Continuous forming method and device for H-shaped FRP member

Information

  • Patent Grant
  • 6592795
  • Patent Number
    6,592,795
  • Date Filed
    Monday, January 8, 2001
    24 years ago
  • Date Issued
    Tuesday, July 15, 2003
    21 years ago
Abstract
A continuous forming method and device for an H-shaped FRP member for forming semi-hardened preimpregnated members produced by impregnating thermosetting resin to carbon fiber or glass fiber and the like into a predetermined H-shape. The forming device comprises of a device for mounting a plural number of bobbins having strip-shaped preimpregnated material spooled thereto, providing tension when pulling the impregnated material out from the bobbin. The device the shapes the preimpregnated material to a predetermined H-shape that feeds release films from four sides of upper, lower, left and right. The device then provides heat and pressure to the preimpregnated material from said four sides with a heating furnace for after-curing the preimpregnated material. The device then hauls and holds the preimpregnated material for cutting the cured product.
Description




FIELD OF THE INVENTION




The present invention relates to a forming device of a preimpregnated material produced by impregnating thermosetting resin to carbon fiber or glass fiber and the like.




DESCRIPTION OF THE RELATED ART




A technique for utilizing preimpregnated material produced by impregnating thermosetting resin such as epoxy resin and phenolic resin to long fiber such as carbon fiber and glass fiber to form a product having the desired cross-sectional shape by heating and forming the material is known. Since carbon fiber and glass fiber have great strength, especially tensile strength, per unit weight, a composite material formed by laminating fiber material with the fibers oriented in vertical, horizontal and diagonal directions can be used to manufacture products having light weight and relatively high strength and elasticity. Therefore, the material is widely utilized in forming aircraft and other industrial products.




The material used for forming the desired shape can be manufactured by arranging carbon fiber or glass fiber impregnated with thermosetting resin in parallel orientation to form one layer, by using fabric produced from these fibers to form one layer, or by laminating a plural number of such layers, further positioning roving of these fibers between layers if necessary to produce the forming member. The forming method and forming device of this material includes feeding plural strip-shaped preimpregnated materials from bobbins, heating and pressurizing the material by heated upper and lower molds of a hot press device to form a predetermined cross-sectional shape, an then curing the formed product in a curing furnace and completing the product. During the above-mentioned forming steps, the product is continuously pulled (hauled) by a haulage device mounted to the downstream side in the forming device so as to convey the product in the forming device.




However, the problems of the conventional forming method and device explained above is that notable friction resistance is generated when pulling the formed product by the haulage device, causing abrasion such as cutting or curling of the fiber. Furthermore, since the hauling force of the haulage device is strong, it is difficult according to the conventional method and device to form a thin product. Therefore, in order to solve these problems, the present applicants proposed, in Japanese Patent Laid-Open Application No. 2-102029, a device for intermittently transmitting strip-shaped preimpregnated material while bending the material with a mold so as to form a channel-shaped cross section, and hot-pressing the material to form a product with the desired shape. The device enables to continuously form structural members having linear trajectory with L-shaped or U-shaped cross section. The forming device of this kind is also disclosed in the specification of U.S. Pat. No. 4,151,031.




SUMMARY OF THE INVENTION




The present invention provides a device for efficiently forming H-shaped members made of FRP with advanced performance that can be used for underfloor beam member or reinforcement of main and tail planes of an aircraft.




The continuous forming device of an H-shaped FRP member according to the present invention comprises a device for mounting a plural number of bobbins having strip-shaped preimpregnated material produced by impregnating thermosetting resin to carbon fiber or glass fiber and the like spooled thereto, a device for providing tension when pulling the preimpregnated material out from the bobbin, a device for shaping the preimpregnated member to a predetermined H-shape, a device for feeding release films from four (upper, lower, left and right) sides, a press device for providing heat and pressure to the preimpregnated member from four sides, a heating furnace for after-curing the preimpregnated member, a device for hauling and holding the preimpregnated member, and a device for cutting the cured product to predetermined lengths.




