The present invention relates to a process and a device for producing a three-dimensional (3D) object by solidification of a material solidifyable under the supply of energy such as electromagnetic radiation. The solidifyable material normally comprises a resin which is photopolymerizable, light-hardenable or otherwise solidifyable by any stimulating energy.
For the step-wise or layer-wise construction of three-dimensional objects from photo- and particularly light-hardenable polymers or resins, various processes are mentioned in the literature, see “Automatic Fabrication—Improving Productivity in Manufacturing” of Marshall Burns, 1993 (ISBN 0-13-119462-3) in this regard.
For example, in conventional stereolithography systems a support plate is provided within a container filled with photopolymerizable or light-hardenable material, wherein a layer at the surface of the material is selectively irradiated, e.g. by means of a scanning laser beam, until a defined layer thickness is hardened. After hardening a layer, the support plate is lowered by the following layer thickness, and a new non-hardened material is applied.
In the selective irradiation by laser, where a punctual energy supply is included and where not the whole building area is irradiated at once or almost at once, separate layers must be hardened and moved away together with the support plate, in order to avoid construction defects and to obtain building parts as accurate as possible. By the building in layers, the conventional stereolithography process must be carried out with a multitude of corresponding steps per layer.
It is an object of the invention to provide an improved process and an improved device for producing a three-dimensional object by solidifying a material solidifyable by supply of stimulating energy such as electromagnetic irradiation.
According to a first aspect, the present invention provides: a process for producing at least one three-dimensional object, comprising the step of solidifying a photo-polymerizable material by means of simultaneous or almost simultaneous exposure of a build area or partial build area in a building plane via electromagnetic radiation, wherein a distance between a support plate, at which the object to be generated is built, and the building plane is changed during at least one exposure phase.
According to a second aspect, the present invention provides: a process for producing at least one three-dimensional object through solidifying a photopolymerizable material by means of simultaneous or almost simultaneous exposure in a building plane via electromagnetic radiation, wherein the three-dimensional object is solidified in a main building direction during an irradiation period to an amount exceeding a prescribed current hardening depth, without interrupting supply of electromagnetic energy during the irradiation period.
According to a third and fourth aspect, the present invention provides: a process for producing at least one three-dimensional object comprising a step of solidifying a photopolymerizable material by means of simultaneous or almost simultaneous exposure in a building plane via electromagnetic radiation, wherein a current hardening depth of the photopolymerizable material during a building period is controlled by a speed of the support plate supporting the object to be generated moving away from the building plane. Alternatively to, or in combination with this control, a current curing depth of the photopolymerizable material during a continuous building period is controlled by an irradiation intensity of each individual pixel of a projected rasterized image mask.
According to a further aspect, the present invention provides a device for producing at least one three-dimensional object by solidifying a photopolymerizable material, comprising: a device for simultaneous or almost simultaneous supply of electromagnetic energy to a build area or partial build area in a building plane via electromagnetic radiation; a support plate capable of supporting the object to be generated; and a control unit arranged to control the device for supply of electromagnetic energy such that a distance between the support plate and the building plane is changed during at least one irradiation period.
According to a still further aspect, the present invention provides a device for producing at least one three-dimensional object by solidifying a photopolymerizable material, comprising: a device for simultaneous or almost simultaneous supply of electromagnetic energy into a building plane via electromagnetic radiation; and a control unit arranged to control the device for supply of electromagnetic energy such that the three-dimensional object is solidified in a main building direction during an irradiation period to an amount exceeding a prescribed current hardening depth, without interrupting supply of electromagnetic energy during the irradiation period.
By applying the process of the invention, it is possible to provide at least one three-dimensional object formed from photopolymerised material through electromagnetic irradiation by uninterrupted photopolymerising the photopolymerizable material being built continuously, but without formation of any one of separately polymerised structure elements that might include separate layers, dots and strands of the material.
