Various embodiments generally may relate to the field of wireless communications.
The summary provides a brief description of one or more of embodiments and/or examples found within this disclosure.
This disclosure describes a user equipment (UE), or an apparatus thereof, for a wireless communication system operating in a licensed spectrum and an unlicensed spectrum. The UE includes processor circuitry configured to determine a first listen before transmission (LBT) priority class for a first order of uplink (UL) transmission and a second LBT priority class for a second order of UL transmission. The processor circuitry is configured to determine a total length of an UL transmission comprising a first length of the first order of UL transmission and a second length of the second order of UL transmission. The processor circuitry is configured to perform, upon determination that the first LBT priority class is at least equal to the second LBT priority class, and a maximum channel occupancy time (MCOT) corresponding to the first order of UL transmission is at least the total length of the UL transmission, an LBT procedure to acquire a channel for the UL transmission. The UE device also includes radio front end circuitry that is coupled to the processor circuitry, and configured to perform, in response to acquiring the channel, the UL transmission using the first order of UL transmission followed by the second order of UL transmission. In embodiments, the first order of UL transmission is a configured grant (CG) transmission and the second order of UL transmission is a grant-based (GB) transmission, or the first order of UL transmission is the GB transmission and the second order of UL transmission is the CG transmission.
This disclosure also describes a method being performed by a user equipment (UE) for a wireless communication system operating in a licensed spectrum and an unlicensed spectrum. The method includes determining a first listen before transmission (LBT) priority class for a first order of uplink (UL) transmission and a second LBT priority class for a second order of UL transmission. The method includes performing an LBT procedure to acquire a channel for the UL transmission, upon determination that the first LBT priority class is at least equal to the second LBT priority class, and a maximum channel occupancy time (MCOT) corresponding to the first order of UL transmission is at least the total length of the UL transmission, a total length of an UL transmission comprising a first length of the first order of UL transmission and a second length of the second order of UL transmission. The method includes performing the UL transmission, in response to acquiring the channel, using the first order of UL transmission followed by the second order of UL transmission. In embodiments, the first order of UL transmission is a configured grant (CG) transmission and the second order of UL transmission is a grant-based (GB) transmission, or the first order of UL transmission is the GB transmission and the second order of UL transmission is the CG transmission.
This disclosure also describes computer-readable media (CRM) including computer instructions to be executed by one or more processors of a user equipment (UE) for a wireless communication system operating in a licensed spectrum and an unlicensed spectrum. The computer instructions cause the one or more processors to determine a first listen before transmission (LBT) priority class for a first order of uplink (UL) transmission and a second LBT priority class for a second order of UL transmission. The instructions cause the one or more processors of the UE to determine a total length of an UL transmission comprising a first length of the first order UL transmission and a second length of second order UL transmission. The instructions cause the one or more processors of the UE to perform an LBT procedure, upon determination that the first LBT priority class is at least equal to the second LBT priority class, and a maximum channel occupancy time (MCOT) corresponding to the first order of UL transmission is at least the total length of the UL transmission, to acquire a channel for the UL transmission. The instructions cause the one or more processors of the UE to perform the UL transmission, in response to acquiring the channel, using the first order of UL transmission followed by the second order of UL transmission. In embodiments, the first order of UL transmission is a configured grant (CG) transmission and the second order of UL transmission is a grant-based (GB) transmission, or the first order of UL transmission is the GB transmission and the second order of UL transmission is the CG transmission.
The following detailed description refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular structures, architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the various aspects of various embodiments. However, it will be apparent to those skilled in the art having the benefit of the present disclosure that the various aspects of the various embodiments may be practiced in other examples that depart from these specific details. In certain instances, descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the various embodiments with unnecessary detail. For the purposes of the present document, the phrase “A or B” means (A), (B), or (A and B).
Each year, the number of mobile devices connected to wireless networks significantly increases. In order to keep up with the demand in mobile data traffic, necessary changes have to be made to system requirements to be able to meet these demands. Three critical areas that need to be enhanced in order to deliver this increase in traffic are larger bandwidth, lower latency, and higher data rates.
One of the major limiting factors in wireless innovation is the availability in the spectrum. To mitigate this, the unlicensed spectrum has been an area of interest to expand the availability of LTE. In this context, one of the major enhancements for LTE in 3GPP Release 13 has been to enable its operation in the unlicensed spectrum via Licensed-Assisted Access (LAA), which expands the system bandwidth by utilizing the flexible carrier aggregation (CA) framework introduced by the LTE-Advanced system.
Now that the main building blocks for the framework of NR have been established, a natural enhancement is to allow this to also operate on an unlicensed spectrum, namely NR-unlicensed (NR-U). NR-U is a short-hand notation of the NR-based access to the unlicensed spectrum, which is a technology that enables the operation of the NR system on the unlicensed spectrum. The work to introduce the shared/unlicensed spectrum in 5G NR has already been kicked off, and a new work item on “NR-Based Access to Unlicensed Spectrum” was approved in recent TSG RAN Meeting. Among others, one objective of this new WI is as follows:
Physical layer aspects including:
Physical layer procedure(s) including:
One of the challenges of NR-U is that this system must maintain fair coexistence with other incumbent technologies, and in order to do so depending on the particular band in which it might operate some regulatory restrictions might be taken into account when designing this system. For instance, if operating in the 5 GHz band, a listen before talk (LBT) procedure needs to be performed in some parts of the world to acquire the medium before a transmission can occur.
While enabling both configured grant and grant-based UL transmissions for NR-U, it is imperative to utilize the channel in the most efficient manner possible by still guaranteeing coexistence with other incumbent technologies. In NR-U, a configured grant and a grant-based UL transmission from the same UE might occur back to back: in this case, even if the transmission is done using two different modalities, from the channel access prospective, it is constituted by a longer UL burst. The expected behavior, in this case, would be to perform the LBT twice: once for the configured grant transmission and another time for the scheduled based transmission. However, in some cases, it might be more efficient to perform a single LBT, so as to increase the likelihood of transmission success. In this disclosure, embodiments related to this last procedure are provided.
The present disclosure provides various embodiments on how to efficiently perform configured grant and grant-based UL transmissions when these two types of transmissions occur back to back from the same UE. In this case, the traditional procedure requires the UE to perform two LBTs (one before the configured grant transmission and one before the grant-based UL transmission). However, in order to optimize the channel access, a single LBT can be performed at the beginning of the UL burst regardless of whether the burst is composed of two types of transmissions, and the priority class of the LBT must be modified accordingly. These and other aspects are discussed in more detail infra in order to enable this optimization.
As described above, a full bandwidth configured grant (CG), and a grant-based (GB) transmission from the same UE might occur in contiguous time instances. In this case, the channel access procedure can be optimized so that a single LBT might be used. In this matter, two different scenarios can occur:
In some embodiments, a user equipment (UE) 102 that is similar to UE 401 of
In some embodiments, in the case illustrated in
In some embodiments, a UE can use Cat-4 to perform a CG transmission, and then if the LBT priority class for CG is larger than or equal to priority class indicated for GB UL by the gNB, and if the length of CG burst plus the GB burst does not exceed the MCOT corresponding to the LBT priority class of CG transmission, then the UE can perform the following operations:
In some embodiments, the CG transmission can be terminated without puncturing its tail. For example, the UE will still use the last symbol for SCS of 15 and 30 kHz or the last two symbols in case the SCS of the GB PUSCH transmission is set to 60 kHz.
In some embodiments, within the last slot of the CG burst, the UE may not indicate the ending burst within its CG-UCI. In some embodiments, the GB transmission may start without any gap, or without performing any LBT procedure.
In some embodiments, the UE can chose a priority class for the Cat-4 LBT so that the MCOT is sufficiently long to allow a contiguous transmission of the CG and GB transmission, where the CG transmission is performed without any gap in the last symbol(s) of the burst, and the GB transmission starts without performing additional LBT.
In some embodiments, if the CG transmission ends earlier than the symbol #13, a new LBT can be performed before transmitting GB PUSCH in the following slot.
In some embodiments, assuming that the CG is also inside the COT acquired by the gNB, the UE may use CAT-2 LBT for the transmission of the CG and also transmit GB without LBT operation between CG and GB by having no gap or a very small gap between CG and GB. In some embodiments, if the CG is also inside the COT acquired by the gNB, and the necessary COT is larger than what would be required if a consecutive CG+GB transmission is performed, the UE can override the LBT and may use a Cat-4 LBT with the minimum priority class such that the MCOT would be equal or longer than the CG+CB burst.
In some embodiments, if the CG+GB burst is longer than the MCOT acquired with the highest Cat-4 priority class, then the UE may perform the two transmissions separately by acquiring the channel twice: the UE may perform LBT at the beginning of the CG transmission and then at the beginning of the GB transmission.
In case a UE 202 receives a self-carrier UL grant(s) 206 scheduling a CAT-2 or cat-4 LBT GB burst 206 which occupies full bandwidth which occurs either inside 214 or outside 216 a gNB 204's MCOT 212, the UE 202 may transmit a category 4 LBT GB burst 208 followed by the CG burst 210, as illustrated in
In some embodiments, similar to the case illustrated above, the UE terminates a GB burst before a Cat-4 CG UL transmission is performed. In this case, a UE performs the following operations:
In some embodiments, if the GB UL transmission needs to be performed by the mean of a Cat-4 LBT (this occurs if the GB is performed outside of the shared acquired gNB's COT), and if priority class for CG is smaller than or equal to the priority class indicated to GB UL by the gNB within the DCI or selected by the UE, and if the length of CG burst plus the GB burst does not exceed the MCOT corresponding to the LBT priority class of GB transmission, then the CG transmission follows the GB transmission without any gap.
In the aforementioned case (GB is performed outside of the shared acquired gNB's COT), in some embodiments, the GB transmission can be terminated without puncturing its tail for gaps, also for the first slot of the CG burst the starting point would coincide with the first OFDM symbol, and there is no indication of the CG starting burst within its CG-UCI.
In some embodiments, if the GB transmission can end earlier than the symbol #13, a new LBT is performed before transmitting CG PUSCH in the following slot.
In some embodiments, the UE can override the indicated channel access priority class provided by the gNB within the DCI to perform GB transmission with a larger priority class that ensures that the GB and CG burst can occur consecutively.
In some embodiments, if the GB UL transmission needs to be performed by the mean of a Cat-2 LBT (this occurs if the GB is performed within the shared acquired gNB's COT), and if the length of CG burst plus the GB burst does not exceed the MCOT corresponding to the LBT priority class of GB transmission that is selected by the UE, then the CG transmission can follow the GB transmission without any gap and also without any LBT for CG transmission.
In the aforementioned case, in some embodiments, the GB transmission can be terminated without puncturing its tail for gaps, also for the first slot of the CG burst the starting point can coincide with the first OFDM symbol, and there is no indication of the CG starting burst within its CG-UCI.
In some embodiments, if the GB transmission ends earlier than the symbol #13, a new LBT can be performed before transmitting CG PUSCH in the following slot.
In some embodiments, the UE may override the Cat-2 LBT, through a Cat-4 LBT with a priority class that ensures that the GB and CG burst can occur consecutively.
In the aforementioned case (GB is performed within the shared acquired gNB's COT), in some embodiments, the procedure described above can be applied if the CG burst starts at the end of the gNB's acquired COT. This is done in order to prevent blocking of other GB transmissions within the gNB's acquired COT. The Cat-2 LBT can be also overridden through a Cat-4 LBT so that the combined burst (GB+CG) would be seen as if the transmission is done outside of the gNB's acquired COT.
In some embodiments, if the GB UL transmission does not need to perform LBT, then the CG UL burst can be performed without any gap if both occur without the gNB's acquired COT. In some embodiments, if the GB UL transmission does not need to perform LBT, then the CG UL burst can be only done after performing LBT if both bursts occur without the gNB's acquired COT or if the CG burst starts after the end of a gNB's acquired COT: this is to be compliant with the ETSI BRAN regulatory requirements.
In some embodiments, if the CG+GB burst is longer than the MCOT acquired with the highest Cat-4 priority class, then the UE may perform the two transmissions separately by acquiring the channel twice: the UE may perform LBT at the beginning of the CG transmission and then at the beginning of the GB transmission.
If the absence of Wi-Fi cannot be guaranteed (e.g., by regulation) in the band (sub-7 GHz) where NR-U is operating, the baseline assumption is, the NR-U operating bandwidth is an integer multiple of 20 MHz.
Channel access mechanisms need to comply with regulations and may, therefore, need to be adapted for particular frequency ranges.
For the channel access mechanism, the LTE-LAA LBT mechanism is adopted as a baseline for 5 GHz band and adopted as the starting point of the design for the 6 GHz band. At least for the band where an absence of Wi-Fi cannot be guaranteed (e.g., by regulation), LBT can be performed in units of 20 MHz.
For the 5 GHz band, having a 16 μs gap to accommodate for the transceiver turnaround before the immediate transmission of the responding node for NR-U, such as for supporting fast A/N feedback, and is permitted per regulation. Restrictions/conditions on when this option can be used will be further identified, e.g., in consideration of fair coexistence.
A 16 μs gap to accommodate for the transceiver turnaround before the immediate transmission of the responding node can also be applied to 6 GHz band if allowed by regulation, and restrictions/conditions on when this option can be used will be further identified if fair coexistence criterion is defined for 6 GHz band.
For the CWS adjustment procedure in NR-U, in addition to aspects considered in LTE LAA, NR-U may additionally consider at least the following aspects: CBG based HARQ-ACK operation, NR scheduling and HARQ-feedback delays and processing times, wideband (>20 MHz) operation including BWPs, Configured grant operation. For the initiation of a COT by the gNB (operating as an LBE device), the channel access schemes in Table II-1 are used.
It is to be noted that applicability of an LBT scheme other than Cat 4 LBT for control messages related to initial/random access, mobility, paging, reference signals only, and PDCCH-only transmissions, e.g., “RACH message 4”, handover command, GC-PDCCH, or short message paging transmitted either alone or when multiplexed with DRS have been discussed. Further details related to exceptions in this note can be determined when specifications are developed.
At least for the case where a DL burst follows a UL burst within a gNB-initiated COT and there is no gap larger than 25 μs between any two transmissions in the COT, the channel access schemes in Table II-2 apply for the DL burst following a UL burst.
It is to be noted that a DL burst is defined as a set of transmissions from a given gNB having no gaps or gaps of no more than 16 μs. Transmissions from a gNB having a gap of more than 16 μs are considered as separate DL bursts.
Within a gNB-initiated COT, a UL burst for a UE consisting of one or more of PUSCH, PUCCH, PRACH, and SRS follows the channel access schemes in Table II-3.
It is to be noted that a UL burst is defined as a set of transmissions from a given UE having no gaps or gaps of no more than 16 μs. Transmissions from a UE having a gap of more than 16 μs are considered as separate UL bursts. The number of LBT attempts within a COT should be determined when specifications are developed.
For the initiation of a COT by the UE, the channel access schemes in Table II-4 are used.