Further, the device for shaping the strip-shaped preimpregnated member provided from the bobbins to form a predetermined H-shape comprises a device for forming two creases to two sheets of preimpregnated material in the longitudinal direction, a device for bending the sheet at the creases to form an open-trapezoid-shaped cross section, and a device for forming a U-shaped cross section and further superposing two U-shaped preimpregnated members to form an H-shape.




Moreover, the haulage device is interlocked with upper, left and right molds of the press device so that the preimpregnated member is heated and pressed for a predetermined time before being hauled for a predetermined length, and the press device is equipped with means for controlling the sequence for opening and closing the upper, left and right molds.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing the exterior of the H-shaped member;





FIG. 2

is a cross-sectional view of the H-shaped member;





FIG. 3

is an explanatory view showing the outline of the continuous forming device of the H-shaped member;





FIG. 4

is a perspective view showing the material feeding device in the continuous forming device of the H-shaped member;





FIG. 5

is an explanatory view showing the step for forming the material to the shape of an H;





FIG. 6

is an explanatory view of the crease forming device;





FIG. 7

is an explanatory view showing the open-trapezoid-shape forming device;





FIG. 8

is an explanatory view showing the U-shape forming device;





FIG. 9

is an explanatory view showing the mold structure of the hot press device;





FIG. 10

is an explanatory view showing the haulage device and the cutting device of the sheet material; and





FIG. 11

is a chart showing the sequence of operation of the present device.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 1

is a perspective view showing the appearance of the H-shaped member formed according to the present invention, and

FIG. 2

is a cross-sectional view thereof.




The H-shaped member shown as a whole by reference number


1


, comprising both side walls


10


,


10


and a rib


20


that connects the center area of the side walls, is manufactured by heat-forming a preimpregnated material, which is made by impregnating thermosetting resin to FRP (fiber reinforced plastics: plastic material reinforced with carbon fiber or glass fiber and the like).




The H-shaped member


1


is formed by laminating a plurality of preimpregnated members P


1


, P


2


, and a surface member P


3


. The preimpregnated member P


1


is formed for example by alternately laminating preimpregnated sheets, the orientation of the fiber in each sheet arranged at an angle of 45 degrees to the longitudinal direction of the member. The preimpregnated member P


2


is formed by laminating preimpregnated materials having fiber arranged in one direction. By selecting the orientation of the fiber appropriately, the H-shaped member can be formed to provide the most appropriate strength required for various applications. During the forming process, a release film F is superposed on the upper surface, the lower surface and both side surfaces of the member.





FIG. 3

shows an outline of the continuous forming device according to the present invention.




The forming device shown as a whole by reference number


100


is equipped with a sheet-type material supply device


200


, a forming device


300


for bending the sheets to form an H-shape, a hot press device


400


, an after-cure device


500


which is a heating furnace, a sheet clamping (holding) device


600


, and a sheet haulage device


700


.




An appropriate cutter not shown is equipped downstream from the sheet haulage device


700


for cutting the product to appropriate lengths.





FIG. 4

is a perspective view showing the details of the material supply device


200


.




The material supply device


200


comprises a spindle


220


mounted on a stand


210


, and a bobbin


230


is rotatably mounted thereto. A preimpregnated sheet


250


with a release film


240


laminated thereto is spooled onto the bobbin


230


. Since the preimpregnated sheet


250


is tacky, it is spooled together with a release film


240


, and the release film


240


is removed from the surface of the preimpregnated sheet


250


at the time the sheet is supplied to the forming device.




The release film


240


is removed and spooled by an appropriate reel device


245


.




Six bobbins


230


are shown according to the present invention, but the number of the bobbins should be selected appropriately according to the specification of the H-shaped member to be formed. Moreover, release films are provided to the upper and lower surfaces of the sheet material.





FIG. 5

shows devices for forming the provided preimpregnated sheet member


250


to the shape of an H, and to transmit the shaped member to a hot press and an after-cure device.




The device


300


for bending the sheet members


250


to form an H is equipped with a device


310


for providing creases to the sheet members


250


, an infrared heater


320


, a device


330


for bending the sheet members to form an open-trapezoid-shape, a device


340


for bending the sheet members


250


to form a U-shape, and a device


360


for laminating release films


260


to the side walls of the H-shaped sheet materials


250


.