The term “at least” one three-dimensional object used herein means, that the process of the invention can be used to form a complete 3D-object or only a part of a whole 3D-object, or multiple 3D-objects or partial 3D-objects at the time or at different times, including a case, where multiple partial structures of a complex object are formed at the same time or at different times. The terms “partial object” or “partial structures” mean not only desired structures of the three-dimensional final object, but also support objects or support structures which are generated only as demanded by the process and which are not anymore contained in the final three-dimensional (3D) object.
Within the framework of the present invention it was surprisingly found that—contrary to the conventional stereolithography technique—a complete layer-wise generation of the three-dimension object can be dispensed with; it was found that a layer-independent operation can be carried out and that a device can be correspondingly arranged.
Conventional processes and devices of the prior art are improved by the solution of the problem according to the present invention and its preferred embodiments, and the subsequently described features can be provided, or the respectively mentioned advantages can be achieved alone, alternatively or in combination:
During a continuous (uninterrupted) exposure operation, i.e. during at least one irradiation phase and preferably during the whole building process of the three-dimensional object, the distance between a support plate for the three-dimensional object and the building plane can be varied continuously, i.e. without interruption.
Thereby, it is not required according to the present invention that the material solidifies in a process with multiple steps and respectively with layer-formation to be performed per step. If, due to possible irradiation interruptions, some slight interface layer formation would still occur, such an interface formation can be minimized to a low number or even totally eliminated; for example limited to changes of different irradiation areas, or to changes of different bitmaps per irradiation plane respectively used for different structural sections of the three-dimensional object.
Further, the building process is accelerated according to the invention.
By obviating a layer-construction, it is further possible to dispense with a generation of sliced image data.
The continuous change of the said distance according to the present invention can be realized depending on the desired embodiment, by moving the support plate away from the building plane, and/or by moving the construction plane or the fill level of the photopolymerizable material away from the support plate. The latter can be carried out in the case of an irradiation from above the support plate by lifting the building plane or by raising the fill level of the photopolymerizable material relative to the support plate. A moving away of the support plate from a pre-set building plane is preferred according to the invention.
When the said distance is continuously changed according to the invention during an irradiation operation and preferably during the whole building process of the three-dimensional object, structure steps in the main building direction (typically the vertical Z-direction)—different from the conventional layer-wise process—can be reduced and advantageously minimized, or may even be adjusted to a continuous gradation down to an absence of structure steps. Unlike the conventional layer-wise process, distinct structure steps in Z defined by predetermined layers are not required. Rather, structure steps in the Z-building direction can be flexibly controlled depending on building conditions, and optionally can be variably adjusted or may even be realized in the form of a continuously gradual structure.
The three-dimensional object is allowed to solidify or grow in the main building direction (typically in the Z-direction) without interrupting the supply of electromagnetic energy respectively during an irradiation phase and optionally during the whole building process. The corresponding continuous growth of solidifyable material in the main building (Z-) direction during an irradiation phase may thus proceed at an extent exceeding a usual hardening depth which was applied in the conventional layer-wise solidification and which is predetermined by the used supply of electromagnetic energy (irradiation) and/or by a used polymerizable material. Hence, it is possible by the operation according to the invention to significantly extent irradiation phases relative to conventional layer-wise irradiations, and to obtain continuous uniform (extended) hardening depths during these phases, that exceed conventional layer-hardening depths of typically in the micrometer range several fold. A continuous uniform (extended) hardening depth respectively realizable by an irradiation phase according to the invention may, for example, lie in orders in the range of significantly above 1 mm, preferably at above 2.5 mm, more preferably at above 1 cm and possibly even at above 10 cm. If desired, a continuous (uninterrupted) uniform solidification in bulk may even be provided in the whole three-dimensional object by avoiding substantial irradiation interruptions.
By the layer-independent continuous operation, it is even possible according to the invention to specifically influence and to control a current hardening depth of the photopolymerizable material. An adjustment of the speed of the support plate supporting the object to be generated moving away from the building plane, and an adjustment of the irradiation intensity of pixels (grey value or color value), respectively alone or in combination, are particular means for controlling the hardening depth.