It is to be noted that the COT includes multiple signals/channels with different channel access categories/priority classes, the highest channel access priority class value, and the highest channel access category among the channel access priority classes and channel access categories corresponding to the multiple signals/channels apply.
It is to be noted that applicability of a channel access scheme other than Cat 4 for the following signals/channels have been discussed and details are to be determined when the specifications are developed:
For FBE mode of operation, a gNB acquires COT with Cat2 immediately prior to the fixed frame period. Within the gNB acquired COT, if a gap is <=16 μs, Cat 1 channel access scheme can be used by the gNB and associated UEs. Within the gNB acquired COT, if a gap is >16 μs, Cat 2 channel access scheme should be used by the gNB and associated UEs. Note this channel access mechanisms are intended to be aligned with any regulations for FBE operation.
Means to reduce or mitigate the impact of interference, e.g., from hidden nodes with UE assistance have been studied. Possible mechanisms include at least enhancements to L1 measurement and reporting of interference observed by a UE, and handshaking procedures between transmitter and the receiver. Further consideration is required regarding the detailed solutions and their benefits for mitigation of impact of interference on NR-U when the specifications are to be developed.
Means to facilitate spatial reuse or frequency reuse operation of NR-U have been studied. Possible mechanisms include at least: alignment of starting points for transmission (and consequently time instances for at least the last CCA); exchange and coordination of LBT related parameters amongst different NR-U gNBs or UEs; means to determine whether interference originates from other NR-U nodes; enhancements to L1 measurement and reporting of interference observed by a UE; and adjustment of energy/signal detection thresholds. A further consideration is required regarding the detailed solutions and their benefits for facilitating spatial reuse in NR-U when the specifications are to be developed, taking into account regulations.
Channel access mechanisms for beamformed transmissions have been studied. It has been identified that Omni-directional LBT should be supported. Using directional LBT for beamformed transmissions, i.e., LBT performed in the direction of the transmitted beam, has also been studied. A further consideration is required regarding directional LBT and its benefits for beamformed transmissions when the specifications are to be developed, taking into account regulations and fair co-existence with other technologies.
For initial access and mobility procedures, the main issue identified for NR operation in the unlicensed band is the reduced transmission opportunities for different signals and channels due to LBT failure.
The following modifications to initial access procedures have been identified:
It is also identified that a 2-step RACH procedure potentially has a benefit for channel access.
For SS/PBCH block transmission, it is recommended to define a mechanism to transmit SS/PBCH blocks dropped due to LBT failure. It is also recommended to define a mechanism when specifications are developed for UE(s) to determine the frame timing and QCL assumptions from the detected SS/PBCH block. The feasibility and benefits of beam repetition for soft combining reception of SSBs within the same DRS transmission may be further considered.
For SS/PBCH block transmissions as part of DRS, the maximum number of candidate SS/PBCH block positions within the DRS transmission window to Y can be expanded, where the choice of Y may depend on the numerology of the SS/PBCH blocks, and where Y≤64. The transmitted SS/PBCH blocks do not overlap, and the maximum number of transmitted SS/PBCH blocks is X within the DRS transmission window with X≤8. The time-domain positions of the transmitted SS/PBCH blocks are selected from a set of Y candidate SS/PBCH block positions. Proposals for shift granularity between candidate time-domain SSB positions/candidate groups of SSBs, duration of DRS transmission window, and duration of the transmitted DRS within the window including SSBs and other multiplexed signals/channels, were discussed without reaching consensus and can be considered further when specifications are developed.
Modifications to paging procedures due to reduced transmission opportunities for paging due to LBT failure have been identified and studied. Therefore, paging opportunities may be enhanced using the following mechanism:
Note: Parts or all of the above enhancement may fall under the purview of higher-layer enhancements and may not require any further study from an L1 perspective
For potential RACH resource enhancements, the following options have been identified for NR-U, beyond the flexibility already available in Rel-15, but the consensus was not achieved. These options may be further considered when specifications are developed:
For msg1 transmission of 4-step RACH procedure, if preamble transmissions are dropped due to LBT failure, then from the RANI perspective, it is recommended that preamble power ramping is not performed and that the preamble transmission counter is not incremented.
For msg 2 transmission in the 4-step RACH procedure, in some scenarios, the maximum RAR window size is extended beyond 10 ms to improve robustness to DL LBT failure for RAR transmission. Other candidate mechanisms that were identified without reaching consensus include preconfigured, pre-indicated, or scheduled multiple opportunities in time and/or the frequency domain in different LBT subbands for message 2/3/4 transmissions and/or reducing the latency of the RACH procedure and can be considered further when specifications are to be developed.
Potential modifications to RLM/RRM procedures due to reduced transmission opportunities for DL signals and channels due to LBT failure have been identified and studied.
For RLM on an unlicensed SpCell and RRM, DMTCs (DRS Measurement Time Configuration) is configured in which UEs can perform measurements. These time-domain measurement windows for RRM measurements and RLM can be different. RLM DMTC may coincide with the DRS transmission window. For RLM, the following recommendations are considered for further design when the specifications are developed:
Furthermore, a metric to represent channel occupancy or medium contention in addition to RSSI may be reported, as also noted from a higher-layer perspective in Section 7.2.2.3.1. The exact definition of the metric(s) can be considered when specifications are developed.
NR-U uses NR HARQ feedback mechanisms as a baseline, and enhancements can be identified.
Transmission of HARQ A/N for the corresponding data in the same shared COT is identified. For NR-U, the design strives to support transmitting all HARQ A/N for the corresponding data in the same shared COT, if possible, considering the current NR UE processing time required. A gap of up to 16 μs should be allowed between the end of the DL transmission and the immediate transmission of feedback to accommodate for the hardware turnaround time. Transmissions (e.g., CSI reporting or SRS, or other PUSCH, or CSI-RS, or other PDSCH) in the time between one DL data transmission for a UE and the corresponding UL transmission of DL HARQ feedback for the same UE within a shared COT may be supported. Potential enhancements for such type of operation, e.g., by possibly pre-configured or pre-determined uplink transmissions for reducing signaling overhead for these transmissions, may be supported.
However, it is understood that in some cases, the HARQ A/N has to be transmitted in a separate COT from the one the corresponding data was transmitted. It is introducing signaling value of the PDSCH-to-HARQ-timing-indicator in the DCI scheduling the PDSCH that tells the UE that the timing and resource for HARQ-ACK feedback for the corresponding PDSCH will be determined later.
Techniques to handle reduced HARQ A/N transmission opportunities for a given HARQ process due to LBT failure are identified. Potential techniques include mechanisms to provide multiple and/or supplemental time and/or frequency domain transmission opportunities.
When UL HARQ feedback is transmitted on the unlicensed band, NR-U considers mechanisms to support flexible triggering and multiplexing of HARQ feedback for one or more DL HARQ processes
NR-U should support both the HARQ feedback corresponding to some or all the PDSCHs of a channel occupancy that can be reported in the same channel occupancy and HARQ feedback corresponding to PDSCHs of a channel occupancy can be reported outside of that channel occupancy.
To support the HARQ feedback corresponding to some or all the PDSCHs of a channel occupancy to be reported in the same channel occupancy, the PDSCH-to-HARQ-timing may be extended to support indicating timings up to the end of the longest COT allowed by regulations. One or more of the following would be needed: Allow values larger than 15 by RRC signaling; Allow more bits for the PDSCH-to-HARQ-timing-indicator.
To support HARQ feedback corresponding to PDSCHs of a channel occupancy can be reported outside of that channel occupancy, the following possible candidate solutions can be considered:
The alternatives above are at least applicable for the case where there is no HARQ feedback expected in the same channel occupancy as the PDSCH.
Further details on potential solutions to allow cross-COT HARQ-ACK feedback and multiple opportunities for HARQ-ACK feedback are provided in Table IV-1.
A possible enhancement for dynamic HARQ codebook is to support a larger DAI field to accommodate possibly missing more than 4 PDSCH transmissions, which is more likely to occur on an unlicensed spectrum. Enhancements are necessary for aligning the dynamic HARQ codebook between UE and gNB. Alt. 1 in Table IV-1 allows triggering/requesting a report for missed or unreported HARQ-ACK feedback in case of LBT failure for PUCCH/PUSCH transmission or in case of PUCCH/PUSCH detection failure at gNB or in case of PDCCH detection failure at UE, or in case of HARQ-ACK feedback pending from earlier COT(s). Alt. 2 in the table allows reporting unreported HARQ-ACK feedback in case of LBT failure for PUCCH/PUSCH transmission, or in case of HARQ-ACK feedback pending from earlier COT(s).
Scheduling multiple TTIs for PUSCH, each using a separate UL grant in the same PDCCH monitoring occasion, should be supported in NR-U. Scheduling multiple TTIs for PUSCH, i.e., scheduling multiple TBs with different HARQ process IDs over multiple slots, using a single UL grant, should be supported in NR-U.
In the case of CBG-based HARQ and LBT category 4, enhancements for defining how to adjust the contention window size (CWS) based on TB-level HARQ-ACK and CBG-level HARQ-ACK are considered.
NR already defined Type-1 and Type-2 configured grant mechanism. For NR-U, there is no necessity to exclude Type-1 or Type-2 configured grant mechanism for the operation of NR in the unlicensed spectrum.
Modifications to the configured grant procedures are detailed below.
Allowing consecutive configured grant resources in time without any gaps in between the resources and non-consecutive configured grant resources (not necessarily periodic) with gaps in between the resources should be considered for NR in unlicensed spectrum
UE selects the HARQ process ID from an RRC configured set of HARQ IDs for NR-unlicensed configured grant transmission.
It is identified that DFI may include pending HARQ ACK feedback for prior configured grant transmissions from the same UE.
It was identified that it is problematic for the UE to assume ACK in the absence of reception of feedback, which may include explicit feedback or feedback in the form of uplink grants. It was additionally identified that assuming NACK upon timer expiration can be a candidate solution to avoid LBT impact on the reception of feedback. It was also identified that possible conflicts, with respect to NDI and RNTI for the same HARQ process, between configured grant transmission and scheduled grant transmission may have to be addressed. Details can be determined when specifications are developed.
For the retransmission of a HARQ process that was initially transmitted via configured grant resource, retransmission via the same configured grant resource and retransmission via resource scheduled by UL grant are supported.
UE may autonomously initiate retransmission for a HARQ process that was initially transmitted via configured grant mechanism for NR-unlicensed when it receives NACK feedback via DFI for the corresponding HARQ process.
It is identified that UE multiplexing and collision avoidance mechanisms between configured grant transmissions and between the configured grant and scheduled grant transmissions may be considered.
NR-unlicensed configured grant transmission is not allowed when it overlaps with occasions configured for potential NR-U DRS of the serving cell irrespective of the configured time domain resource for configured grant transmission.
It was identified that CBG based retransmissions for configured grant-based transmissions may be used. Details on which CBG related control information is transmitted as part of DFI and UCI, and how much control information is conveyed through DFI and UCI can be determined when specifications are developed.
It was identified that collision avoidance between the configured grant and scheduled grant-based transmission can be achieved by management of the starting point of the transmission for configured grant and scheduled grant-based transmission. Further details on the management of the starting point of the transmission can be determined when specifications are developed.
It was identified that sharing resources with gNB within COT(s) that is acquired by UE(s) as part of configured grant-based transmissions should be supported. It was also identified that allowing configured grant-based transmissions within a gNB acquired COT should be supported. Details of identification of situations when COT(s) sharing is possible and the details of potential resource sharing mechanisms and rules can be determined when specifications are developed.
In accordance with some embodiments, at step 304, the UE may determine a total length of a UL transmission including a first length of the first order of UL transmission and a second length of the second order of UL transmission. As shown with reference to
In accordance with some embodiments, at step 306, upon determination that the first LBT priority class determined at step 302 is at least equal to the second LBT priority class determined at step 302, and the total length of the CG transmission burst and the GB transmission burst does not exceed the MCOT, the UE may perform an LBT procedure to acquire a channel for the UL transmission.
In accordance with some embodiments, at step 308, upon acquiring the channel, the UE may perform the UL transmission using the first order of UL transmission followed by the second order of UL transmission. Accordingly, the LBT procedure is being performed only once instead of twice.
As shown by
In some embodiments, any of the UEs 401 may be IoT UEs, which may comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections. An IoT UE can utilize technologies such as M2M or MTC for exchanging data with an MTC server or device via a PLMN, ProSe or D2D communication, sensor networks, or IoT networks. The M2M or MTC exchange of data may be a machine-initiated exchange of data. An IoT network describes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections. The IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc.) to facilitate the connections of the IoT network.
The UEs 401 may be configured to connect, for example, communicatively coupled, with an access network (AN) or RAN 410. In embodiments, the RAN 410 may be an NG RAN or a 5G RAN, an E-UTRAN, or a legacy RAN, such as a UTRAN or GERAN. As used herein, the term “NG RAN” or the like may refer to a RAN 410 that operates in an NR or 5G system 400, and the term “E-UTRAN” or the like may refer to a RAN 410 that operates in an LTE or 4G system 400. The UEs 401 utilize connections (or channels) 403 and 404, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below).
In this example, the connections 403 and 404 are illustrated as an air interface to enable communicative coupling and can be consistent with cellular communications protocols, such as a GSM protocol, a CDMA network protocol, a PTT protocol, a POC protocol, a UMTS protocol, a 3GPP LTE protocol, a 5G protocol, a NR protocol, and/or any of the other communications protocols discussed herein. In embodiments, the UEs 401 may directly exchange communication data via a ProSe interface 405. The ProSe interface 405 may alternatively be referred to as an SL interface 405 and may comprise one or more logical channels, including but not limited to a PSCCH, a PSSCH, a PSDCH, and a PSBCH.
The UE 401b is shown to be configured to access an AP 406 (also referred to as “WLAN node 406,” “WLAN 406,” “WLAN Termination 406,” “WT 406” or the like) via connection 407. The connection 407 can comprise a local wireless connection, such as a connection consistent with any IEEE 802.11 protocol, wherein the AP 406 would comprise a wireless fidelity (Wi-Fi®) router. In this example, the AP 406 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below). In various embodiments, the UE 401b, RAN 410, and AP 406 may be configured to utilize LWA operation and/or LWIP operation. The LWA operation may involve the UE 401b in RRC_CONNECTED being configured by a RAN node 411a-b to utilize radio resources of LTE and WLAN. LWIP operation may involve the UE 401b using WLAN radio resources (e.g., connection 407) via IPsec protocol tunneling to authenticate and encrypt packets (e.g., IP packets) sent over the connection 407. IPsec tunneling may include encapsulating the entirety of original IP packets and adding a new packet header, thereby protecting the original header of the IP packets.
