Embodiments of the disclosure relate to microfluidic devices and methods for particle separation. More particularly, embodiments of the disclosure relate to the use of a negative deterministic lateral array in a microfluidic device to separate particles into three or more ranges of particle sizes.
The ability to purify particles, such as colloids, is salient for practical applications and analysis of nanomaterials. This is particularly salient in biology and medicine, where bio-colloids ranging from proteins, vesicles and organelles, constitute the molecular building blocks of all living things. For example, exosomes are nanometer-sized extracellular vesicles (EVs) ranging in size from 30-150 nanometers (nm), which are regularly shed from cells and have emerged as a promising source of biomarkers (e.g. tumor-specific proteins, micro-ribonucleic acid (“microRNA”), messenger RNA (“mRNA”), and deoxyribonucleic acid (“DNA”)) for diseases, such as cancer, with broad application in diagnosis, treatment monitoring, and/or therapeutics. Part of the attraction to these EVs is that they can be extracted for analysis from minimally or non-invasive liquid biopsies (e.g., blood, plasma, and/or urine samples), and can thereby reduce the need for tissue biopsies to obtain diagnostic information.
Much of nanotechnology and biotechnology has been concerned with purification techniques, including gel electrophoresis, chromatography, centrifugation, affinity binding and molecular sieving. Another emerging separation technique are lab-on-a-chip and/or microfluidic technologies, which can purify small quantities of sample rapidly and precisely on chip. New technologies, based on periodic nanostructures or “metamaterials” have proven effective for on-chip purification systems, one example being microscale and nanoscale deterministic lateral displacement (“DLD”), which uses asymmetric mesoscale pillar arrays to laterally displace jets of colloid mixtures into size-sorted streams. A variation on this method, termed nanoscale condenser arrays (“nCA”), produces lateral splitting of colloid mixtures in a flowing stream using manipulation of the fluid flow itself, producing a nearly size-agnostic method of displacing particles.
A microfluidic device comprising a channel within a substrate and a condenser along the channel is disclosed. The condenser is configured to focus a fluid containing particles of a plurality of sizes. A negative angle deterministic lateral displacement (DLD) array is configured to receive the focused fluid and separate the particles in the focused fluid into three sizes ranges. The negative angle DLD array comprises a plurality of rows of pillars, wherein the rows of pillars are positioned to repeat a pattern every N rows with a shift of M columns, where N and M are relatively coprime, and N is greater than 1.
Instead of the condenser, hydrodynamic focusing may be provided to focus the fluid. An additional condenser may also be provided downstream of the negative angle DLD array to facilitate collection of a particular size range of particles.
The drawings are of illustrative embodiments. They do not illustrate all embodiments. Other embodiments may be used in addition or instead. Details that may be unnecessary may be omitted to save space or for more effective illustration. Some embodiments may be practiced with additional components or steps and/or without all components that are illustrated. When the same numeral appears in different drawings, it refers to the same or like components or steps.
The following detailed description is merely illustrative and is not intended to limit embodiments and/or application or uses of embodiments. Furthermore, there is no intention to be bound by any expressed or implied information presented in the preceding Background or Summary sections, or in the Detailed Description section. In the following detailed description, numerous specific details are set forth by way of examples to provide a thorough understanding of the relevant teachings. However, it should be apparent that the present teachings may be practiced without such details. In other instances, well-known methods, procedures, and components have been described at a relatively high-level, without detail, to avoid unnecessarily obscuring aspects of the present teachings.
One or more embodiments are now described with reference to the drawings, wherein like referenced numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a more thorough understanding of the one or more embodiments. It is evident, however, in various cases, that the one or more embodiments can be practiced without these specific details.
The original DLD theory teaches that a particle moves through a DLD array along the pressure gradient direction in one of two modes. The pressure gradient determines the flow direction. A particle with a radius less than G0.4, where G is the gap between pillars, moves along the pressure gradient direction in what is referred to as a zigzag mode that tracks the motion of the surrounding fluid with a small angle of deflection or no angle of deflection. A particle with a size more than G0.4 migrates in a deflected angle where particles bump into pillars, altering their direction along a pillar array shift angle in what is referred to as a bump mode. The zigzag mode is closer to the direction of the fluid flow through the array than the bump mode. Theoretically, a particle has only these two modes when there is no Brownian motion, which makes a DLD device a binary sorter.
In accordance with embodiments of the disclosure, a negative angle DLD array is used to achieve particle bandpass selection of three or more particle ranges in microfluidic devices without the need for multiple stages of DLD arrays and with reduced diffusion. In another embodiment, the negative DLD structure is also be used with a conventional DLD and condenser structure so that various sizes of particles can be efficiently separated. The negative angle DLD array may be a nanoDLD array.