A preferable uninterrupted (continuous) operation for supply of electromagnetic energy assists in the operability of a projection unit and/or simplifies the structure of the whole device. Further, it is possible to reduce the amount of data required for building a three-dimensional object, to reduce calculation demands therefor and thus to improve computing efficiency.
The process and the device according to the invention may respectively be designed flexible such that, for building a whole three-dimensional object, predetermined, optionally multiple uninterrupted irradiation phases on one hand, but at least one phase without or with reduced irradiation of the building plane on the other hand may be included. The change of the said distance as described above is provided during the uninterrupted irradiation phase(s), optionally also during the at least one phase without or with reduced irradiation of the building plane. An at least one phase with reduced, optionally even without irradiation of the building plane is utilized, not necessarily but possibly, for example for one or more of the following operations or conditions:
The duration of the at least one phase without irradiation of the building plane, if applied, may respectively be short and preferably very short, for example up to maximally 10 s, preferably up to maximally 1 s, more preferably up to maximal 10 ms, and particularly up to maximally 1 ms.
A further advantage of the invention however consists in that the interruption of the irradiation does not necessarily have to be carried out; irradiation may be continued to be operated, e.g. during the aforementioned operations or conditions.
A change of the said distance may be adjusted variably during the building process. In this manner, the degree of hardening can be controlled, preferably by the moving speed in the main building direction such as the Z-direction.
By the continuous movement process in the main building direction such as the Z-direction, components of a device such as a wiper or the like may be applied layer-independently. Unlike a conventional building manner, components of the device can be applied by considering other aspects that are more favorable for the building process or for the generated three-dimensional object, e.g. a length in Z-direction having the same cross-sectional area in the horizontal (XY) building plane.
It is possible to carry out an optimized irradiation process, wherein a new exposure mask is generated or used not before the (XY) cross-sectional area changes along the Z-height or Z-position.
Thus, it can be worked with any high resolution in Z for the exposure masks respectively projected consecutively depending on the moved Z-height or Z-position.
In order to avoid defects during the building process, particularly when supplying the electromagnetic irradiation such as the light exposure, it is important to irradiate the built area to be irradiated simultaneously or almost simultaneously, i.e. the XY cross-sectional area or XY partial cross-sectional area of the building plane and preferably the whole built area to be currently irradiated respectively.
This can be realized by a projection system by means of mask exposure, ensuring a simultaneous irradiation. A particularly preferred projection system for generating an exposure mask is based on the DLP®/DMD (digital light processing/digital micromirror device)—technique known as such.
An alternative to the mask exposure is represented by an irradiation by a projection system, wherein a stationary image or an almost stationary exposure image is generated and thus an almost simultaneous irradiation is achieved, for example by a laser-based projection system with a sufficiently fast scanning of the desired built area in the building plane to be irradiated. An almost simultaneous irradiation, or a sufficiently fast scanning is typically achieved when an image is generated that is stationary or almost stationary for human eyes. Suitable ranges of image frequencies or refresh rates for generating an image to be stationary or almost stationary for human eyes are known from video techniques and projection techniques and can be correspondingly applied. An example of a projection system using an image that is stationary for human eyes is described in WO 01/14125A1; however, the present invention is by no means limited to the use of such a projection system for providing an almost simultaneous irradiation.
As photopolymerizable or solidifyable material according to the invention, any material is meant, possibly comprising a resin and optionally further components, which is solidifyable by means of supply of stimulating energy such as electromagnetic irradiation, e.g. UV-irradiation, visible light, IR-irradiation, electron beam irradiation, X-ray irradiation or the like. Suitably, a material polymerizable by UV-irradiation and/or by visible light can be used as such material, for example a material comprising a resin containing at least one ethylenically unsaturated compound (including but nor limited to (meth)acrylate monomers and polymers) and/or at least one epoxy group. Suitable other components of the solidifyable material include, for example, inorganic and/or organic fillers, coloring substances, viscose-controlling agents, but are not limited thereto.