The RAN 410 can include one or more AN nodes or RAN nodes 411a and 411b (collectively referred to as “RAN nodes 411” or “RAN node 411”) that enable the connections 403 and 404. As used herein, the terms “access node,” “access point,” or the like may describe equipment that provides the radio baseband functions for data and/or voice connectivity between a network and one or more users. These access nodes can be referred to as BS, gNB s, RAN nodes, eNB s, NodeBs, RSUs, TRxPs or TRPs, and so forth, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell). As used herein, the term “NG RAN node” or the like may refer to a RAN node 411 that operates in an NR or 5G system 400 (for example, a gNB), and the term “E-UTRAN node” or the like may refer to a RAN node 411 that operates in an LTE or 4G system 400 (e.g., an eNB). According to various embodiments, the RAN nodes 411 may be implemented as one or more of a dedicated physical device such as a macrocell base station, and/or a low power (LP) base station for providing femtocells, picocells or other like cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells.
In some embodiments, all or parts of the RAN nodes 411 may be implemented as one or more software entities running on server computers as part of a virtual network, which may be referred to as a CRAN and/or a virtual baseband unit pool (vBBUP). In these embodiments, the CRAN or vBBUP may implement a RAN function split, such as a PDCP split wherein RRC and PDCP layers are operated by the CRAN/vBBUP and other L2 protocol entities are operated by individual RAN nodes 411; a MAC/PHY split wherein RRC, PDCP, RLC, and MAC layers are operated by the CRAN/vBBUP and the PHY layer is operated by individual RAN nodes 411; or a “lower PHY” split wherein RRC, PDCP, RLC, MAC layers and upper portions of the PHY layer are operated by the CRAN/vBBUP and lower portions of the PHY layer are operated by individual RAN nodes 411. This virtualized framework allows the freed-up processor cores of the RAN nodes 411 to perform other virtualized applications. In some implementations, an individual RAN node 411 may represent individual gNB-DUs that are connected to a gNB-CU via individual F1 interfaces (not shown by
In V2X scenarios one or more of the RAN nodes 411 may be or act as RSUs. The term “Road Side Unit” or “RSU” may refer to any transportation infrastructure entity used for V2X communications. An RSU may be implemented in or by a suitable RAN node or a stationary (or relatively stationary) UE, where an RSU implemented in or by a UE may be referred to as a “UE-type RSU,” an RSU implemented in or by an eNB may be referred to as an “eNB-type RSU,” an RSU implemented in or by a gNB may be referred to as a “gNB-type RSU,” and the like. In one example, an RSU is a computing device coupled with radio frequency circuitry located on a roadside that provides connectivity support to passing vehicle UEs 401 (vUEs 401). The RSU may also include internal data storage circuitry to store intersection map geometry, traffic statistics, media, as well as applications/software to sense and control ongoing vehicular and pedestrian traffic. The RSU may operate on the 5.9 GHz Direct Short Range Communications (DSRC) band to provide very low latency communications required for high-speed events, such as crash avoidance, traffic warnings, and the like. Additionally or alternatively, the RSU may operate on the cellular V2X band to provide the aforementioned low latency communications, as well as other cellular communications services. Additionally or alternatively, the RSU may operate as a Wi-Fi hotspot (2.4 GHz band) and/or provide connectivity to one or more cellular networks to provide uplink and downlink communications. The computing device(s) and some or all of the radiofrequency circuitry of the RSU may be packaged in a weatherproof enclosure suitable for outdoor installation and may include a network interface controller to provide a wired connection (e.g., Ethernet) to a traffic signal controller and/or a backhaul network.
Any of the RAN nodes 411 can terminate the air interface protocol and can be the first point of contact for the UEs 401. In some embodiments, any of the RAN nodes 411 can fulfill various logical functions for the RAN 410 including, but not limited to, the radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management.
In embodiments, the UEs 401 can be configured to communicate using OFDM communication signals with each other or with any of the RAN nodes 411 over a multicarrier communication channel in accordance with various communication techniques, such as but not limited to, an OFDMA communication technique (e.g., for downlink communications) or a SC-FDMA communication technique (e.g., for uplink and ProSe or sidelink communications), although the scope of the embodiments is not limited in this respect. The OFDM signals can comprise a plurality of orthogonal subcarriers.
In some embodiments, a downlink resource grid can be used for downlink transmissions from any of the RAN nodes 411 to the UEs 401, while uplink transmissions can utilize similar techniques. The grid can be a time-frequency grid, called a resource grid or time-frequency resource grid, which is the physical resource in the downlink in each slot. Such a time-frequency plane representation is a common practice for OFDM systems, which makes it intuitive for radio resource allocation. Each column and each row of the resource grid corresponds to one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource grid in the time domain corresponds to one slot in a radio frame. The smallest time-frequency unit in a resource grid is denoted as a resource element. Each resource grid comprises a number of resource blocks, which describe the mapping of certain physical channels to resource elements. Each resource block comprises a collection of resource elements; in the frequency domain, this may represent the smallest quantity of resources that currently can be allocated. There are several different physical downlink channels that are conveyed using such resource blocks.
According to various embodiments, the UEs 401 and the RAN nodes 411 communicate data (for example, transmit and receive) data over a licensed medium (also referred to as the “licensed spectrum” and/or the “licensed band”) and an unlicensed shared medium (also referred to as the “unlicensed spectrum” and/or the “unlicensed band”). The licensed spectrum may include channels that operate in the frequency range of approximately 400 MHz to approximately 3.8 GHz, whereas the unlicensed spectrum may include the 5 GHz band.
To operate in the unlicensed spectrum, the UEs 401 and the RAN nodes 411 may operate using LAA, eLAA, and/or feLAA mechanisms. In these implementations, the UEs 401 and the RAN nodes 411 may perform one or more known medium-sensing operations and/or carrier-sensing operations in order to determine whether one or more channels in the unlicensed spectrum is unavailable or otherwise occupied prior to transmitting in the unlicensed spectrum. The medium/carrier sensing operations may be performed according to a listen-before-talk (LBT) protocol.
LBT is a mechanism whereby equipment (for example, UEs 401, RAN nodes 411, etc.) senses a medium (for example, a channel or carrier frequency) and transmits when the medium is sensed to be idle (or when a specific channel in the medium is sensed to be unoccupied). The medium sensing operation may include CCA, which utilizes at least ED to determine the presence or absence of other signals on a channel in order to determine if a channel is occupied or clear. This LBT mechanism allows cellular/LAA networks to coexist with incumbent systems in the unlicensed spectrum and with other LAA networks. ED may include sensing RF energy across an intended transmission band for a period of time and comparing the sensed RF energy to a predefined or configured threshold.
Typically, the incumbent systems in the 5 GHz band are WLANs based on IEEE 802.11 technologies. WLAN employs a contention-based channel access mechanism, called CSMA/CA. Here, when a WLAN node (e.g., a mobile station (MS) such as UE 401, AP 406, or the like) intends to transmit, the WLAN node may first perform CCA before transmission. Additionally, a backoff mechanism is used to avoid collisions in situations where more than one WLAN node senses the channel as idle and transmits at the same time. The backoff mechanism may be a counter that is drawn randomly within the CWS, which is increased exponentially upon the occurrence of collision and reset to a minimum value when the transmission succeeds. The LBT mechanism designed for LAA is somewhat similar to the CSMA/CA of WLAN. In some implementations, the LBT procedure for DL or UL transmission bursts including PDSCH or PUSCH transmissions, respectively, may have an LAA contention window that is variable in length between X and Y ECCA slots, where X and Y are minimum and maximum values for the CWSs for LAA. In one example, the minimum CWS for an LAA transmission maybe 9 microseconds (μs); however, the size of the CWS and a MCOT (for example, a transmission burst) may be based on governmental regulatory requirements.
The LAA mechanisms are built upon CA technologies of LTE-Advanced systems. In CA, each aggregated carrier is referred to as a CC. A CC may have a bandwidth of 1.4, 3, 5, 10, 15 or 20 MHz and a maximum of five CCs can be aggregated, and therefore, a maximum aggregated bandwidth is 100 MHz. In FDD systems, the number of aggregated carriers can be different for DL and UL, where the number of UL CCs is equal to or lower than the number of DL component carriers. In some cases, individual CCs can have a different bandwidth than other CCs. In TDD systems, the number of CCs, as well as the bandwidths of each CC, is usually the same for DL and UL.
CA also comprises individual serving cells to provide individual CCs. The coverage of the serving cells may differ, for example, because CCs on different frequency bands will experience different path loss. A primary service cell or PCell may provide a PCC for both UL and DL, and may handle RRC and NAS related activities. The other serving cells are referred to as SCells, and each SCell may provide an individual SCC for both UL and DL. The SCCs may be added and removed as required, while changing the PCC may require the UE 401 to undergo a handover. In LAA, eLAA, and feLAA, some or all of the SCells may operate in the unlicensed spectrum (referred to as “LAA SCells”), and the LAA SCells are assisted by a PCell operating in the licensed spectrum. When a UE is configured with more than one LAA SCell, the UE may receive UL grants on the configured LAA SCells indicating different PUSCH starting positions within the same subframe.
The PDSCH carries user data and higher-layer signaling to the UEs 401. The PDCCH carries information about the transport format and resource allocations related to the PDSCH channel, among other things. It may also inform the UEs 401 about the transport format, resource allocation, and HARQ information related to the uplink shared channel. Typically, downlink scheduling (assigning control and shared channel resource blocks to the UE 401b within a cell) may be performed at any of the RAN nodes 411 based on channel quality information fed back from any of the UEs 401. The downlink resource assignment information may be sent on the PDCCH used for (e.g., assigned to) each of the UEs 401.
The PDCCH uses CCEs to convey the control information. Before being mapped to resource elements, the PDCCH complex-valued symbols may first be organized into quadruplets, which may then be permuted using a sub-block interleaved for rate matching. Each PDCCH may be transmitted using one or more of these CCEs, where each CCE may correspond to nine sets of four physical resource elements known as REGs. Four Quadrature Phase Shift Keying (QPSK) symbols may be mapped to each REG. The PDCCH can be transmitted using one or more CCEs, depending on the size of the DCI and the channel condition. There can be four or more different PDCCH formats defined in LTE with different numbers of CCEs (e.g., aggregation level, L=1, 2, 4, or 8).
Some embodiments may use concepts for resource allocation for control channel information that are an extension of the above-described concepts. For example, some embodiments may utilize an EPDCCH that uses PDSCH resources for control information transmission. The EPDCCH may be transmitted using one or more ECCEs. Similar to above, each ECCE may correspond to nine sets of four physical resource elements known as an EREGs. An ECCE may have other numbers of EREGs in some situations.
The RAN nodes 411 may be configured to communicate with one another via interface 412. In embodiments where the system 400 is an LTE system (e.g., when CN 420 is an EPC 520 as in
In some embodiments where the system 400 is a 5G or NR system (e.g., when CN 420 is a 5GC 620 as in
The RAN 410 is shown to be communicatively coupled to a core network—in this embodiment, a core network (CN) 420. The CN 420 may comprise a plurality of network elements 422, which are configured to offer various data and telecommunications services to customers/subscribers (e.g., users of UEs 401) who are connected to the CN 420 via the RAN 410. The components of the CN 420 may be implemented in one physical node or separate physical nodes, including components to read and execute instructions from a machine-readable or computer-readable medium (e.g., a non-transitory machine-readable storage medium). In some embodiments, NFV may be utilized to virtualize any or all of the above-described network node functions via executable instructions stored in one or more computer-readable storage mediums (described in further detail below). A logical instantiation of the CN 420 may be referred to as a network slice, and a logical instantiation of a portion of the CN 420 may be referred to as a network sub-slice. NFV architectures and infrastructures may be used to virtualize one or more network functions, alternatively performed by proprietary hardware, onto physical resources comprising a combination of industry-standard server hardware, storage hardware, or switches. In other words, NFV systems can be used to execute virtual or reconfigurable implementations of one or more EPC components/functions.
Generally, the application server 430 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS PS domain, LTE PS data services, etc.). The application server 430 can also be configured to support one or more communication services (e.g., VoIP sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 401 via the EPC 420.
In embodiments, the CN 420 may be a 5GC (referred to as “5GC 420” or the like), and the RAN 410 may be connected with the CN 420 via an NG interface 413. In embodiments, the NG interface 413 may be split into two parts, an NG user plane (NG-U) interface 414, which carries traffic data between the RAN nodes 411 and a UPF, and the S1 control plane (NG-C) interface 415, which is a signaling interface between the RAN nodes 411 and AMFs. Embodiments where the CN 420 is a 5GC 420 are discussed in more detail with regard to
In embodiments, the CN 420 may be a 5G CN (referred to as “5GC 420” or the like), while in other embodiments, the CN 420 may be an EPC). Where CN 420 is an EPC (referred to as “EPC 420” or the like), the RAN 410 may be connected with the CN 420 via an S1 interface 413. In embodiments, the S1 interface 413 may be split into two parts, an S1 user plane (S1-U) interface 414, which carries traffic data between the RAN nodes 411 and the S-GW, and the S1-MME interface 415, which is a signaling interface between the RAN nodes 411 and MMEs. An example architecture wherein the CN 420 is an EPC 420 is shown by
The MMEs 521 may be similar in function to the control plane of legacy SGSN and may implement MM functions to keep track of the current location of a UE 501. The MMEs 521 may perform various MM procedures to manage mobility aspects in access such as gateway selection and tracking area list management. MM (also referred to as “EPS MM” or “EMM” in E-UTRAN systems) may refer to all applicable procedures, methods, data storage, etc. that are used to maintain knowledge about a present location of the UE 501, provide user identity confidentiality, and/or perform other like services to users/subscribers. Each UE 501 and the MME 521 may include an MM or EMM sublayer, and an MM context may be established in the UE 501 and the MME 521 when an attach procedure is successfully completed. The MM context may be a data structure or database object that stores MM-related information of the UE 501. The MMEs 521 may be coupled with the HSS 524 via an S6a reference point, coupled with the SGSN 525 via an S3 reference point, and coupled with the S-GW 522 via an S11 reference point.
The SGSN 525 may be a node that serves the UE 501 by tracking the location of an individual UE 501 and performing security functions. In addition, the SGSN 525 may perform Inter-EPC node signaling for mobility between 2G/3G and E-UTRAN 3GPP access networks; PDN and S-GW selection as specified by the MMEs 521; handling of UE 501 time zone functions as specified by the MMEs 521; and MME selection for handovers to E-UTRAN 3GPP access network. The S3 reference point between the MMEs 521 and the SGSN 525 may enable user and bearer information exchange for inter-3GPP access network mobility in idle and/or active states.
The HSS 524 may comprise a database for network users, including subscription-related information to support the network entities' handling of communication sessions. The EPC 520 may comprise one or several HSSs 524, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc. For example, the HSS 524 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc. An S6a reference point between the HSS 524 and the MMEs 521 may enable the transfer of subscription and authentication data for authenticating/authorizing user access to the EPC 520 between HSS 524 and the MMEs 521.