The formed preimpregnated sheet material is heated and pressure-formed in a hot press device


400


, before being transmitted to an after-cure device


500


.





FIG. 6

shows a crease-forming device


310


, wherein two rolls


312


and


314


placed to face one another on a frame


311


is formed as a unit, and two units are equipped on the frame with one unit placed above the other.




The first roll


312


comprises protruded regions


313


having the shape of abacus beads, and the second roll


314


comprises groove regions


315


for receiving the protruded regions


313


.




When traveling between the rolls


312


and


314


, the sheet members


250


are provided with creases


250




a.






The sheet members


250


provided with creases


250




a


are then fed to the open-trapezoid-shape forming device


330


.




At this stage, the sheet members


250


travel through an infrared heater


320


, which provides appropriate flexibility to the sheet members. The infrared heater


320


is equipped with heater units


322


placed above and under the sheet members


250


.




The open-trapezoid-shape forming device


330


shown in

FIG. 7

comprises a frame


331


supporting rolls


334


having horizontal rotation axes and rolls


332


having tilted rotation axes, for bending the sheet members


250


traveling therethrough to form an open-trapezoid shape with the creases


250




a


positioned inward.




The sheet materials


250


each bent to form an open-trapezoid shape is then conveyed to the U-shape forming device


340


shown in FIG.


8


. The U-shape forming device


340


comprises belts


343


rotatably supported by axes


342


perpendicularly mounted on a frame


341


, and rolls


344


rotatably supported by horizontal axes.




When the open-trapezoid shaped sheet members


250


conveyed to the device


340


travel between the belts and rolls, each member is bent into a U-shape, and the two U-shaped sheets


250


are mutually fixed in the inverse direction to form an H-shape.




Next, release films


260


are laminated on both side surfaces of the H-shaped member at the station


360


before it is conveyed to the hot press device


400


.





FIG. 9

is an explanatory view showing the mold structure of the hot press device


400


.




The hot press device


400


is equipped with a lower mold


410


and an actuator


422


for driving an upper mold


420


opposing to the lower mold


410


. On both side areas of the upper and lower molds are positioned side molds


430


that are driven by actuators


432


.




The after-cure device


500


is a heating furnace for heating the H-shaped and pressed preimpregated sheet member at a predetermined temperature for a predetermined time, in order to accelerate the thermosetting of the resin.





FIG. 10

is an explanatory view showing the clamp of the sheet material mounted near the output of the after cure device


500


, a haulage device, and a cutting device.




The H-shaped member


270


, in other words, the product that has completed the curing process by the after-cure device


500


, passes through the product clamping device


600


and the haulage device


700


.




The clamping device


600


is equipped with a clamping means


610


for gripping the product


270


with an actuator


620


, and while the haulage device


700


is not operated, the clamping means constantly holds the product


270


. Since the area near the bobbin feeding the preimpregnated sheet material


250


is provided with a driving force that constantly pulls the preimpregnated sheet


250


back toward the bobbin so that tension is constantly provided to the sheet material


250


during the forming process, the clamping means prevents the product from being pulled back toward the bobbin by the tension.




The haulage device


700


is equipped with a gripper


710


that grips the product


270


through the operation of the actuator


720


, and the device


700


is slidably supported by a linear guide


730


.




The cylinder


740


drives the piston rod


750


, and the piston rod


750


drives the feeding device toward the arrow A direction through a connecting unit


760


. By the operation of the haulage device


700


, the product


270


is hauled and conveyed intermittently.




The cutting device


800


comprises a rotary cutting blade


840


that is driven by a motor through a transmission


820


, and through the actuator


830


, the rotary cutting blade


840


descends and separates the product


270


.




When the product


270


formed into a strip-shape reaches a predetermined length, the cutting device


800


is activated and the product


270


is cut into predetermined sizes.




For example, by detecting the position of the front end of the product


270


using a proximity switch and the like for activating the cutting device, the separating of the products


270


can be performed automatically.