As smoothening element, a wiper, a bar or blade, a roll, a slider or the like may be used. A “doctor plade”-process, wherein a vacuum container acts as an auxiliary material reservoir and “wipes” across the surface, or the known “curtain coating”-process are preferred.
The system according to the invention allows the provision of a three-dimensional object, which has been formed by electromagnetic irradiation of a photopolymerizable material by a photopolymerization with continuous material construction, but without separately polymerized structure elements that might be formed from layers, dots or strands of the photopolymerizable material. The three-dimensional object provided by the invention thus differs from conventional three-dimensional objects obtained through other free-form building techniques particularly by the photopolymerization in bulk, without or insignificantly having interfaces between separately hardened portions of that photopolymerizable material. Unlike the conventional stereolithography or other conventional free-form building techniques such as selective laser sintering, ballistic particle production, fusion deposition modeling, three-dimensional printing, three-dimensional plotting or other rapid prototyping processes, three-dimensional objects having no separate layers or individual material strands or dots can be provided through the uninterrupted (continuous) stereolithography process obviating formation of layers, strands or dots. The technique according to the invention is particularly suitable for providing a three-dimensional object which comprise different sectional areas in the direction of continuous material construction.
The present invention will be subsequently explained illustratively and in a non-limiting manner by means of drawings. In the drawings:
The structure in
The support plate 8 (with the object generated) is continuously moved down from the material surface, wherein the hardening depth of the selectively irradiated photopolymer can be controlled by the moving speed. A wiper 4 can be moved or placed horizontally at a defined height above the building plane or the material surface, in order to eliminate a convex or concave curving of the material in the building plane (e.g. positive or negative meniscus) being possibly caused during the continuous generation, and to re-establish a planar or essentially planar building plane or material surface.
During the continuous movement of the support plate, irradiation may be interrupted, e.g. during an agitation of the wiper, or during the generation of a new projection image. A full interruption, or a partial reduction of the irradiation may be realized preferably by a shutter, e.g. via an electromechanic element (not shown) positioned in the irradiation path, or by the use of a projection system by changing or adjusting brightness parameters and/or contrast parameters of the image forming unit.
In this preferred embodiment, the support plate is moved during the whole building process continuously away from the building plane with a constant or a variable speed. Here, the change of the moving speed influences the hardening degree of the light-hardening resin and thus can be specifically controlled/adjusted during the building process, e.g. in order to achieve an over-exposure or sub-exposure in a part of the construction.
By lowering the generated object on the support plate away from the building plane below the material surface, new and fresh material which is not yet polymerized onto the object flows from the outside and fills the lowered portion.
This re-flow, or material supply may be assisted periodically or alternatingly by a wiper.
The alternating or periodic horizontal movement or placement of a bar or blade, a wiper or a slider in a defined height above the building plane or the material surface may also be utilized to eliminate a convex or concave curving of the material in the building plane (e.g. positive or negative meniscus) that is possibly caused by the continuous generation, and to re-establish a planar or essentially planar building plane or material surface.
When interrupting irradiation, e.g. for the purpose of a new image formation and/or for the movement of a wiper, the moving speed of a support plate can be reduced to a minimum.