The S-GW 522 may terminate the S1 interface 413 (“S1-U” in
The P-GW 523 may terminate an SG1 interface toward a PDN 530. The P-GW 523 may route data packets between the EPC 520 and external networks such as a network, including the application server 430 (alternatively referred to as an “AF”) via an IP interface 425 (see, e.g.,
PCRF 526 is the policy and charging control element of the EPC 520. In a non-roaming scenario, there may be a single PCRF 526 in the Home Public Land Mobile Network (HPLMN) associated with a UE 501's Internet Protocol Connectivity Access Network (IP-CAN) session. In a roaming scenario with the local breakout of traffic, there may be two PCRFs associated with a UE 501's IP-CAN session, a Home PCRF (H-PCRF) within an HPLMN and a Visited PCRF (V-PCRF) within a Visited Public Land Mobile Network (VPLMN). The PCRF 526 may be communicatively coupled to the application server 530 via the P-GW 523. The application server 530 may signal the PCRF 526 to indicate a new service flow and select the appropriate QoS and charging parameters. The PCRF 526 may provision this rule into a PCEF (not shown) with the appropriate TFT and QCI, which commences the QoS and charging as specified by the application server 530. The Gx reference point between the PCRF 526 and the P-GW 523 may allow for the transfer of QoS policy and charging rules from the PCRF 526 to PCEF in the P-GW 523. An Rx reference point may reside between the PDN 530 (or “AF 530”) and the PCRF 526.
The UPF 602 may act as an anchor point for intra-RAT and inter-RAT mobility, an external PDU session point of interconnect to DN 603, and a branching point to support multi-homed PDU session. The UPF 602 may also perform packet routing and forwarding, perform packet inspection, enforce the user plane part of policy rules, lawfully intercept packets (UP collection), perform traffic usage reporting, perform QoS handling for a user plane (e.g., packet filtering, gating, UL/DL rate enforcement), perform Uplink Traffic verification (e.g., SDF to QoS flow mapping), transport level packet marking in the uplink and downlink, and perform downlink packet buffering and downlink data notification triggering. UPF 602 may include an uplink classifier to support routing traffic flows to a data network. The DN 603 may represent various network operator services, Internet access, or third party services. DN 603 may include, or be similar to, application server 430 discussed previously. The UPF 602 may interact with the SMF 624 via an N4 reference point between the SMF 624 and the UPF 602.
The AUSF 622 may store data for authentication of UE 601 and handle authentication-related functionality. The AUSF 622 may facilitate a common authentication framework for various access types. The AUSF 622 may communicate with the AMF 621 via an N12 reference point between the AMF 621 and the AUSF 622; and may communicate with the UDM 627 via an N13 reference point between the UDM 627 and the AUSF 622. Additionally, the AUSF 622 may exhibit a Nausf service-based interface.
The AMF 621 may be responsible for registration management (e.g., for registering UE 601, etc.), connection management, reachability management, mobility management, and lawful interception of AMF-related events, and access authentication and authorization. The AMF 621 may be a termination point for an N11 reference point between the AMF 621 and the SMF 624. The AMF 621 may provide transport for SM messages between the UE 601 and the SMF 624, and act as a transparent proxy for routing SM messages. AMF 621 may also provide transport for SMS messages between UE 601 and an SMSF (not shown by
AMF 621 may also support NAS signaling with a UE 601 over an N3 IWF interface. The N3IWF may be used to provide access to untrusted entities. N3IWF may be a termination point for the N2 interface between the (R)AN 610 and the AMF 621 for the control plane, and may be a termination point for the N3 reference point between the (R)AN 610 and the UPF 602 for the user plane. As such, the AMF 621 may handle N2 signalling from the SMF 624 and the AMF 621 for PDU sessions and QoS, encapsulate/de-encapsulate packets for IPSec and N3 tunneling, mark N3 user-plane packets in the uplink, and enforce QoS corresponding to N3 packet marking taking into account QoS requirements associated with such marking received over N2. N3IWF may also relay uplink and downlink control-plane NAS signaling between the UE 601 and AMF 621 via an N1 reference point between the UE 601 and the AMF 621, and relay uplink and downlink user-plane packets between the UE 601 and UPF 602. The N3IWF also provides mechanisms for IPsec tunnel establishment with the UE 601. The AMF 621 may exhibit a Namf service-based interface and maybe a termination point for an N14 reference point between two AMFs 621 and an N17 reference point between the AMF 621 and a 5G-EIR (not shown by
The UE 601 may need to register with the AMF 621 in order to receive network services. RM is used to register or deregister the UE 601 with the network (e.g., AMF 621), and establish a UE context in the network (e.g., AMF 621). The UE 601 may operate in an RM-REGISTERED state or an RM-DEREGISTERED state. In the RM-DEREGISTERED state, the UE 601 is not registered with the network, and the UE context in AMF 621 holds no valid location or routing information for the UE 601, so the UE 601 is not reachable by the AMF 621. In the RM-REGISTERED state, the UE 601 is registered with the network, and the UE context in AMF 621 may hold a valid location or routing information for the UE 601 so the UE 601 is reachable by the AMF 621. In the RM-REGISTERED state, the UE 601 may perform mobility Registration Update procedures, perform periodic Registration Update procedures triggered by expiration of the periodic update timer (e.g., to notify the network that the UE 601 is still active), and perform a Registration Update procedure to update UE capability information or to re-negotiate protocol parameters with the network, among others.
The AMF 621 may store one or more RM contexts for the UE 601, where each RM context is associated with specific access to the network. The RM context may be a data structure, database object, etc. that indicates or stores, inter alia, a registration state per access type and the periodic update timer. The AMF 621 may also store a 5GC MM context that may be the same or similar to the (E)MM context discussed previously. In various embodiments, the AMF 621 may store a CE mode B Restriction parameter of the UE 601 in an associated MM context or RM context. The AMF 621 may also derive the value, when needed, from the UE's usage setting parameter already stored in the UE context (and/or MM/RM context).
CM may be used to establish and release a signaling connection between the UE 601 and the AMF 621 over the N1 interface. The signaling connection is used to enable NAS signaling exchange between the UE 601 and the CN 620, and comprises both the signaling connection between the UE and the AN (e.g., RRC connection or UE-N3IWF connection for non-3GPP access) and the N2 connection for the UE 601 between the AN (e.g., RAN 610) and the AMF 621. The UE 601 may operate in one of two CM states, CM-IDLE mode or CM-CONNECTED mode. When the UE 601 is operating in the CM-IDLE state/mode, the UE 601 may have no NAS signaling connection established with the AMF 621 over the N1 interface, and there may be (R)AN 610 signaling connection (e.g., N2 and/or N3 connections) for the UE 601. When the UE 601 is operating in the CM-CONNECTED state/mode, the UE 601 may have an established NAS signaling connection with the AMF 621 over the N1 interface, and there may be a (R)AN 610 signaling connection (e.g., N2 and/or N3 connections) for the UE 601. Establishment of an N2 connection between the (R)AN 610 and the AMF 621 may cause the UE 601 to transition from CM-IDLE mode to CM-CONNECTED mode, and the UE 601 may transition from the CM-CONNECTED mode to the CM-IDLE mode when N2 signaling between the (R)AN 610 and the AMF 621 is released.
The SMF 624 may be responsible for SM (e.g., session establishment, modify and release, including tunnel maintain between UPF and AN node); UE IP address allocation and management (including optional authorization); selection and control of UP function; configuring traffic steering at UPF to route traffic to proper destination; termination of interfaces toward policy control functions; controlling part of policy enforcement and QoS; lawful intercept (for SM events and interface to LI system); termination of SM parts of NAS messages; downlink data notification; initiating AN specific SM information, sent via AMF over N2 to AN; and determining SSC mode of a session. SM may refer to the management of a PDU session, and a PDU session or “session” may refer to a PDU connectivity service that provides or enables the exchange of PDUs between a UE 601 and a data network (DN) 603 identified by a Data Network Name (DNN). PDU sessions may be established upon UE 601 request, modified upon UE 601 and 5GC 620 request, and released upon UE 601 and 5GC 620 request using NAS SM signaling exchanged over the N1 reference point between the UE 601 and the SMF 624. Upon request from an application server, the 5GC 620 may trigger a specific application in the UE 601. In response to receipt of the trigger message, the UE 601 may pass the trigger message (or relevant parts/information of the trigger message) to one or more identified applications in the UE 601. The identified application(s) in the UE 601 may establish a PDU session to a specific DNN. The SMF 624 may check whether the UE 601 requests are compliant with user subscription information associated with the UE 601. In this regard, the SMF 624 may retrieve and/or request to receive update notifications on SMF 624 level subscription data from the UDM 627.
The SMF 624 may include the following roaming functionality: handling local enforcement to apply QoS SLAB (VPLMN); charging data collection and charging interface (VPLMN); lawful intercept (in VPLMN for SM events and interface to LI system); and support for interaction with external DN for transport of signaling for PDU session authorization/authentication by external DN. An N16 reference point between two SMFs 624 may be included in the system 600, which may be between another SMF 624 in a visited network and the SMF 624 in the home network in roaming scenarios. Additionally, the SMF 624 may exhibit the Nsmf service-based interface.
The NEF 623 may provide means for securely exposing the services and capabilities provided by 3GPP network functions for third party, internal exposure/re-exposure, Application Functions (e.g., AF 628), edge computing or fog computing systems, etc. In such embodiments, the NEF 623 may authenticate, authorize, and/or throttle the AFs. NEF 623 may also translate information exchanged with the AF 628 and information exchanged with internal network functions. For example, the NEF 623 may translate between an AF-Service-Identifier and an internal 5GC information. NEF 623 may also receive information from other network functions (NFs) based on the exposed capabilities of other network functions. This information may be stored at the NEF 623 as structured data, or at a data storage NF using standardized interfaces. The stored information can then be re-exposed by the NEF 623 to other NFs and AFs, and/or used for other purposes such as analytics. Additionally, the NEF 623 may exhibit a Nnef service-based interface.
The NRF 625 may support service discovery functions, receive NF discovery requests from NF instances, and provide the information of the discovered NF instances to the NF instances. NRF 625 also maintains information of available NF instances and their supported services. As used herein, the terms “instantiate,” “instantiation,” and the like may refer to the creation of an instance, and an “instance” may refer to a concrete occurrence of an object, which may occur, for example, during the execution of program code. Additionally, the NRF 625 may exhibit the Nnrf service-based interface.
The PCF 626 may provide policy rules to control plane function(s) to enforce them, and may also support the unified policy framework to govern network behavior. The PCF 626 may also implement an FE to access subscription information relevant for policy decisions in a UDR of the UDM 627. The PCF 626 may communicate with the AMF 621 via an N15 reference point between the PCF 626 and the AMF 621, which may include a PCF 626 in a visited network and the AMF 621 in case of roaming scenarios. The PCF 626 may communicate with the AF 628 via an N5 reference point between the PCF 626 and the AF 628, and with the SMF 624 via an N7 reference point between the PCF 626 and the SMF 624. The system 600 and/or CN 620 may also include an N24 reference point between the PCF 626 (in the home network) and a PCF 626 in a visited network. Additionally, the PCF 626 may exhibit an Npcf service-based interface.
The UDM 627 may handle subscription-related information to support the network entities' handling of communication sessions and may store subscription data of UE 601. For example, subscription data may be communicated between the UDM 627 and the AMF 621 via an N8 reference point between the UDM 627 and the AMF. The UDM 627 may include two parts, an application FE and a UDR (the FE and UDR are not shown in
The AF 628 may provide application influence on traffic routing, provide access to the NCE, and interact with the policy framework for policy control. The NCE may be a mechanism that allows the 5GC 620 and AF 628 to provide information to each other via NEF 623, which may be used for edge computing implementations. In such implementations, the network operator and third party services may be hosted close to the UE 601 access point of attachment to achieve an efficient service delivery through the reduced end-to-end latency and load on the transport network. For edge computing implementations, the 5GC may select a UPF 602 close to the UE 601 and execute traffic steering from the UPF 602 to DN 603 via the N6 interface. This may be based on the UE subscription data, UE location, and information provided by the AF 628. In this way, the AF 628 may influence UPF (re)selection and traffic routing. Based on operator deployment, when AF 628 is considered to be a trusted entity, the network operator may permit AF 628 to interact directly with relevant NFs. Additionally, the AF 628 may exhibit a Naf service-based interface.
The NSSF 629 may select a set of network slice instances serving the UE 601. The NSSF 629 may also determine allowed NSSAI and the mapping to the subscribed S-NSSAIs if needed. The NSSF 629 may also determine the AMF set to be used to serve the UE 601, or a list of candidate AMF(s) 621 based on a suitable configuration and possibly by querying the NRF 625. The selection of a set of network slice instances for the UE 601 may be triggered by the AMF 621 with which the UE 601 is registered by interacting with the NSSF 629, which may lead to a change of AMF 621. The NSSF 629 may interact with the AMF 621 via an N22 reference point between AMF 621 and NSSF 629 and may communicate with another NSSF 629 in a visited network via an N31 reference point (not shown by
As discussed previously, the CN 620 may include an SMSF, which may be responsible for SMS subscription checking and verification, and relaying SM messages to/from the UE 601 to/from other entities, such as an SMS-GMSC/IWMSC/SMS-router. The SMS may also interact with AMF 621 and UDM 627 for a notification procedure that the UE 601 is available for SMS transfer (e.g., set a UE not reachable flag and notifying UDM 627 when UE 601 is available for SMS).
The CN 120 may also include other elements that are not shown by
Additionally, there may be many more reference points and/or service-based interfaces between the NF services in the NFs; however, these interfaces and reference points have been omitted from
The system 700 includes application circuitry 705, baseband circuitry 710, one or more radio front end modules (RFEMs) 715, memory circuitry 720, power management integrated circuitry (PMIC) 725, power tee circuitry 730, network controller circuitry 735, network interface connector 740, satellite positioning circuitry 745, and user interface 750. In some embodiments, the device 700 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface. In other embodiments, the components described below may be included in more than one device. For example, said circuitries may be separately included in more than one device for CRAN, vBBU, or other like implementations.
Application circuitry 705 includes circuitry such as but not limited to one or more processors (or processor cores), cache memory, and one or more of low drop-out voltage regulators (LDOs), interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, real-time clock (RTC), timer-counters including interval and watchdog timers, general-purpose input/output (I/O or IO), memory card controllers such as Secure Digital (SD) MultiMediaCard (MMC) or similar, Universal Serial Bus (USB) interfaces, Mobile Industry Processor Interface (MIPI) interfaces and Joint Test Access Group (JTAG) test access ports. The processors (or cores) of the application circuitry 705 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 700. In some implementations, the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
The processor(s) of application circuitry 705 may include, for example, one or more processor cores (CPUs), one or more application processors, one or more graphics processing units (GPUs), one or more reduced instruction set computing (RISC) processors, one or more Acorn RISC Machine (ARM) processors, one or more complex instruction set computing (CISC) processors, one or more digital signal processors (DSP), one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, or any suitable combination thereof. In some embodiments, the application circuitry 705 may comprise or maybe, a special-purpose processor/controller to operate according to the various embodiments herein. As examples, the processor(s) of application circuitry 705 may include one or more Intel Pentium®, Core®, or Xeon® processor(s); Advanced Micro Devices (AMD) Ryzen® processor(s), Accelerated Processing Units (APUs), or Epyc® processors; ARM-based processor(s) licensed from ARM Holdings, Ltd. such as the ARM Cortex-A family of processors and the ThunderX2® provided by Cavium™, Inc.; a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior P-class processors; and/or the like. In some embodiments, the system 700 may not utilize application circuitry 705 and instead may include a special-purpose processor/controller to process IP data received from an EPC or 5GC, for example.
