS. The inertial measurement unit includes a magnetic sensor. The magnetic sensor is a device which analyzes ambient magnetic field influence. Combined, the global navigation satellite system and the inertial measurement unit provide the computer of the mobile UAS with data regarding the position of the mobile UAS on a global scale, which enables the user to modify the position of the mobile UAS based on coordinates, thereby enabling the mobile UAS to target more densely populated areas during events and the like. The display is at least one screen or generally flat panel display device upon which images may be displayed, such as advertisements, maps, event information, or more, as seen in
The computer or micro controller unit (MCU) of the mobile UAS is a device capable of storing, interpreting, and processing data collected from the plurality of sensors, and converting data and command signals from the user into responses controlling the at least one display and the hovering means. The computer comprises a wireless transceiver, software, and at least one memory and data storage device. The wireless transceiver is a device capable of sending and receiving information and commands, such as manual position control and content toggling controls, from the user's mobile device or other equipped devices. The software is a set of commands written in any of a variety of programming languages that controls the logic and commands of the mobile UAS, thus enabling the mobile UAS to interpret and transform incident data into signals for use by relevant components. The at least one memory and data storage device is a set of short-term and long-term data storage units with its own set of software commands capable of sending and receiving information to and from the computer of the mobile UAS.
Further, the computer of the mobile UAS acquires a Position, Orientation and Situation data then changes display contents of the display system on the mobile UAS. The user loads display contents data containing visual information to be shown on the at least one data storage unit into the computer or it may be uploaded with wireless communication before or while flying. The user then brings the mobile UAS to an event or public area. The hovering means activates, enabling the mobile UAS to take flight. The display illuminates, showing the message or information uploaded by the user, i.e. remote pilot or by the audience with wireless communications. The mobile UAS utilizes the plurality of sensors to determine crowd data and position data, and adjusts its height and lateral position accordingly. The user may also control the device settings by communicating with the wireless transceiver of the mobile UAS. Upon completion of message delivery of an event, or in general upon completion of use of the mobile UAS, the hovering means guides back to the user. The mobile UAS may be then prepared for subsequent application.
Further, advertisements are often made for a certain demographic and placed in an area or published on different forms of media that will be most effective. The market for a product advertised may be based on specific audience groups at different positions with different ages, ethnicities, preferences, and practices. In situations where an audience may vary in these factors, the advertisement should change depending on what audience's position and attention it is trying to attract.
Further, advertisements at ground level with zero height are not practical for large crowds of people. Billboards are large stationary objects that often cannot be viewed by an entire audience easily, sometimes requiring multiple billboards with the similar advertisements to be displayed. Changing what is being advertised is time consuming and may become outdated quickly. Another popular method is with aerial advertisements. Aerial vehicles have limited advertisement capabilities, though, and have a fixed visual that cannot be changed easily while in flight. Electronic advertisements in the air rely on a fixed timer that may display what the designer chooses in the same rotating pattern.
The mobile UAS equipped with a changing visual based on position and orientation may have the mobile ability to address a multitude of people at once and may change what is displayed as its advertisement depending on its geo-position location and cardinal direction, i.e. orientation, as shown in
Specifically,
The ability of the disclosed mobile UAS to cover a widespread area with its movement may allow many more viewers to see the display. Visuals are often limited to a certain area that may be viewed only by those in its line of sight. The mobile UAS may be seen by more persons and may also be able to adjust its advertisements depending on the crowd or individuals it is near to. This may be useful at a variety of sporting events, to redirect traffic and inform drivers of hazards, or to send differing messages depending on which way the viewer is facing the mobile UAS.
According to some embodiments, the computer on the mobile UAS may be programmed to display images or videos using various programs. A changing display software may utilize a computer implemented algorithm capable of reading Global Navigation Satellite Systems (GNSS, which contains a Global Positioning System) data, as well as an IMU (Inertial Measurement Unit) which has a vision based rotation measurement using 2D/3D accelerometer, gyroscope and magnetic compass, to gather the mobile UAV's current orientation and position. This data may then be used to change the advertisement shown accordingly, changing it based on latitude and longitude, which cardinal direction it is facing, and what orientation the UAS is currently at.
Further, the mobile UAS has mobility and may be able to rotate itself according to what audience or persons the user may like to target. It may use its own battery power and additional external solar panels to power the projector that may run such advertisements and change them for hours at a time.
At 1502, the method 1500 may include checking initial position and orientation based on data received from a connected GNSS and IMU. The obtained position and orientation data may be then stored.
At 1504, the method 1500 may include the mobile UAS displaying a desired advertisement (or start-up ad) based on the initial position and orientation.
Then, at 1506, the method 1500 may include initiating a timer. Thereafter, at 1508, the method 1500 may include continuously checking the position and orientation.
Then, at 1510, the method 1500 may include detecting a change in the position and orientation. The detecting may include comparing the current position and orientation against a pre-determined set of coordinates or cardinal direction. If there is a change in the position or orientation, then the method 1500 may go to the step 1512. At 1512, the method 1500 may include storing the new position and orientation. Then, at 1514, the method 1500 may include triggering change of advertisement display by sending a signal to a projector to change the currently displayed advertisement. Further, at 1516, the method 1500 may include changing the displayed advertisement. Thereafter, the method 1500 may go to a step 1518. Further, if change is not detected at 1510, then the method 1500 may go to a step 1518.