A particular operation is shown in
The embodiments illustrated in
Further, instead of an irradiation from above as shown in
In
The above description of preferred embodiments is merely illustrative for explanation; rather, any variations and combinations of the described features and advantages are possible within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4837379 | Weinberg | Jun 1989 | A |
4929402 | Hull | May 1990 | A |
4999143 | Hull et al. | Mar 1991 | A |
5093130 | Fujii et al. | Mar 1992 | A |
5137662 | Hull et al. | Aug 1992 | A |
5139338 | Pomerantz et al. | Aug 1992 | A |
5143663 | Leyden et al. | Sep 1992 | A |
5157423 | Zur | Oct 1992 | A |
5171490 | Fudim | Dec 1992 | A |
5173266 | Kenney | Dec 1992 | A |
5174931 | Almquist et al. | Dec 1992 | A |
5236637 | Hull | Aug 1993 | A |
5247180 | Mitcham et al. | Sep 1993 | A |
5248456 | Evans, Jr. et al. | Sep 1993 | A |
5263130 | Pomerantz et al. | Nov 1993 | A |
5268994 | Keskes | Dec 1993 | A |
5289214 | Zur | Feb 1994 | A |
5298208 | Sibley et al. | Mar 1994 | A |
5306446 | Howe | Apr 1994 | A |
5345391 | Hull et al. | Sep 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5391072 | Lawton et al. | Feb 1995 | A |
5447822 | Hull et al. | Sep 1995 | A |
5510077 | Dinh et al. | Apr 1996 | A |
5529473 | Lawton et al. | Jun 1996 | A |
5545367 | Bae et al. | Aug 1996 | A |
5569431 | Hull | Oct 1996 | A |
5571471 | Hull | Nov 1996 | A |
5630981 | Hull | May 1997 | A |
5651934 | Almquist et al. | Jul 1997 | A |
5653925 | Batchelder | Aug 1997 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5891382 | Almquist et al. | Apr 1999 | A |
5894036 | Tylko | Apr 1999 | A |
5902537 | Almquist et al. | May 1999 | A |
5945058 | Manners et al. | Aug 1999 | A |
5980813 | Narang et al. | Nov 1999 | A |
6013099 | Dinh et al. | Jan 2000 | A |
6027324 | Hull | Feb 2000 | A |
6048487 | Almquist et al. | Apr 2000 | A |
6051179 | Hagenau | Apr 2000 | A |
6153034 | Lipsker | Nov 2000 | A |
6158946 | Miyashita | Dec 2000 | A |
6171610 | Vacanti et al. | Jan 2001 | B1 |
6280727 | Prior et al. | Aug 2001 | B1 |
6281903 | Martin et al. | Aug 2001 | B1 |
6334865 | Redmond et al. | Jan 2002 | B1 |
6352710 | Sawhney et al. | Mar 2002 | B2 |
6391245 | Smith | May 2002 | B1 |
6500378 | Smith | Dec 2002 | B1 |
6547552 | Fudim | Apr 2003 | B1 |
6630009 | Moussa et al. | Oct 2003 | B2 |
6764636 | Allanic et al. | Jul 2004 | B1 |
6833231 | Moussa et al. | Dec 2004 | B2 |
6833234 | Bloomstein et al. | Dec 2004 | B1 |
6942830 | Mülhaupt et al. | Sep 2005 | B2 |
6974656 | Hinczewski | Dec 2005 | B2 |
6989225 | Steinmann | Jan 2006 | B2 |
7052263 | John | May 2006 | B2 |
7073883 | Billow | Jul 2006 | B2 |
7133041 | Kaufman et al. | Nov 2006 | B2 |
7195472 | John | Mar 2007 | B2 |
7215430 | Kacyra et al. | May 2007 | B2 |
7261542 | Hickerson et al. | Aug 2007 | B2 |
7467939 | Sperry et al. | Dec 2008 | B2 |
20010028495 | Quate et al. | Oct 2001 | A1 |
20010048183 | Fujita | Dec 2001 | A1 |
20020028854 | Allanic et al. | Mar 2002 | A1 |