In some implementations, the application circuitry 705 may include one or more hardware accelerators, which may be microprocessors, programmable processing devices, or the like. The one or more hardware accelerators may include, for example, computer vision (CV) and/or deep learning (DL) accelerators. As examples, the programmable processing devices may be one or more a field-programmable devices (FPDs) such as field-programmable gate arrays (FPGAs) and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like. In such implementations, the circuitry of application circuitry 705 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein. In such embodiments, the circuitry of application circuitry 705 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up-tables (LUTs) and the like.
The baseband circuitry 710 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits. The various hardware electronic elements of baseband circuitry 710 are discussed infra with regard to
User interface circuitry 750 may include one or more user interfaces designed to enable user interaction with the system 700 or peripheral component interfaces designed to enable peripheral component interaction with the system 700. User interfaces may include, but are not limited to, one or more physical or virtual buttons (e.g., a reset button), one or more indicators (e.g., light-emitting diodes (LEDs)), a physical keyboard or keypad, a mouse, a touchpad, a touchscreen, speakers or other audio emitting devices, microphones, a printer, a scanner, a headset, a display screen or display device, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, a power supply interface, etc.
The radio front end modules (RFEMs) 715 may comprise a millimeter wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs). In some implementations, the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM. The RFICs may include connections to one or more antennas or antenna arrays (see e.g., antenna array 911 of
The memory circuitry 720 may include one or more of volatile memory including dynamic random access memory (DRAM) and/or synchronous dynamic random access memory (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase-change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc., and may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®. Memory circuitry 720 may be implemented as one or more of solder down packaged integrated circuits, socketed memory modules and plug-in memory cards.
The PMIC 725 may include voltage regulators, surge protectors, power alarm detection circuitry, and one or more backup power sources such as a battery or capacitor. The power alarm detection circuitry may detect one or more of brownout (under-voltage) and surge (over-voltage) conditions. The power tee circuitry 730 may provide for electrical power drawn from a network cable to provide both power supply and data connectivity to the infrastructure equipment 700 using a single cable.
The network controller circuitry 735 may provide connectivity to a network using a standard network interface protocol such as Ethernet, Ethernet over GRE Tunnels, Ethernet over Multiprotocol Label Switching (MPLS), or some other suitable protocol. Network connectivity may be provided to/from the infrastructure equipment 700 via network interface connector 740 using a physical connection, which may be electrical (commonly referred to as a “copper interconnect”), optical, or wireless. The network controller circuitry 735 may include one or more dedicated processors and/or FPGAs to communicate using one or more of the aforementioned protocols. In some implementations, the network controller circuitry 735 may include multiple controllers to provide connectivity to other networks using the same or different protocols.
The positioning circuitry 745 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a global navigation satellite system (GNSS). Examples of navigation satellite constellations (or GNSS) include United States' Global Positioning System (GPS), Russia's Global Navigation System (GLONASS), the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., Navigation with Indian Constellation (NAVIC), Japan's Quasi-Zenith Satellite System (QZSS), France's Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), etc.), or the like. The positioning circuitry 745 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some embodiments, the positioning circuitry 745 may include a Micro-Technology for Positioning, Navigation, and Timing (Micro-PNT) IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The positioning circuitry 745 may also be part of or interact with, the baseband circuitry 710 and/or RFEMs 715 to communicate with the nodes and components of the positioning network. The positioning circuitry 745 may also provide position data and/or time data to the application circuitry 705, which may use the data to synchronize operations with various infrastructure (e.g., RAN nodes 411, etc.), or the like.
The components shown by
Application circuitry 805 includes circuitry such as but not limited to one or more processors (or processor cores), cache memory, and one or more of LDOs, interrupt controllers, serial interfaces such as SPI, I2C or universal programmable serial interface module, RTC, timer-counters including interval and watchdog timers, general-purpose I/O, memory card controllers such as SD MMC or similar, USB interfaces, MIPI interfaces, and JTAG test access ports. The processors (or cores) of the application circuitry 805 may be coupled with or may include memory/storage elements and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the system 800. In some implementations, the memory/storage elements may be on-chip memory circuitry, which may include any suitable volatile and/or non-volatile memory, such as DRAM, SRAM, EPROM, EEPROM, Flash memory, solid-state memory, and/or any other type of memory device technology, such as those discussed herein.
The processor(s) of application circuitry 705 may include, for example, one or more processor cores, one or more application processors, one or more GPUs, one or more RISC processors, one or more ARM processors, one or more CISC processors, one or more DSP, one or more FPGAs, one or more PLDs, one or more ASICs, one or more microprocessors or controllers, a multithreaded processor, an ultra-low voltage processor, an embedded processor, some other known processing element, or any suitable combination thereof. In some embodiments, the application circuitry 705 may comprise or maybe, a special-purpose processor/controller to operate according to the various embodiments herein.
As examples, the processor(s) of application circuitry 805 may include an Intel® Architecture Core™ based processor, such as a Quark™, an Atom™, an i3, an i5, an i7, or an MCU-class processor, or another such processor available from Intel® Corporation, Santa Clara, Calif. The processors of the application circuitry 805 may also be one or more of Advanced Micro Devices (AMD) Ryzen® processor(s) or Accelerated Processing Units (APUs); A5-A9 processor(s) from Apple® Inc., Snapdragon™ processor(s) from Qualcomm® Technologies, Inc., Texas Instruments, Inc.® Open Multimedia Applications Platform (OMAP)™ processor(s); a MIPS-based design from MIPS Technologies, Inc. such as MIPS Warrior M-class, Warrior I-class, and Warrior P-class processors; an ARM-based design licensed from ARM Holdings, Ltd., such as the ARM Cortex-A, Cortex-R, and Cortex-M family of processors; or the like. In some implementations, the application circuitry 805 may be a part of a system on a chip (SoC) in which the application circuitry 805 and other components are formed into a single integrated circuit, or a single package, such as the Edison™ or Galileo™ SoC boards from Intel® Corporation.
Additionally or alternatively, application circuitry 805 may include circuitry such as, but not limited to, one or more a field-programmable devices (FPDs) such as FPGAs and the like; programmable logic devices (PLDs) such as complex PLDs (CPLDs), high-capacity PLDs (HCPLDs), and the like; ASICs such as structured ASICs and the like; programmable SoCs (PSoCs); and the like. In such embodiments, the circuitry of application circuitry 805 may comprise logic blocks or logic fabric, and other interconnected resources that may be programmed to perform various functions, such as the procedures, methods, functions, etc. of the various embodiments discussed herein. In such embodiments, the circuitry of application circuitry 805 may include memory cells (e.g., erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), flash memory, static memory (e.g., static random access memory (SRAM), anti-fuses, etc.)) used to store logic blocks, logic fabric, data, etc. in look-up tables (LUTs) and the like.
The baseband circuitry 810 may be implemented, for example, as a solder-down substrate including one or more integrated circuits, a single packaged integrated circuit soldered to a main circuit board or a multi-chip module containing two or more integrated circuits. The various hardware electronic elements of baseband circuitry 810 are discussed infra with regard to
The RFEMs 815 may comprise a millimeter-wave (mmWave) RFEM and one or more sub-mmWave radio frequency integrated circuits (RFICs). In some implementations, the one or more sub-mmWave RFICs may be physically separated from the mmWave RFEM. The RFICs may include connections to one or more antennas or antenna arrays (see, e.g., antenna array 911 of
The memory circuitry 820 may include any number and type of memory devices used to provide for a given amount of system memory. As examples, the memory circuitry 820 may include one or more of volatile memory including random access memory (RAM), dynamic RAM (DRAM) and/or synchronous dynamic RAM (SDRAM), and nonvolatile memory (NVM) including high-speed electrically erasable memory (commonly referred to as Flash memory), phase-change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc. The memory circuitry 820 may be developed in accordance with a Joint Electron Devices Engineering Council (JEDEC) low power double data rate (LPDDR)-based design, such as LPDDR2, LPDDR3, LPDDR4, or the like. Memory circuitry 820 may be implemented as one or more of solder down packaged integrated circuits, single die package (SDP), dual die package (DDP) or quad die package (Q17P), socketed memory modules, dual inline memory modules (DIMMs) including microDIMMs or MiniDIMMs, and/or soldered onto a motherboard via a ball grid array (BGA). In low power implementations, the memory circuitry 820 may be on-die memory or registers associated with the application circuitry 805. To provide for persistent storage of information such as data, applications, operating systems and so forth, memory circuitry 820 may include one or more mass storage devices, which may include, among other things, a solid-state disk drive (SSDD), hard disk drive (HDD), a micro HDD, resistance change memories, phase change memories, holographic memories, or chemical memories, among others. For example, the computer platform 800 may incorporate the three-dimensional (3D) cross-point (XPOINT) memories from Intel® and Micron®.
Removable memory circuitry 823 may include devices, circuitry, enclosures/housings, ports or receptacles, etc. used to couple portable data storage devices with the platform 800. These portable data storage devices may be used for mass storage purposes, and may include, for example, flash memory cards (e.g., Secure Digital (SD) cards, microSD cards, xD picture cards, and the like), and USB flash drives, optical discs, external HDDs, and the like.
The platform 800 may also include interface circuitry (not shown) that is used to connect external devices with the platform 800. The external devices connected to the platform 800 via the interface circuitry include sensor circuitry 821 and electro-mechanical components (EMCs) 822, as well as removable memory devices coupled to removable memory circuitry 823.
The sensor circuitry 821 includes devices, modules, or subsystems whose purpose is to detect events or changes in its environment and send the information (sensor data) about the detected events to some other a device, module, subsystem, etc. Examples of such sensors include, inter alia, inertia measurement units (IMUS) comprising accelerometers, gyroscopes, and/or magnetometers; microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS) comprising 3-axis accelerometers, 3-axis gyroscopes, and/or magnetometers; level sensors; flow sensors; temperature sensors (e.g., thermistors); pressure sensors; barometric pressure sensors; gravimeters; altimeters; image capture devices (e.g., cameras or lensless apertures); light detection and ranging (LiDAR) sensors; proximity sensors (e.g., infrared radiation detector and the like), depth sensors, ambient light sensors, ultrasonic transceivers; microphones or other like audio capture devices; etc.
EMCs 822 include devices, modules, or subsystems whose purpose is to enable platform 800 to change its state, position, and/or orientation, or move or control a mechanism or (sub) system. Additionally, EMCs 822 may be configured to generate and send messages/signaling to other components of the platform 800 to indicate a current state of the EMCs 822. Examples of the EMCs 822 include one or more power switches, relays including electromechanical relays (EMRs) and/or solid-state relays (SSRs), actuators (e.g., valve actuators, etc.), an audible sound generator, a visual warning device, motors (e.g., DC motors, stepper motors, etc.), wheels, thrusters, propellers, claws, clamps, hooks, and/or other like electro-mechanical components. In embodiments, platform 800 is configured to operate one or more EMCs 822 based on one or more captured events and/or instructions or control signals received from a service provider and/or various clients.
In some implementations, the interface circuitry may connect the platform 800 with positioning circuitry 845. The positioning circuitry 845 includes circuitry to receive and decode signals transmitted/broadcasted by a positioning network of a GNSS. Examples of navigation satellite constellations (or GNSS) include United States' GPS, Russia's GLONASS, the European Union's Galileo system, China's BeiDou Navigation Satellite System, a regional navigation system or GNSS augmentation system (e.g., NAVIC), Japan's QZSS, France's DORIS, etc.), or the like. The positioning circuitry 845 comprises various hardware elements (e.g., including hardware devices such as switches, filters, amplifiers, antenna elements, and the like to facilitate OTA communications) to communicate with components of a positioning network, such as navigation satellite constellation nodes. In some embodiments, the positioning circuitry 845 may include a Micro-PNT IC that uses a master timing clock to perform position tracking/estimation without GNSS assistance. The positioning circuitry 845 may also be part of or interact with, the baseband circuitry 710 and/or RFEMs 815 to communicate with the nodes and components of the positioning network. The positioning circuitry 845 may also provide position data and/or time data to the application circuitry 805, which may use the data to synchronize operations with various infrastructure (e.g., radio base stations), for turn-by-turn navigation applications, or the like
In some implementations, the interface circuitry may connect the platform 800 with Near-Field Communication (NFC) circuitry 840. NFC circuitry 840 is configured to provide contactless, short-range communications based on radio frequency identification (RFID) standards, wherein magnetic field induction is used to enable communication between NFC circuitry 840 and NFC-enabled devices external to the platform 800 (e.g., an “NFC touchpoint”). NFC circuitry 840 comprises an NFC controller coupled with an antenna element and a processor coupled with the NFC controller. The NFC controller may be a chip/IC providing NFC functionalities to the NFC circuitry 840 by executing NFC controller firmware and an NFC stack. The NFC stack may be executed by the processor to control the NFC controller, and the NFC controller firmware may be executed by the NFC controller to control the antenna element to emit short-range RF signals. The RF signals may power a passive NFC tag (e.g., a microchip embedded in a sticker or wristband) to transmit stored data to the NFC circuitry 840, or initiate data transfer between the NFC circuitry 840 and another active NFC device (e.g., a smartphone or an NFC-enabled POS terminal) that is proximate to the platform 800.
The driver circuitry 846 may include software and hardware elements that operate to control particular devices that are embedded in the platform 800, attached to the platform 800, or otherwise communicatively coupled with the platform 800. The driver circuitry 846 may include individual drivers allowing other components of the platform 800 to interact with or control various input/output (I/O) devices that may be present within, or connected to, the platform 800. For example, driver circuitry 846 may include a display driver to control and allow access to a display device, a touchscreen driver to control and allow access to a touchscreen interface of the platform 800, sensor drivers to obtain sensor readings of sensor circuitry 821 and control and allow access to sensor circuitry 821, EMC drivers to obtain actuator positions of the EMCs 822 and/or control and allow access to the EMCs 822, a camera driver to control and allow access to an embedded image capture device, audio drivers to control and allow access to one or more audio devices.
The power management integrated circuitry (PMIC) 825 (also referred to as “power management circuitry 825”) may manage power provided to various components of the platform 800. In particular, with respect to the baseband circuitry 810, the PMIC 825 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion. The PMIC 825 may often be included when the platform 800 is capable of being powered by a battery 830, for example, when the device is included in a UE 401, 501, 602.