At 1518, the method 1500 may include checking if the user terminates the algorithm. The user may be able to end the timer's cycles by interrupting the current timer tick with a check for input. A check may also be performed to assure the algorithm that data is still being read from the GNSS and that the position may be updated. If the GNSS is not functioning or an error occurs while the data is being gathered and processed, then the algorithm is terminated (at 1520) to avoid malfunctions with the UAS and external sensors and the method goes to 1522.
The unexpected situation or error may cause an undetectable malfunction wherein the position is not checked and therefore the advertisement is not changed accordingly. This may defeat the purpose of the algorithm and may render the changing advertisement ineffective. Therefore, it is necessary to perform a check to make sure all connected systems are performing accordingly and updating as needed.
Therefore, if the sensors are functioning correctly and reading in data after the next timer tick then the program will continue to run uninterrupted (goes to step 1524), continuously updating until either an error occurs or the operator intervenes.
The mobile UAS may also change the displayed image and multimedia based on its distance it traveled or distance to the waypoints as well as its orientation. Using GNSS to calculate a travel distance on a predetermined flight path or distance to waypoints, the mobile UAS may display various advertisements based on its orientation during continuous flight or once it reaches certain waypoints on its flight path.
Similarly, the mobile UAS may be able to collect information to determine the orientation of the mobile UAS and whether there is a viewing audience present in the direction that the advertisement is showing. This may be done using sets of coordinates from the GNSS in correlation with the orientation provided by the IMU. For example, the viewing areas 1206-1208 and the viewing areas 1218-1220 shown in
Further, a viewing area (in the viewing areas 1206-1208 and the viewing areas 1218-1220) may be determined by a triangular area or trapezoid area using a set of predetermined coordinates lying along multiple lines on an XY-Plane. For example, a triangular viewing area 1602 (for a mobile UAS 1608) may be defined with three line-equations as shown by a graph 1604 in the
Similarly, following line equations 6-7 are obtained.
f
b(x, y)=0 [6]
f
c(x, y)=0 [7]
f
a<0,fb>0, fc<0 [8]
Further, the mobile UAS may determine whether the audience is present inside a viewing area so that they may see the display. If there is no audience in the viewing area, the mobile UAS may turn off the display to save energy.
Further, the mobile UAS may be capable of using the calculated distance and angles to adjust the visual's brightness. Not only polygonal lines in the Cartesian coordinates but also a cylindrical or spherical coordinate system may be used to define viewing area efficiently. A viewing area may be divided into sub-areas based on distances and angles from the mobile UAS. Further, different multimedia such as different contents and different shapes and sizes of fonts, symbols, and images may be displayed for each sub-area where the audience points are temporarily located.
At 1704, the method 1700 may include the mobile UAS displaying a desired advertisement (or start-up ad) based on the initial position and orientation.
Then, at 1706, the method 1700 may include initiating a timer. Thereafter, at 1708, the method 1700 may include continuously checking the position and orientation.
At 1710, the method 1700 may include checking if the audience is present inside the viewing area. If it is determined that the audience is present inside the viewing area, then the method 1700 goes to step 1712. At 1712, a new position and orientation of the mobile UAS is stored. Thereafter, at 1714, the method 1700 includes calculating distance and angle of the audiences. Accordingly, at 1716, the method 1700 includes showing the correct multimedia. Further, at 1718, the method 1700 includes checking for user termination of the method 1700. If the termination is not detected at 1720, then the timer tick occurs at 1722 and the method 1700 goes back to step 1708.
However, if the termination is detected at 1720, then the method 1700 goes to 1724 for a stop or fail-safe action.
Further, repetition of the method 1700 is steadily performed for many different audience positions and continuously changing viewing areas on the flight path.
The mobile UAS 1800 may then fly to the path point 1816. At the mobile UAS 1800, the mobile UAS 1800 turns its orientation and it may display different contents to each audience in viewing area based on the mobile UAS's 1800 orientation although the mobile UAS's 1800 position may be same. At the path point 1816, before the mobile UAS 1800 makes the turn, the audiences 1808 and 1810 are inside the viewing areas so images may be displayed on the both displays 1802-1804.
At the path point 1816, after the mobile UAS 1800 makes the turn, the audience 1808 is excluded and the audience 1812 is included in the viewing areas so images may be displayed on the both displays 1802-1804. Different images may be displayed to the different audiences. Then, at the path point 1818, the mobile UAS 1800 may show the same images as the audiences 1810-1812 are still included in the viewing areas.
The conventional fixed billboards and other display devices may rotate through advertisements based on an elapsed amount of time. However, they change solely on the fact that a certain period of time has passed. The disclosed systems and method may also consider the positioning and orientation of the mobile UAS and may be pre-programmed for determining how the advertisement may change and what it may change to. Further, the disclosed systems and method also utilize data gathering sensors such vision camera to recognize landmarks or QR/Bar codes, ambient light sensor, gyroscope or magnetic compass sensor to direct its functionality and provide viewers with visuals that pertain to them. Further, additional situational response may be directed from wireless radio control or wireless communication methods.