20020155189 | John | Oct 2002 | A1 |
20030067539 | Doerfel et al. | Apr 2003 | A1 |
20030074096 | Das et al. | Apr 2003 | A1 |
20030205849 | Farnworth | Nov 2003 | A1 |
20040008309 | Yamahara et al. | Jan 2004 | A1 |
20050023710 | Brodkin et al. | Feb 2005 | A1 |
20050208168 | Hickerson et al. | Sep 2005 | A1 |
20050248061 | Shkolnik et al. | Nov 2005 | A1 |
20050248062 | Shkolnik et al. | Nov 2005 | A1 |
20050288813 | Yang et al. | Dec 2005 | A1 |
20060078638 | Holmboe et al. | Apr 2006 | A1 |
20060192312 | Wahlstrom et al. | Aug 2006 | A1 |
20060239588 | Hull et al. | Oct 2006 | A1 |
20060249884 | Partanen et al. | Nov 2006 | A1 |
20070074659 | Wahlstrom | Apr 2007 | A1 |
20070075458 | Wahlstrom et al. | Apr 2007 | A1 |
20070075459 | Reynolds et al. | Apr 2007 | A1 |
20070075460 | Wahlstrom et al. | Apr 2007 | A1 |
20070075461 | Hunter et al. | Apr 2007 | A1 |
20070077323 | Stonesmith et al. | Apr 2007 | A1 |
20070120842 | Hess | May 2007 | A1 |
20070257055 | Scott et al. | Nov 2007 | A1 |
20070259066 | Sperry et al. | Nov 2007 | A1 |
20080038396 | John et al. | Feb 2008 | A1 |
20080054531 | Kerekes et al. | Mar 2008 | A1 |
20080169586 | Hull et al. | Jul 2008 | A1 |
20080169589 | Sperry et al. | Jul 2008 | A1 |
20080170112 | Hull et al. | Jul 2008 | A1 |
20080179786 | Sperry et al. | Jul 2008 | A1 |
20080179787 | Sperry et al. | Jul 2008 | A1 |
20080181977 | Sperry et al. | Jul 2008 | A1 |
20080206383 | Hull et al. | Aug 2008 | A1 |
20080217818 | Holmboe et al. | Sep 2008 | A1 |
20080226346 | Hull et al. | Sep 2008 | A1 |
20080231731 | Hull | Sep 2008 | A1 |
20080309665 | Gregory, II | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
41 05 314 | Aug 1991 | DE |
41 02 257 | Jul 1992 | DE |
41 25 534 | Feb 1993 | DE |
93 19 405 | May 1994 | DE |
43 40 108 | Aug 1997 | DE |
197 27 554 | Jan 1999 | DE |
299 11 122 | Nov 1999 | DE |
198 38 797 | Mar 2000 | DE |
199 29 199 | Jan 2001 | DE |
100 03 374 | Aug 2001 | DE |
100 18 987 | Oct 2001 | DE |
201 06 887 | Oct 2001 | DE |
699 09 136 | May 2004 | DE |
0 250 121 | Dec 1987 | EP |
0 426 363 | May 1991 | EP |
0 435 564 | Jul 1991 | EP |
0 466 422 | Jan 1992 | EP |
0 484 086 | May 1992 | EP |
1 250 995 | Oct 2002 | EP |
1 250 997 | Oct 2002 | EP |
1 270 185 | Jan 2003 | EP |
1 192 041 | Mar 2003 | EP |
1 156 922 | Jun 2003 | EP |
1 338 846 | Aug 2003 | EP |
1674243 | Jun 2006 | EP |
1 849 587 | Oct 2007 | EP |
1 880 830 | Jan 2008 | EP |
1 894 704 | Mar 2008 | EP |
1 950 032 | Jul 2008 | EP |
2 011 631 | Jan 2009 | EP |
2 254 194 | Jul 1975 | FR |
2 583 334 | Dec 1986 | FR |
2 634 686 | Feb 1990 | FR |
2 692 053 | Dec 1993 | FR |
04371829 | Dec 1992 | JP |
08192469 | Jul 1996 | JP |
WO 9511007 | Apr 1995 | WO |
WO-9600422 | Jan 1996 | WO |
0100390 | Jan 2001 | WO |
WO 0100390 | Jan 2001 | WO |
WO-0112679 | Feb 2001 | WO |
WO-0114125 | Mar 2001 | WO |
WO-0172501 | Oct 2001 | WO |
WO-03059184 | Jul 2003 | WO |
WO 2005110722 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080113293 A1 | May 2008 | US |