In some embodiments, the PMIC 825 may control, or otherwise be part of, various power-saving mechanisms of the platform 800. For example, if the platform 800 is in an RRC_Connected state, where it is still connected to the RAN node as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the platform 800 may power down for brief intervals of time and thus save power. If there is no data traffic activity for an extended period of time, then the platform 800 may transition off to an RRC_Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc. The platform 800 goes into a very low power state, and it performs paging where again it periodically wakes up to listen to the network and then powers down again. The platform 800 may not receive data in this state; in order to receive data, it must transition back to RRC_Connected state. An additional power-saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours). During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
A battery 830 may power the platform 800, although, in some examples, the platform 800 may be mounted deployed in a fixed location and may have a power supply coupled to an electrical grid. The battery 830 may be a lithium-ion battery, a metal-air battery, such as a zinc-air battery, an aluminum-air battery, a lithium-air battery, and the like. In some implementations, such as in V2X applications, the battery 830 may be a typical lead-acid automotive battery.
In some implementations, the battery 830 may be a “smart battery,” which includes or is coupled with a Battery Management System (BMS) or battery monitoring integrated circuitry. The BMS may be included in the platform 800 to track the state of charge (SoCh) of the battery 830. The BMS may be used to monitor other parameters of the battery 830 to provide failure predictions, such as the state of health (SoH) and the state of function (SoF) of the battery 830. The BMS may communicate the information of the battery 830 to the application circuitry 805 or other components of the platform 800. The BMS may also include an analog-to-digital (ADC) converter that allows the application circuitry 805 to directly monitor the voltage of the battery 830 or the current flow from the battery 830. The battery parameters may be used to determine actions that the platform 800 may perform, such as transmission frequency, network operation, sensing frequency, and the like.
A power block or other power supply coupled to an electrical grid may be coupled with the BMS to charge the battery 830. In some examples, the power block XS30 may be replaced with a wireless power receiver to obtain the power wirelessly, for example, through a loop antenna in the computer platform 800. In these examples, a wireless battery charging circuit may be included in the BMS. The specific charging circuits chosen may depend on the size of the battery 830, and thus, the current required. The charging may be performed using the Airfuel standard promulgated by the Airfuel Alliance, the Qi wireless charging standard promulgated by the Wireless Power Consortium, or the Rezence charging standard promulgated by the Alliance for Wireless Power, among others.
User interface circuitry 850 includes various input/output (I/O) devices present within, or connected to, the platform 800, and includes one or more user interfaces designed to enable user interaction with the platform 800 and/or peripheral component interfaces designed to enable peripheral component interaction with the platform 800. The user interface circuitry 850 includes input device circuitry and output device circuitry. Input device circuitry includes any physical or virtual means for accepting an input including, among other things, one or more physical or virtual buttons (e.g., a reset button), a physical keyboard, keypad, mouse, touchpad, touchscreen, microphones, scanner, headset, and/or the like. The output device circuitry includes any physical or virtual means for showing information or otherwise conveying information, such as sensor readings, actuator position(s), or other like information. Output device circuitry may include any number and/or combinations of audio or visual display, including, inter alia, one or more simple visual outputs/indicators (e.g., binary status indicators (e.g., light-emitting diodes (LEDs)) and multi-character visual outputs, or more complex outputs such as display devices or touchscreens (e.g., Liquid Chrystal Displays (LCD), LED displays, quantum dot displays, projectors, etc.), with the output of characters, graphics, multimedia objects, and the like being generated or produced from the operation of the platform 800. The output device circuitry may also include speakers or other audio emitting devices, printer(s), and/or the like. In some embodiments, the sensor circuitry 821 may be used as the input device circuitry (e.g., an image capture device, motion capture device, or the like) and one or more EMCs may be used as the output device circuitry (e.g., an actuator to provide haptic feedback or the like). In another example, NFC circuitry comprising an NFC controller coupled with an antenna element and a processing device may be included to read electronic tags and/or connect with another NFC-enabled device. Peripheral component interfaces may include but are not limited to, a non-volatile memory port, a USB port, an audio jack, a power supply interface, etc.
Although not shown, the components of platform 800 may communicate with one another using a suitable bus or interconnect (IX) technology, which may include any number of technologies, including ISA, EISA, PCI, PCIx, PCIe, a Time-Trigger Protocol (TTP) system, a FlexRay system, or any number of other technologies. The bus/IX may be a proprietary bus/IX, for example, used in an SoC based system. Other bus/IX systems may be included, such as an I2C interface, an SPI interface, point-to-point interfaces, and a power bus, among others.
The baseband circuitry 910 includes circuitry and/or control logic configured to carry out various radio/network protocol and radio control functions that enable communication with one or more radio networks via the RF circuitry 906. The radio control functions may include but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc. In some embodiments, modulation/demodulation circuitry of the baseband circuitry 910 may include Fast-Fourier Transform (FFT), precoding, or constellation mapping/demapping functionality. In some embodiments, encoding/decoding circuitry of the baseband circuitry 910 may include convolution, tail-biting convolution, turbo, Viterbi, or Low-Density Parity Check (LDPC) encoder/decoder functionality. Embodiments of modulation/demodulation and encoder/decoder functionality are not limited to these examples and may include other suitable functionality in other embodiments. The baseband circuitry 910 is configured to process baseband signals received from a receive signal path of the RF circuitry 906 and to generate baseband signals for a transmit signal path of the RF circuitry 906. The baseband circuitry 910 is configured to interface with application circuitry 705/805 (see
The aforementioned circuitry and/or control logic of the baseband circuitry 910 may include one or more single or multi-core processors. For example, the one or more processors may include a 3G baseband processor 904A, a 4G/LTE baseband processor 904B, a 5G/NR baseband processor 904C, or some other baseband processor(s) 904D for other existing generations, generations in development or to be developed in the future (e.g., sixth-generation (6G), etc.). In other embodiments, some or all of the functionality of baseband processors 904A-D may be included in modules stored in the memory 904G and executed via a Central Processing Unit (CPU) 904E. In other embodiments, some or all of the functionality of baseband processors 904A-D may be provided as hardware accelerators (e.g., FPGAs, ASICs, etc.) loaded with the appropriate bitstreams or logic blocks stored in respective memory cells. In various embodiments, the memory 904G may store program code of a real-time OS (RTOS), which when executed by the CPU 904E (or another baseband processor), is to cause the CPU 904E (or another baseband processor) to manage resources of the baseband circuitry 910, schedule tasks, etc. Examples of the RTOS may include Operating System Embedded (OSE)™ provided by Enea®, Nucleus RTOS™ provided by Mentor Graphics®, Versatile Real-Time Executive (VRTX) provided by Mentor Graphics®, ThreadX™ provided by Express Logic®, FreeRTOS, REX OS provided by Qualcomm®, OKL4 provided by Open Kernel (OK) Labs®, or any other suitable RTOS, such as those discussed herein. In addition, the baseband circuitry 910 includes one or more audio digital signal processor(s) (DSP) 904F. The audio DSP(s) 904F include elements for compression/decompression and echo cancellation and may include other suitable processing elements in other embodiments.
In some embodiments, each of the processors 904A-904E includes respective memory interfaces to send/receive data to/from the memory 904G. The baseband circuitry 910 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as an interface to send/receive data to/from memory external to the baseband circuitry 910; an application circuitry interface to send/receive data to/from the application circuitry 705/805 of
In alternate embodiments (which may be combined with the above-described embodiments), baseband circuitry 910 comprises one or more digital baseband systems, which are coupled with one another via an interconnect subsystem and to a CPU subsystem, an audio subsystem, and an interface subsystem. The digital baseband subsystems may also be coupled to a digital baseband interface and a mixed-signal baseband subsystem via another interconnect subsystem. Each of the interconnect subsystems may include a bus system, point-to-point connections, network-on-chip (NOC) structures, and/or some other suitable bus or interconnect technology, such as those discussed herein. The audio subsystem may include DSP circuitry, buffer memory, program memory, speech processing accelerator circuitry, data converter circuitry such as analog-to-digital and digital-to-analog converter circuitry, analog circuitry including one or more of amplifiers and filters, and/or other like components. In an aspect of the present disclosure, baseband circuitry 910 may include protocol processing circuitry with one or more instances of control circuitry (not shown) to provide control functions for the digital baseband circuitry and/or radio frequency circuitry (e.g., the radio front end modules 915).
Although not shown by
The various hardware elements of the baseband circuitry 910 discussed herein may be implemented, for example, as a solder-down substrate, including one or more integrated circuits (ICs), a single packaged IC soldered to a main circuit board or a multi-chip module containing two or more ICs. In one example, the components of the baseband circuitry 910 may be suitably combined in a single chip or chipset or disposed on the same circuit board. In another example, some or all of the constituent components of the baseband circuitry 910 and RF circuitry 906 may be implemented together, such as, for example, a system on a chip (SoC) or System-in-Package (SiP). In another example, some or all of the constituent components of the baseband circuitry 910 may be implemented as a separate SoC that is communicatively coupled with and RF circuitry 906 (or multiple instances of RF circuitry 906). In yet another example, some or all of the constituent components of the baseband circuitry 910 and the application circuitry 705/805 may be implemented together as individual SoCs mounted to a same circuit board (e.g., a “multi-chip package”).
In some embodiments, the baseband circuitry 910 may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry 910 may support communication with an E-UTRAN or other WMAN, a WLAN, a WPAN. Embodiments in which the baseband circuitry 910 is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
RF circuitry 906 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry 906 may include switches, filters, amplifiers, etc. to facilitate communication with the wireless network. RF circuitry 906 may include a receive signal path, which may include circuitry to down-convert RF signals received from the FEM circuitry 908 and provide baseband signals to the baseband circuitry 910. RF circuitry 906 may also include a transmit signal path, which may include circuitry to up-convert baseband signals provided by the baseband circuitry 910 and provide RF output signals to the FEM circuitry 908 for transmission.
In some embodiments, the receive signal path of the RF circuitry 906 may include mixer circuitry 906a, amplifier circuitry 906b, and filter circuitry 906c. In some embodiments, the transmit signal path of the RF circuitry 906 may include filter circuitry 906c and mixer circuitry 906a. RF circuitry 906 may also include synthesizer circuitry 906d for synthesizing a frequency for use by the mixer circuitry 906a of the receive signal path and the transmit signal path. In some embodiments, the mixer circuitry 906a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 908 based on the synthesized frequency provided by synthesizer circuitry 906d. The amplifier circuitry 906b may be configured to amplify the down-converted signals, and the filter circuitry 906c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals. Output baseband signals may be provided to the baseband circuitry 910 for further processing. In some embodiments, the output baseband signals may be zero-frequency baseband signals, although this is not a requirement. In some embodiments, mixer circuitry 906a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
In some embodiments, the mixer circuitry 906a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 906d to generate RF output signals for the FEM circuitry 908. The baseband signals may be provided by the baseband circuitry 910 and may be filtered by filter circuitry 906c.
In some embodiments, the mixer circuitry 906a of the receive signal path and the mixer circuitry 906a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively. In some embodiments, the mixer circuitry 906a of the receive signal path and the mixer circuitry 906a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection). In some embodiments, the mixer circuitry 906a of the receive signal path and the mixer circuitry 906a of the transmit signal path may be arranged for direct downconversion and direct upconversion, respectively. In some embodiments, the mixer circuitry 906a of the receive signal path and the mixer circuitry 906a of the transmit signal path may be configured for super-heterodyne operation.
In some embodiments, the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect. In some alternate embodiments, the output baseband signals and the input baseband signals may be digital baseband signals. In these alternative embodiments, the RF circuitry 906 may include an analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 910 may include a digital baseband interface to communicate with the RF circuitry 906.
In some dual-mode embodiments, a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
In some embodiments, the synthesizer circuitry 906d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable. For example, synthesizer circuitry 906d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
The synthesizer circuitry 906d may be configured to synthesize an output frequency for use by the mixer circuitry 906a of the RF circuitry 906 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 906d may be a fractional N/N+1 synthesizer.
In some embodiments, frequency input may be provided by a voltage controlled oscillator (VCO), although that is not a requirement. The divider control input may be provided by either the baseband circuitry 910 or the application circuitry 705/805 depending on the desired output frequency. In some embodiments, a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the application circuitry 705/805.
Synthesizer circuitry 906d of the RF circuitry 906 may include a divider, a delay-locked loop (DLL), a multiplexer, and a phase accumulator. In some embodiments, the divider may be a dual modulus divider (DMD), and the phase accumulator may be a digital phase accumulator (DPA). In some embodiments, the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carryout) to provide a fractional division ratio. In some example embodiments, the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump, and a D-type flip-flop. In these embodiments, the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line. In this way, the DLL provides negative feedback to help ensure that the total delay through the delay line is one VCO cycle.
In some embodiments, synthesizer circuitry 906d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other. In some embodiments, the output frequency may be a LO frequency (fLO). In some embodiments, the RF circuitry 906 may include an IQ/polar converter.
FEM circuitry 908 may include a receive signal path, which may include circuitry configured to operate on RF signals received from antenna array 911, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 906 for further processing. FEM circuitry 908 may also include a transmit signal path, which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 906 for transmission by one or more antenna elements of antenna array 911. In various embodiments, the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 906, solely in the FEM circuitry 908, or in both the RF circuitry 906 and the FEM circuitry 908.
In some embodiments, the FEM circuitry 908 may include a TX/RX switch to switch between transmit mode and receive mode operation. The FEM circuitry 908 may include a receive signal path and a transmit signal path. The receive signal path of the FEM circuitry 908 may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 906). The transmit signal path of the FEM circuitry 908 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 906), and one or more filters to generate RF signals for subsequent transmission by one or more antenna elements of the antenna array 911.
The antenna array 911 comprises one or more antenna elements, each of which is configured convert electrical signals into radio waves to travel through the air and to convert received radio waves into electrical signals. For example, digital baseband signals provided by the baseband circuitry 910 is converted into analog RF signals (e.g., modulated waveform) that will be amplified and transmitted via the antenna elements of the antenna array 911 including one or more antenna elements (not shown). The antenna elements may be omnidirectional, direction, or a combination thereof. The antenna elements may be formed in a multitude of arranges as are known and/or discussed herein. The antenna array 911 may comprise microstrip antennas or printed antennas that are fabricated on the surface of one or more printed circuit boards. The antenna array 911 may be formed in as a patch of metal foil (e.g., a patch antenna) in a variety of shapes, and may be coupled with the RF circuitry 906 and/or FEM circuitry 908 using metal transmission lines or the like.
Processors of the application circuitry 705/805 and processors of the baseband circuitry 910 may be used to execute elements of one or more instances of a protocol stack. For example, processors of the baseband circuitry 910, alone or in combination, may be used execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 705/805 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., TCP and UDP layers). As referred to herein, Layer 3 may comprise an RRC layer, described in further detail below. As referred to herein, Layer 2 may comprise a MAC layer, an RLC layer, and a PDCP layer, described in further detail below. As referred to herein, Layer 1 may comprise a PHY layer of a UE/RAN node, described in further detail below.