A second line 106 is drawn through adjacent pillars 102c and 102d, etc. In row 11Dy the line 106 passes through the center of a pillar 102e, which is offset one (1) column from the pillar 102b. The DLD array 100 in this example therefore has a row shift M=1. In the DLD array 100 of
The vertical line 104 and the line 106 form an angle Θ1 that is referred to as a shift angle of the pillar array. The shift angle is equal to arctan (1/10).
Where the pillar position repeats itself every Nth row with M shifts, a row-shift fraction is defined as y=M/N. In
As discussed above, the original DLD theory explains particle modes and the criteria of separation only when the pillar structure has integer frequency and could not be applied to the DLD array 120 of
The pillar diameter (D0) may be greater than or equal to about 50 nm. For example, the pitch diameter (D0) may be 80 nm. The pitch distance (Dy) may be greater than or equal to about 100 nm. For example, the pitch distance (Dy) may be about 200 nm. The ratio Dx/Dy may be 1/1, may be in the range of from about 1/1 to about 1/10, the ratio may be in the range of from about 1/1 to about 1/20, or the ratio may have other values, for example.
Particle trajectories may be calculated based on the geometries of the pillars 102 in a pillar array.
The 140 nm radius particle in
Based on the variables N, M, and the Dx/Dy ratio, a map may be generated showing the relationship between the particle size and corresponding migration angle.
When Dx/Dy=2 case (line C) particles in a size range up to about 0.35*G migrate through the pillar array with a slightly positive angle with respect to the direction of the fluid flow in the zigzag mode. Particles in a size range of about 0.35*G to 0.5*G migrate through the pillar array at a slightly negative angle of −1 degrees in the B−mode with respect to the direction of fluid flow. Particles in a size range greater than 0.5*G migrate through the pillar array in the bump mode along an angle of 10 degrees with respect to the direction of fluid flow. A negative angle DLD array 100 with these parameters behaves as a bandpass filter enabling collection of particles with a radius in a range of from 0.35*G to 0.5*G in the B−mode, particles having a radius in a range up to about 0.35 may be collected in the zigzag mode, and particles having a radius in a range greater than 0.5*G migrate may be collected in the bump mode. It is noted that due to diffusion, not all particles in each range may be collected.
When the ratio Dx/Dy is less than 2, the negative angle B−mode appears with a narrow band of the particle size. Where Dx/Dy=1.5 (line B), the distribution is similar to that of line C, with the B−mode extending from about 0.40*G to about 0.50*G. Particles in this range may be selected but since the range is narrow, there may be contamination by other particle sizes in this mode.
Where Dx/Dy=1.0 (line A), the angle of deflection of a particle having a radius of 0.4*G decreases but is not negative. Particles in this range may be collected but since the change in migration angle is small, there may be contamination by other particle sizes.
The widths of the particle size windows and the corresponding migration angles are different for different geometries.
The first module 204 includes a condenser 216, which focuses a particle stream. The second module 204 includes a negative angle DLD array 100, as discussed above, to separate a mixture of particles of different sizes into three ranges.
In operation, a fluid 222 (indicated by an arrow), including a mixture of particles sizes, is introduced into an entry port 224 of the condenser 216 in the first module 206. The condenser 216 focuses the fluid 222 toward a center of a bottom 228 of the condenser, where the fluid exits the condenser via an exit port 228. The fluid 222 enters the DLD array 100 via an entrance port via an entry port 230.
A portion of the condenser 216 is shown in more detail in
Returning to
The particles in the first range, the second range, and the third range exit the negative angle DLD array 100 through an exit port 246. The third module 210 includes a first partition wall 248 and a second partition wall 250. A first separation bin 252 is defined between the first partition wall 248 and the side wall 214, to collect particles in the third range 244. A second separation bin 254 is defined between the first partition wall 248 and the second partition wall 250 to collect particles in the first range 240. A third separation bin is defined between the second partition wall and the sidewall 216 to collect particles in the second range 256. The particle radii may range from about 20 nm to about 500 nm, for example. Fluid may pass through the microfluidic device 200 and other microfluidic devices described herein in a continuous stream at a high velocity. The velocity may be from about 300 um/s or faster, for example.