FIG. 11

is a drawing showing the operational sequence of the hot press device


400


, the clamping device


600


, and the feeding (haulage) device


700


.




The upper mold of the press is closed before the left and right side molds of the press are closed, and the product is held in this position for a predetermined time, thereby completing the hot press process.




During this time, the clamping device


610


of the product is closed, maintaining grip of the product.




After holding the product by closing the haulage device and the clamping device


710


, the cylinder


740


is driven to move the clamping device


710


so as to convey the product


270


.




Furthermore, the haulage device and the clamping device described in the above-mentioned preferred embodiment are merely one example of devices that can be used in the present invention, and any appropriate device for hauling and gripping the product, such as those using rollers or caterpillars, can also be used.




As explained, the present invention enables to form H-shaped members made of FRP continuously and automatically.



Claims
  • 1. A process for continuously forming flat sheets of thermosetting resin impregnated with carbon and/or glass fiber with the exterior surface protected by a first release film into an H-shaped FRP material, said process comprising:hauling and holding said flat sheets of thermosetting resin progressively throughout the process; removing said first release film from the flat sheets of thermosetting resin; providing a second release film to the upper surface of a top flat sheet and to the lower surface of a bottom flat sheet of said flat sheets of thermosetting resin; shaping said flat sheets of thermosetting resin to a pre-determined H-shape; providing a third release film to the left and right exterior side surfaces of the H-shaped FRP material; providing heat and pressure to the exterior surface of said H-shaped FRP material; providing heat for after-curing of said H-shaped FRP material; and cutting the H-shaped FRP material.
  • 2. An apparatus for continuously forming flat sheets of thermosetting resin impregnated with carbon and/or glass fiber with the exterior surface protected by a first release film into an H-shaped FRP material, said apparatus comprising:a means for hauling and holding said flat sheets of thermosetting resin progressively throughout the process; a means for removing said first release film from the flat sheets of thermosetting resin; a means for providing a second release film to the upper surface of a top flat sheet and to the lower surface of a bottom flat sheet of said flat sheets of thermosetting resin; a means for shaping said flat sheets of thermosetting resin to a pre-determined H-shape; a means for providing a third release film to the left and right exterior side surfaces of the H-shaped FRP material; a means for providing heat and pressure to the exterior surface of said H-shaped FRP material; a means for providing heat for after-curing of said H-shaped FRP material; and a means for cutting the H-shaped FRP material.
  • 3. The apparatus of claim 2, wherein said means for shaping flat sheets of thermosetting resin to a pre-determined H-shape is comprised of:a means for forming two creases to two of said flat sheets of thermosetting resin; a means for bending said flat sheets of thermosetting resin at the point of said creases to form an open-trapezoid-shape cross section; a means for forming a U-shaped cross section from said open-trapezoid-shape cross section; and a means for mutually fixing two U-shaped cross sections to form an H-shape cross section.
  • 4. The apparatus of claim 2, wherein said means for hauling and holding is timed to haul and to hold said flat sheets of thermosetting resin at intermittent periods of time necessary for said means for providing heat and pressure to apply the necessary heat and pressure to form an H-shaped FRP material.
Priority Claims (1)
Number Date Country Kind
2000-002437 Jan 2000 JP
US Referenced Citations (12)
Number Name Date Kind
2779388 Quoss Jan 1957 A
2822575 Imbert et al. Feb 1958 A
2977630 Bazler Apr 1961 A
3649407 Markus Mar 1972 A
4151030 Hensel Apr 1979 A
4151031 Goad et al. Apr 1979 A
4816102 Cavin et al. Mar 1989 A
4980013 Lowery Dec 1990 A
5043128 Umeda Aug 1991 A
5066349 Perko et al. Nov 1991 A
5127980 Cavin Jul 1992 A
5192383 Cavin Mar 1993 A
Foreign Referenced Citations (1)
Number Date Country
2165470 Dec 1971 DE
Non-Patent Literature Citations (1)
Entry
Patent Abstracts of Japan vol. 014, No. 311 (M-0994), Jul. 4, 1990 & JP 02 102029 A (JAMCO Corp), Apr. 13, 1990.