The protocol layers of arrangement 1000 may include one or more of PHY 1010, MAC 1020, RLC 1030, PDCP 1040, SDAP 1047, RRC 1055, and NAS layer 1057, in addition to other higher-layer functions not illustrated. The protocol layers may include one or more service access points (e.g., items 1059, 1056, 1050, 1049, 1045, 1035, 1025, and 1015 in
The PHY 1010 may transmit and receive physical layer signals 1005 that may be received from or transmitted to one or more other communication devices. The physical layer signals 1005 may comprise one or more physical channels, such as those discussed herein. The PHY 1010 may further perform link adaptation or adaptive modulation and coding (AMC), power control, cell search (e.g., for initial synchronization and handover purposes), and other measurements used by higher layers, such as the RRC 1055. The PHY 1010 may still further perform error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, modulation/demodulation of physical channels, interleaving, rate matching, mapping onto physical channels, and MIMO antenna processing. In embodiments, an instance of PHY 1010 may process requests from and provide indications to an instance of MAC 1020 via one or more PHY-SAP 1015. According to some embodiments, requests and indications communicated via PHY-SAP 1015 may comprise one or more transport channels.
Instance(s) of MAC 1020 may process requests from and provide indications to an instance of RLC 1030 via one or more MAC-SAPs 1025. These requests and indications communicated via the MAC-SAP 1025 may comprise one or more logical channels. The MAC 1020 may perform mapping between the logical channels and transport channels, multiplexing of MAC SDUs from one or more logical channels onto TBs to be delivered to PHY 1010 via the transport channels, de-multiplexing MAC SDUs to one or more logical channels from TBs delivered from the PHY 1010 via transport channels, multiplexing MAC SDUs onto TBs, scheduling information reporting, error correction through HARQ, and logical channel prioritization.
Instance(s) of RLC 1030 may process requests from and provide indications to an instance of PDCP 1040 via one or more radio link control service access points (RLC-SAP) 1035. These requests and indications communicated via RLC-SAP 1035 may comprise one or more RLC channels. The RLC 1030 may operate in a plurality of modes of operation, including Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM). The RLC 1030 may execute the transfer of upper layer protocol data units (PDUs), error correction through automatic repeat request (ARQ) for AM data transfers, and concatenation, segmentation, and reassembly of RLC SDUs for UM and AM data transfers. The RLC 1030 may also execute re-segmentation of RLC data PDUs for AM data transfers, reorder RLC data PDUs for UM and AM data transfers, detect duplicate data for UM and AM data transfers, discard RLC SDUs for UM and AM data transfers, detect protocol errors for AM data transfers, and perform RLC re-establishment.
Instance(s) of PDCP 1040 may process requests from and provide indications to instance(s) of RRC 1055 and/or instance(s) of SDAP 1047 via one or more packet data convergence protocol service access points (PDCP-SAP) 1045. These requests and indications communicated via PDCP-SAP 1045 may comprise one or more radio bearers. The PDCP 1040 may execute header compression and decompression of IP data, maintain PDCP Sequence Numbers (SNs), perform in-sequence delivery of upper layer PDUs at re-establishment of lower layers, eliminate duplicates of lower layer SDUs at re-establishment of lower layers for radio bearers mapped on RLC AM, cipher and decipher control plane data, perform integrity protection and integrity verification of control plane data, control timer-based discard of data, and perform security operations (e.g., ciphering, deciphering, integrity protection, integrity verification, etc.).
Instance(s) of SDAP 1047 may process requests from and provide indications to one or more higher layer protocol entities via one or more SDAP-SAP 1049. These requests and indications communicated via SDAP-SAP 1049 may comprise one or more QoS flows. The SDAP 1047 may map QoS flows to DRBs, and vice versa, and may also mark QFIs in DL and UL packets. A single SDAP entity 1047 may be configured for an individual PDU session. In the UL direction, the NG-RAN 410 may control the mapping of QoS Flows to DRB(s) in two different ways, reflective mapping or explicit mapping. For reflective mapping, the SDAP 1047 of a UE 401 may monitor the QFIs of the DL packets for each DRB and may apply the same mapping for packets flowing in the UL direction. For a DRB, the SDAP 1047 of the UE 401 may map the UL packets belonging to the QoS flows(s) corresponding to the QoS flow ID(s) and PDU session observed in the DL packets for that DRB. To enable reflective mapping, the NG-RAN 610 may mark DL packets over the Uu interface with a QoS flow ID. The explicit mapping may involve the RRC 1055 configuring the SDAP 1047 with an explicit QoS flow to the DRB mapping rule, which may be stored and followed by the SDAP 1047. In embodiments, the SDAP 1047 may only be used in NR implementations and may not be used in LTE implementations.
The RRC 1055 may configure, via one or more management service access points (M-SAP), aspects of one or more protocol layers, which may include one or more instances of PHY 1010, MAC 1020, RLC 1030, PDCP 1040 and SDAP 1047. In embodiments, an instance of RRC 1055 may process requests from and provide indications to one or more NAS entities 1057 via one or more RRC-SAPs 1056. The main services and functions of the RRC 1055 may include broadcast of system information (e.g., included in MIBs or SIBs related to the NAS), broadcast of system information related to the access stratum (AS), paging, establishment, maintenance and release of an RRC connection between the UE 401 and RAN 410 (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release), establishment, configuration, maintenance and release of point to point Radio Bearers, security functions including key management, inter-RAT mobility, and measurement configuration for UE measurement reporting. The MIBs and SIBs may comprise one or more IEs, which may each include individual data fields or data structures.
The NAS 1057 may form the highest stratum of the control plane between the UE 401 and the AMF 621. The NAS 1057 may support the mobility of the UEs 401 and the session management procedures to establish and maintain IP connectivity between the UE 401 and a P-GW in LTE systems.
According to various embodiments, one or more protocol entities of arrangement 1000 may be implemented in UEs 401, RAN nodes 411, AMF 621 in NR implementations or MME 521 in LTE implementations, UPF 602 in NR implementations or S-GW 522 and P-GW 523 in LTE implementations, or the like to be used for control plane or user plane communications protocol stack between the aforementioned devices. In such embodiments, one or more protocol entities that may be implemented in one or more of UE 401, gNB 411, AMF 621, etc. may communicate with a respective peer protocol entity that may be implemented in or on another device using the services of respective lower layer protocol entities to perform such communication. In some embodiments, a gNB-CU of the gNB 411 may host the RRC 1055, SDAP 1047, and PDCP 1040 of the gNB that controls the operation of one or more gNB-DUs, and the gNB-DUs of the gNB 411 may each host the RLC 1030, MAC 1020, and PHY 1010 of the gNB 411.
In a first example, a control plane protocol stack may comprise, in order from the highest layer to lowest layer, NAS 1057, RRC 1055, PDCP 1040, RLC 1030, MAC 1020, and PHY 1010. In this example, upper layers 1060 may be built on top of the NAS 1057, which includes an IP layer 1061, an SCTP 1062, and an application layer signaling protocol (AP) 1063.
In NR implementations, the AP 1063 may be an NG application protocol layer (NGAP or NG-AP) 1063 for the NG interface 413 defined between the NG-RAN node 411 and the AMF 621, or the AP 1063 may be an Xn application protocol layer (XnAP or Xn-AP) 1063 for the Xn interface 412 that is defined between two or more RAN nodes 411.
The NG-AP 1063 may support the functions of the NG interface 413 and may comprise Elementary Procedures (EPs). An NG-AP EP may be a unit of interaction between the NG-RAN node 411 and the AMF 621. The NG-AP 1063 services may comprise two groups: UE-associated services (e.g., services related to a UE 401) and non-UE-associated services (e.g., services related to the whole NG interface instance between the NG-RAN node 411 and AMF 621). These services may include functions including, but not limited to: a paging function for the sending of paging requests to NG-RAN nodes 411 involved in a particular paging area; a UE context management function for allowing the AMF 621 to establish, modify, and/or release a UE context in the AMF 621 and the NG-RAN node 411; a mobility function for UEs 401 in ECM-CONNECTED mode for intra-system HOs to support mobility within NG-RAN and inter-system HOs to support mobility from/to EPS systems; a NAS Signaling Transport function for transporting or rerouting NAS messages between UE 401 and AMF 621; a NAS node selection function for determining an association between the AMF 621 and the UE 401; NG interface management function(s) for setting up the NG interface and monitoring for errors over the NG interface; a warning message transmission function for providing means to transfer warning messages via NG interface or cancel ongoing broadcast of warning messages; a Configuration Transfer function for requesting and transferring of RAN configuration information (e.g., SON information, performance measurement (PM) data, etc.) between two RAN nodes 411 via CN 420; and/or other like functions.
The XnAP 1063 may support the functions of the Xn interface 412 and may comprise XnAP basic mobility procedures and XnAP global procedures. The XnAP basic mobility procedures may comprise procedures used to handle UE mobility within the NG RAN 411 (or E-UTRAN 510), such as handover preparation and cancellation procedures, SN Status Transfer procedures, UE context retrieval, and UE context release procedures, RAN paging procedures, dual connectivity related procedures, and the like. The XnAP global procedures may comprise procedures that are not related to a specific UE 401, such as Xn interface setup and reset procedures, NG-RAN update procedures, cell activation procedures, and the like.
In LTE implementations, the AP 1063 may be an S1 Application Protocol layer (S1-AP) 1063 for the S1 interface 413 defined between an E-UTRAN node 411 and an MME, or the AP 1063 may be an X2 application protocol layer (X2AP or X2-AP) 1063 for the X2 interface 412 that is defined between two or more E-UTRAN nodes 411.
The S1 Application Protocol layer (S1-AP) 1063 may support the functions of the S1 interface, and similar to the NG-AP discussed previously, the S1-AP may comprise S1-AP EPs. An S1-AP EP may be a unit of interaction between the E-UTRAN node 411 and an MME 521 within an LTE CN 420. The S1-AP 1063 services may comprise two groups: UE-associated services and non-UE-associated services. These services perform functions including, but not limited to E-UTRAN Radio Access Bearer (E-RAB) management, UE capability indication, mobility, NAS signaling transport, RAN Information Management (RIM), and configuration transfer.
The X2AP 1063 may support the functions of the X2 interface 412 and may comprise X2AP basic mobility procedures and X2AP global procedures. The X2AP basic mobility procedures may include procedures used to handle UE mobility within the E-UTRAN 420, such as handover preparation and cancellation procedures, SN Status Transfer procedures, UE context retrieval, and UE context release procedures, RAN paging procedures, dual connectivity related procedures, and the like. The X2AP global procedures may comprise procedures that are not related to a specific UE 401, such as X2 interface setup and reset procedures, load indication procedures, error indication procedures, cell activation procedures, and the like.
The SCTP layer (alternatively referred to as the SCTP/IP layer) 1062 may provide guaranteed delivery of application layer messages (e.g., NGAP or XnAP messages in NR implementations, or S1-AP or X2AP messages in LTE implementations). The SCTP 1062 may ensure reliable delivery of signaling messages between the RAN node 411 and the AMF 621/MME 521 based, in part, on the IP protocol, supported by the IP 1061. The Internet Protocol layer (IP) 1061 may be used to perform packet addressing and routing functionality. In some implementations, the IP layer 1061 may use the point-to-point transmission to deliver and convey PDUs. In this regard, the RAN node 411 may comprise L2 and L1 layer communication links (e.g., wired or wireless) with the MME/AMF to exchange information.
In a second example, a user plane protocol stack may comprise, in order from the highest layer to lowest layer, SDAP 1047, PDCP 1040, RLC 1030, MAC 1020, and PHY 1010. The user plane protocol stack may be used for communication between the UE 401, the RAN node 411, and UPF 602 in NR implementations or an S-GW 522 and P-GW 523 in LTE implementations. In this example, upper layers 1051 may be built on top of the SDAP 1047 and may include a user datagram protocol (UDP) and IP security layer (UDP/IP) 1052, a General Packet Radio Service (GPRS) Tunneling Protocol for the user plane layer (GTP-U) 1053, and a User Plane PDU layer (UP PDU) 1063.
The transport network layer 1054 (also referred to as a “transport layer”) may be built on IP transport, and the GTP-U 1053 may be used on top of the UDP/IP layer 1052 (comprising a UDP layer and IP layer) to carry user plane PDUs (UP-PDUs). The IP layer (also referred to as the “Internet layer”) may be used to perform packet addressing and routing functionality. The IP layer may assign IP addresses to user data packets in any of IPv4, IPv6, or PPP formats, for example.
The GTP-U 1053 may be used for carrying user data within the GPRS core network and between the radio access network and the core network. The user data transported can be packets in any of IPv4, IPv6, or PPP formats, for example. The UDP/IP 1052 may provide checksums for data integrity, port numbers for addressing different functions at the source and destination, and encryption and authentication on the selected data flow. The RAN node 411 and the S-GW 522 may utilize an S1-U interface to exchange user plane data via a protocol stack comprising an L1 layer (e.g., PHY 1010), an L2 layer (e.g., MAC 1020, RLC 1030, PDCP 1040, and/or SDAP 1047), the UDP/IP layer 1052, and the GTP-U 1053. The S-GW 522 and the P-GW 523 may utilize an S5/S8a interface to exchange user plane data via a protocol stack comprising an L1 layer, an L2 layer, the UDP/IP layer 1052, and the GTP-U 1053. As discussed previously, NAS protocols may support the mobility of the UE 401 and the session management procedures to establish and maintain IP connectivity between the UE 401 and the P-GW 523.
Moreover, although not shown in
The processors 1110 may include, for example, a processor 1112 and a processor 1114. The processor(s) 1110 may be, for example, a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a DSP such as a baseband processor, an ASIC, an FPGA, a radio-frequency integrated circuit (RFIC), another processor (including those discussed herein), or any suitable combination thereof.
The memory/storage devices 1120 may include a main memory, disk storage, or any suitable combination thereof. The memory/storage devices 1120 may include but are not limited to, any type of volatile or nonvolatile memory such as dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), Flash memory, solid-state storage, etc.
The communication resources 1130 may include interconnection or network interface components or other suitable devices to communicate with one or more peripheral devices 1104 or one or more databases 1106 via a network 1108. For example, the communication resources 1130 may include wired communication components (e.g., for coupling via USB), cellular communication components, NFC components, Bluetooth® (or Bluetooth® Low Energy) components, Wi-Fi® components, and other communication components.
Instructions 1150 may comprise software, a program, an application, an applet, an app, or other executable code for causing at least any of the processors 1110 to perform any one or more of the methodologies discussed herein. The instructions 1150 may reside, completely or partially, within at least one of the processors 1110 (e.g., within the processor's cache memory), the memory/storage devices 1120, or any suitable combination thereof. Furthermore, any portion of the instructions 1150 may be transferred to the hardware resources 1100 from any combination of the peripheral devices 1104 or the databases 1106. Accordingly, the memory of processors 1110, the memory/storage devices 1120, the peripheral devices 1104, and the databases 1106 are examples of computer-readable and machine-readable media.