The microfluidic device 200 was tested and the results are shown in
In
In this embodiment, the first module 206, which focuses the particle stream 222, includes a hydrodynamic focusing chamber 306, where adjacent, high speed fluid flow streams are used to focus the particle stream 322 without diluting the fluid stream itself, as is known in the art. The hydrodynamic focusing chamber 306 includes a second fluid channel 308 on one side of the first fluid channel 302 and third fluid channel 310 on another side of the first fluid channel. The first fluid channel 302 is for the entry of a particle stream 312 comprising particles having a plurality of particle sizes. The second fluid channel 316 and the third fluid channel 318 are for providing high speed fluid for focusing the particle stream 312 toward a center of the bottom 314 of the hydrodynamic focusing chamber 306. As is known in the art, providing high speed fluid at the boundaries of slower moving fluid stream focuses the slower moving fluid stream into a narrow stream. The beam is focused toward an exit port of the hydrodynamic focusing changer 306, fore entry into the negative angle DLD array 100 through and entry port. Outlets 316, 318 are provided for the exit of the high stream fluids from the first module 206.
The second module 208 includes the negative angle DLD array 100 discussed above with respect to
In accordance with an embodiment of the disclosure, a system may be configured to only collect band-pass filtered particles as a binary sorter.
In one example, the condenser 216 is configured to focus the fluid stream 222 to the right, toward the first sidewall 212, by arranging all the pillars 236 so that each row is shifted toward the right with respect to the prior row. All the rows of pillars 236 may be configured as the rows of pillars are configured in the condenser portion 232 of
After pushing all particles to the right, the particle stream 222 exits the condenser 216 through the exit port 228, which is displaced toward the first sidewall 212. The particle stream 222 enters the negative angle DLD array 100 through the entrance port 230, which is also displaced toward the first sidewall 212. Particles in the second particle size range 242, which are deflected in the bump mode, impact the sidewall 212, where they follow the sidewall into the collection bin 254. Particles in the first particle size range 240, which are deflected in the zigzag mode, are also collected in the collection bin 254. Particles in the third particle size range 244, which are deflected in the negative angle, are collected by the collection bin 252. Since the particles in the third size range, which is between the first size range and the second size range, are selectively shifted in the opposite direction to the path of the other particles by the negative angle DLD 100 and the particles in the second size range 242 are not collected, collection of the particles in the third particle size range 244 is facilitated. Since the collection bin 252 may be larger than if all the particle ranges are collected, target sample loss of the particles in the third particle size range 244 can be decreased.
Collection of particles in the third particle size range 244 can be further improved by adding one more additional condensers downstream of the negative angle DLD 100, as shown in
The negative angle DLD array microfluidic devices described above may be fabricated from microfabrication techniques, such as techniques conventionally used for silicon-based integrated circuit fabrication, embossing, casting, injection molding, for example. Suitable fabrication techniques include photolithography, electron beam lithography, imprint lithography, reactive ion etching, wet etch, laser ablation, embossing, casting, injection molding, and other techniques, for example. The negative angle DLD array microfluidic devices can be fabricated from materials that are compatible with the conditions present in the particular application of interest. Such conditions include pH, temperature, application of organic solvents, ionic strength, pressure, application of electric fields, surface charge, sticking properties, surface treatment, surface functionalization, and biocompatibility, for example. The materials of the device are also chosen for their optical properties, mechanical properties, and for their inertness to components of the application to be carried out in the device. Such materials include polydimethylsiloxane (PDMS), glass, fused silica, silicone rubber, silicon, ceramics, and polymeric substrates, such as plastics, depending on the intended application, for example. Devices can be coated with a fluorosilicate vapor and sealed by glass coverslips coated with polydimethylsiloxane (PDMS) on the sealing surface. The negative angle DLD array microfluidic devices can be placed into a plexiglass chuck for loading and application of pressures.
The descriptions of the various embodiments of the present teachings have been presented for purposes of illustration but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
While the foregoing has described what are considered to be the best state and/or other examples, it is understood that various modifications may be made therein, that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.
The components, steps, features, objects, benefits and advantages that have been discussed herein are merely illustrative. None of them, nor the discussions relating to them, are intended to limit the scope of protection. While various advantages have been discussed herein, it will be understood that not all embodiments necessarily include all advantages. Unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. They are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
Numerous other embodiments are also contemplated. These include embodiments that have fewer, additional, and/or different components, steps, features, objects, benefits and advantages. These also include embodiments in which the components and/or steps are arranged and/or ordered differently.
While the foregoing has been described in conjunction with exemplary embodiments, it is understood that the term “exemplary” is merely meant as an example, rather than the best or optimal. Except as stated immediately above, nothing that has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.
It will be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. Relational terms such as first and second and the like may be used solely to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “a” or “an” does not, without further constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments have more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.