The disclosed systems and method may use data gathered from the GNSS and IMU to determine what images should be displayed. An IMU provides a digital-output of the momentary magnetic field strength in X, Y-Axis (for 2D sensor) and X, Y, Z-Axis (for 3D sensor) vector components. The three vector-components, Mx, My, and Mz, respectively in the Cartesian coordinates, may be used to determine the circular cylindrical coordinate system equivalents which are ρ, φ, and z. Mx, My, and Mz may also be used to determine a spherical coordinate system using transformation equations to find r, φ, and θ.
Therefore, depending on the situation in which the mobile UAS is being used, the disclosed systems and method may use either of these three coordinate systems, whichever is most suitable for the given situation. Further, the variables may be used to determine the coordinates and the current orientation of the mobile UAS, as well as a mathematical representation of the possible orientations and directions surrounding it.
Further, the position of mobile UAS is determined by GNSS, and the angle ϕ from an IMU magnetic sensor may be used to represent at which point the visual displayed may be changed. A 360° cylinder may be defined around the IMU. Thereafter, the computer of the mobile UAS determine at what degree of rotation (ranging from zero to three-hundred-sixty) visuals are displayed.
{right arrow over (M)}(Mx,My,Mz)={right arrow over (M)}(r,φ,θ)
r=√{square root over (Mx2+My2+Mz2)}
M
x
=r cos φ sin θ
M
y
=r sin φ sin θ
M
z
=r cos θ
0<ρ<Maximum Distance, ϕ1<ϕ<ϕ2
For multiple audiences in multiple groups, mean average position of each group may be obtained using equation 9 below.
wherein, Ai refers to location of an audience member in a group A, and
Accordingly, an audience 2404 may include individuals 2406-2410. Thereafter, using the equation 9 above, mean average position 2412 of the audience 2404 may be determined.
Similarly, an audience 2414 may include individuals 2416-2422. Thereafter, using the equation 9 above, mean average position 2424 of the audience 2414 may be determined.
With reference to
Computing device 2500 may have additional features or functionality. For example, computing device 2500 may also include additional data storage devices (removable and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Such additional storage is illustrated in
Computing device 2500 may also contain a communication connection 2516 that may allow device 2500 to communicate with other computing devices 2518, such as over a network in a distributed computing environment, for example, an intranet or the Internet. Communication connection 2516 is one example of communication media. Communication media may typically be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other wireless media. The term computer readable media as used herein may include both storage media and communication media.
As stated above, a number of program modules and data files may be stored in system memory 2504, including operating system 2505. While executing on processing unit 2502, programming modules 2506 (e.g., application 2520 such as a media player) may perform processes including, for example, one or more stages of methods, algorithms, systems, applications, servers, databases as described above. The aforementioned process is an example, and processing unit 2502 may perform other processes. Other programming modules that may be used in accordance with embodiments of the present disclosure may include data processing application, machine learning application, etc.
Generally, consistent with embodiments of the disclosure, program modules may include routines, programs, components, data structures, and other types of structures that may perform particular tasks or that may implement particular abstract data types. Moreover, embodiments of the disclosure may be practiced with other computer system configurations, including hand-held devices, general purpose graphics processor-based systems, multiprocessor systems, microprocessor-based or programmable consumer electronics, application specific integrated circuit-based electronics, minicomputers, mainframe computers, and the like. Embodiments of the disclosure may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
Furthermore, embodiments of the disclosure may be practiced in an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors. Embodiments of the disclosure may also be practiced using other technologies capable of performing logical operations such as, for example, AND, OR, and NOT, including but not limited to mechanical, optical, fluidic, and quantum technologies. In addition, embodiments of the disclosure may be practiced within a general-purpose computer or in any other circuits or systems.
Embodiments of the disclosure, for example, may be implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer readable media. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. The computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process. Accordingly, the present disclosure may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.). In other words, embodiments of the present disclosure may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system. A computer-usable or computer-readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific computer-readable medium examples (a non-exhaustive list), the computer-readable medium may include the following: an electrical connection having one or more wires, a portable computer diskette, a random-access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CD-ROM). Note that the computer-usable or computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
Embodiments of the present disclosure, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments of the disclosure. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
While certain embodiments of the disclosure have been described, other embodiments may exist. Furthermore, although embodiments of the present disclosure have been described as being associated with data stored in memory and other storage mediums, data can also be stored on or read from other types of computer-readable media, such as secondary storage devices, like hard disks, solid state storage (e.g., USB drive), or a CD-ROM, a carrier wave from the Internet, or other forms of RAM or ROM. Further, the disclosed methods' stages may be modified in any manner, including by reordering stages and/or inserting or deleting stages, without departing from the disclosure.
Although the disclosure has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the disclosure.
The current application claims a priority to the U.S. Provisional Patent application Ser. No. 62/560,505 filed on Sep. 19, 2018.
Number | Date | Country | |
---|---|---|---|
62560505 | Sep 2017 | US |