For one or more embodiments, at least one of the components set forth in one or more of the preceding figures may be configured to perform one or more operations, techniques, processes, and/or methods as set forth in the example section below. For example, the baseband circuitry, as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below. For another example, circuitry associated with a UE, base station, network element, etc. as described above in connection with one or more of the preceding figures may be configured to operate in accordance with one or more of the examples set forth below in the example section.
Example 1 includes a method of wireless communication for a fifth-generation (5G) new radio (NR) system operating in the unlicensed spectrum (NR-unlicensed), the method comprising:
performing or causing to perform a procedure on how to handle consecutive configured grant and grant-based transmissions from the same UE are disclosed, for the specific case when the configured grant transmission occurs before the grant-based one; and
performing or causing to perform a on how to handle consecutive configured grant and grant-based transmissions from the same UE are disclosed, for the specific case when the grant-based transmission occurs before the configured grant one.
Example 2 includes the method of example 1 and/or some other example(s) herein, wherein a Cat-4 can be used to perform a CG transmission, and then if the LBT priority class for CG is larger than or equal to priority class indicated to GB UL by the gNB, and if the length of CG burst plus the GB burst does not exceed the MCOT corresponding to the LBT priority class of CG transmission, and the method comprises:
performing or causing to perform a LBT procedure with the priority class for the CG transmission; and
if the LBT succeeds, performing or causing to perform CG transmission followed immediately by the GB transmission without any gap in between.
Example 3 includes the method of examples 1-2 and/or some other example(s) herein, wherein the CG transmission can be terminated without puncturing its tail, wherein the method comprises using or causing to use the last symbol for SCS of 15 and 30 kHz or last two symbols in case the SCS of the GB PUSCH transmission is set to 60 kHz.
Example 4 includes the method of examples 1-3 and/or some other example(s) herein, wherein within the last slot of the CG burst not indicating or causing to not indicate the ending burst within its CG-UCI.
Example 5 includes the method of examples 1-4 and/or some other example(s) herein, wherein the GB transmission may start without any gap, or without performing any LBT procedure.
Example 6 includes the method of examples 1-5 and/or some other example(s) herein, wherein the method comprises choosing or causing to choose a priority class for the Cat-4 LBT so that the MCOT is sufficiently long to allow a contiguous transmission of the CG and GB transmission, where the CG transmission is performed without any gap in the last symbol(s) of the burst, and the GB transmission starts without performing additional LBT.
Example 7 includes the method of example 1 and/or some other example(s) herein, wherein if the CG transmission ends earlier than the symbol #13, a new LBT can be performed before transmitting GB PUSCH in the following slot.
Example 8 includes the method of example 1 and/or some other example(s) herein, wherein assuming that both CG and GB transmission are inside the COT acquired by the gNB, and CG occurs before the GB transmission, the UE may use CAT-2 LBT for the transmission of the CG and also transmit GB without LBT operation between CG and GB by having no gap or very small gap between CG and GB.
Example 9 includes the method of example 1 and/or some other example(s) herein, wherein if both CG and GB transmission are inside the COT acquired by the gNB, CG occurs before the GB transmission, and the necessary COT is larger than what would be required if a consecutive CG+GB transmission is performed, the method comprises overriding or causing to override the LBT and may use a Cat-4 LBT with the minimum priority class such that the MCOT would be equal or longer than the CG+CB burst.
Example 10 includes the method of examples 1-9 and/or some other example(s) herein, wherein if the CG+GB burst is longer than the MCOT acquired with the highest Cat-4 priority class, wherein the method comprises performing or causing to perform the two transmissions separately by acquiring the channel twice; and performing or causing to perform LBT at the beginning of the CG transmission and then at the beginning of the GB transmission.
Example 11 includes the method of example 1 and/or some other example(s) herein, wherein the method comprises terminating or causing to terminate a GB burst before a Cat-4 CG UL transmission is performed.
Example 12 includes the method of example 1 and/or some other example(s) herein, wherein if the GB UL transmission needs to be performed by the mean of a Cat-4 LBT (this occurs if the GB is performed outside of the shared acquired gNB's COT) if priority class for CG is smaller than or equal to the priority class indicated to GB UL by the gNB within the DCI or selected by the UE, if the length of CG burst plus the GB burst does not exceed the MCOT corresponding to the LBT priority class of GB transmission, and if both GB and CG transmission are performed by the same UE, which operates in full bandwidth mode, then the CG transmission is allowed to follow the GB transmission without any gap.
Example 13 includes the method of examples 1, 12, and/or some other example(s) herein, wherein the GB transmission can be terminated without puncturing its tail for gaps, also for the first slot of the CG burst the starting point would coincide with the first OFDM symbol, and there is no indication of the CG starting burst within its CG-UCI.
Example 14 includes the method of example 1 and/or some other example(s) herein, wherein if the GB transmission can end earlier than the symbol #13; the method comprises performing or causing to perform a new LBT before transmitting CG PUSCH in the following slot.
Example 15 includes the method of example 1 and/or some other example(s) herein, wherein the method comprises overriding or causing to override the indicated channel access priority class provided by the gNB within the DCI to perform GB transmission with a larger priority class that ensures that the GB and CG burst can occur consecutively.
Example 16 includes the method of example 1 and/or some other example(s) herein, wherein if the GB UL transmission need to be performed by the mean of a Cat-2 LBT (this occurs if the GB is performed within the shared acquired gNB's COT), if the length of CG burst plus the GB burst does not exceed the MCOT corresponding to the LBT priority class of GB transmission that is selected by the UE, if both GB and CG transmission are performed by the same UE, which operates in full bandwidth mode, then the CG transmission can follow the GB transmission without any gap and also without any LBT for CG transmission.
Example 17 includes the method of examples 1, 16, and/or some other example(s) herein, wherein the GB transmission can be terminated without puncturing its tail for gaps, also for the first slot of the CG burst the starting point can coincide with the first OFDM symbol, and there is no indication of the CG starting burst within its CG-UCI.
Example 18 includes the method of examples 1, 16-17, and/or some other example(s) herein, wherein the UE may override the Cat-2 LBT, through a Cat-4 LBT with a priority class that ensures that the GB and CG burst can occur consecutively.
Example 19 includes the method of examples 1, 16-18, and/or some other example(s) herein; the procedure described above can be applied if the CG burst starts at the end of the gNB's acquired COT.
Example 20 includes the method of example 1 and/or some other example(s) herein, wherein if the GB UL transmission does not need to perform LBT, then the CG UL burst can be performed without any gap if both occur without the gNB's acquired COT.
Example 21 includes the method of example 1 and/or some other example(s) herein, wherein if the GB UL transmission does not need to perform LBT, then the CG UL burst can be only done after performing LBT if both bursts occur without the gNB's acquired COT or if the CG burst starts after the end of a gNB's acquired COT: this is to be compliant with the ETSI BRAN regulatory requirements.
Example 22 includes the method of examples 1-21 and/or some other example(s) herein, wherein the method is to be performed by a UE.
Example 23 may include an apparatus comprising means to perform one or more elements of a method described in or related to any of examples 1-22, or any other method or process described herein.
Example 24 may include one or more non-transitory computer-readable media comprising instructions to cause an electronic device, upon execution of the instructions by one or more processors of the electronic device, to perform one or more elements of a method described in or related to any of examples 1-22, or any other method or process described herein.
Example 25 may include an apparatus comprising logic, modules, or circuitry to perform one or more elements of a method described in or related to any of examples 1-22, or any other method or process described herein.
Example 26 may include a method, technique, or process as described in or related to any of examples 1-22, or portions or parts thereof.
Example 27 may include an apparatus comprising: one or more processors and one or more computer-readable media comprising instructions that, when executed by the one or more processors, cause the one or more processors to perform the method, techniques, or process as described in or related to any of examples 1-22, or portions thereof.
Example 28 may include a signal as described in or related to any of examples 1-22, or portions or parts thereof.
Example 29 may include a signal in a wireless network, as shown and described herein.
Example 30 may include a method of communicating in a wireless network, as shown and described herein.
Example 31 may include a system for providing wireless communication, as shown and described herein.
Example 32 may include a device for providing wireless communication, as shown and described herein.
Any of the above-described examples may be combined with any other example (or combination of examples), unless explicitly stated otherwise. The foregoing description of one or more implementations provides illustration and description but is not intended to be exhaustive or to limit the scope of embodiments to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practice of various embodiments.
For the purposes of the present document, the following abbreviations may apply to the examples and embodiments discussed herein.
For the purposes of the present document, the following terms and definitions are applicable to the examples and embodiments discussed herein.
The term “circuitry” as used herein refers to, is part of, or includes hardware components such as an electronic circuit, a logic circuit, a processor (shared, dedicated, or group) and/or memory (shared, dedicated, or group), an Application Specific Integrated Circuit (ASIC), a field-programmable device (FPD) (e.g., a field-programmable gate array (FPGA), a programmable logic device (PLD), a complex PLD (CPLD), a high-capacity PLD (HCPLD), a structured ASIC, or a programmable SoC), digital signal processors (DSPs), etc., that are configured to provide the described functionality. In some embodiments, the circuitry may execute one or more software or firmware programs to provide at least some of the described functionality. The term “circuitry” may also refer to a combination of one or more hardware elements (or a combination of circuits used in an electrical or electronic system) with the program code used to carry out the functionality of that program code. In these embodiments, the combination of hardware elements and program code may be referred to as a particular type of circuitry.
The term “processor circuitry” as used herein refers to, is part of or includes circuitry capable of sequentially and automatically carrying out a sequence of arithmetic or logical operations, or recording, storing, and/or transferring digital data. The term “processor circuitry” may refer to one or more application processors, one or more baseband processors, a physical central processing unit (CPU), a single-core processor, a dual-core processor, a triple-core processor, a quad-core processor, and/or any other device capable of executing or otherwise operating computer-executable instructions, such as program code, software modules, and/or functional processes. The terms “application circuitry” and/or “baseband circuitry” may be considered synonymous to, and may be referred to as, “processor circuitry.”
The term “interface circuitry” as used herein refers to, is part of, or includes circuitry that enables the exchange of information between two or more components or devices. The term “interface circuitry” may refer to one or more hardware interfaces, for example, buses, I/O interfaces, peripheral component interfaces, network interface cards, and/or the like.
The term “user equipment” or “UE” as used herein refers to a device with radio communication capabilities and may describe a remote user of network resources in a communications network. The term “user equipment” or “UE” may be considered synonymous to and may be referred to as, client, mobile, mobile device, mobile terminal, user terminal, mobile unit, mobile station, mobile user, subscriber, user, remote station, access agent, user agent, receiver, radio equipment, reconfigurable radio equipment, reconfigurable mobile device, etc. Furthermore, the term “user equipment” or “UE” may include any type of wireless/wired device or any computing device including a wireless communications interface.
The term “network element” as used herein refers to physical or virtualized equipment and/or infrastructure used to provide wired or wireless communication network services. The term “network element” may be considered synonymous to and/or referred to as a networked computer, networking hardware, network equipment, network node, router, switch, hub, bridge, radio network controller, RAN device, RAN node, gateway, server, virtualized VNF, NFVI, and/or the like.
The term “computer system” as used herein refers to any type interconnected electronic devices, computer devices, or components thereof. Additionally, the term “computer system” and/or “system” may refer to various components of a computer that are communicatively coupled with one another. Furthermore, the term “computer system” and/or “system” may refer to multiple computer devices and/or multiple computing systems that are communicatively coupled with one another and configured to share computing and/or networking resources.
The term “appliance,” “computer appliance,” or the like, as used herein refers to a computer device or computer system with program code (e.g., software or firmware) that is specifically designed to provide a specific computing resource. A “virtual appliance” is a virtual machine image to be implemented by a hypervisor-equipped device that virtualizes or emulates a computer appliance or otherwise is dedicated to provide a specific computing resource.
The term “resource” as used herein refers to a physical or virtual device, a physical or virtual component within a computing environment, and/or a physical or virtual component within a particular device, such as computer devices, mechanical devices, memory space, processor/CPU time, processor/CPU usage, processor and accelerator loads, hardware time or usage, electrical power, input/output operations, ports or network sockets, channel/link allocation, throughput, memory usage, storage, network, database and applications, workload units, and/or the like. A “hardware resource” may refer to compute, storage, and/or network resources provided by physical hardware element(s). A “virtualized resource” may refer to compute, storage, and/or network resources provided by virtualization infrastructure to an application, device, system, etc. The term “network resource” or “communication resource” may refer to resources that are accessible by computer devices/systems via a communications network. The term “system resources” may refer to any kind of shared entities to provide services, and may include computing and/or network resources. System resources may be considered as a set of coherent functions, network data objects or services, accessible through a server where such system resources reside on a single host or multiple hosts and are clearly identifiable.
The term “channel” as used herein refers to any transmission medium, either tangible or intangible, which is used to communicate data or a data stream. The term “channel” may be synonymous with and/or equivalent to “communications channel,” “data communications channel,” “transmission channel,” “data transmission channel,” “access channel,” “data access channel,” “link,” “data link,” “carrier,” “radiofrequency carrier,” and/or any other like term denoting a pathway or medium through which data is communicated. Additionally, the term “link” as used herein refers to a connection between two devices through a RAT for the purpose of transmitting and receiving information.
The terms “instantiate,” “instantiation,” and the like as used herein refers to the creation of an instance. An “instance” also refers to a concrete occurrence of an object, which may occur, for example, during execution of program code.
The terms “coupled,” “communicatively coupled,” along with derivatives thereof are used herein. The term “coupled” may mean two or more elements are in direct physical or electrical contact with one another, may mean that two or more elements indirectly contact each other but still cooperate or interact with each other, and/or may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other. The term “directly coupled” may mean that two or more elements are in direct contact with one another. The term “communicatively coupled” may mean that two or more elements may be in contact with one another by a means of communication including through a wire or other interconnect connection, through a wireless communication channel or ink, and/or the like.
The term “information element” refers to a structural element containing one or more fields. The term “field” refers to individual contents of an information element, or a data element that contains content.
The term “SMTC” refers to an SSB-based measurement timing configuration configured by SSB-MeasurementTimingConfiguration.
The term “SSB” refers to an SS/PBCH block.
The term “a “Primary Cell” refers to the MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
The term “Primary SCG Cell” refers to the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure for DC operation.
The term “Secondary Cell” refers to a cell providing additional radio resources on top of a Special Cell for a UE configured with CA.
The term “Secondary Cell Group” refers to the subset of serving cells comprising the PSCell and zero or more secondary cells for a UE configured with DC.
The term “Serving Cell” refers to the primary cell for a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell.
The term “serving cell” or “serving cells” refers to the set of cells comprising the Special Cell(s) and all secondary cells for a UE in RRC_CONNECTED configured with CA/.
The term “Special Cell” refers to the PCell of the MCG or the PSCell of the SCG for DC operation; otherwise, the term “Special Cell” refers to the Pcell.
This application claims the benefit of U.S. Provisional Application No. 62/805,556, filed Feb. 14, 2019, which is hereby incorporated by reference in its entirety for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/017482 | 2/10/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62805556 | Feb 2019 | US |