The present invention relates generally to wireless local area network and more particularly to peer-to-peer wireless local area networks that conform to IEEE 802.11.
In a wireless local area network (WLAN) environment, an access point (AP) may serve as an intermediary between wireless communication stations and a wired network that offers broadband service. Network data to be delivered to a particular wireless communication station traverses the network and reaches the access point, which in turn transmits the data to the particular wireless communication station. An access point may extend service to many wireless communication stations at once. Conventionally, an access point transmits data to wireless communication stations by addressing each packet to an individual communication station. In recent years, wireless data communication in domestic and enterprise environments have become increasingly commonplace and an increasing number of wireless communication networks have been designed and deployed. In particular, the use of wireless networking has become prevalent and wireless network standards such as IEEE 802.11a, 802.11b, 802.11g and 802.11n (collectively “IEEE 802.11”) have become commonplace.
WLANs may be classified by their architecture. In an infrastructure network, wireless devices communicate via an RF connection to an access point. A home WLAN typically will be served by a single access point, such as a wireless router. Wireless devices within the RF coverage area of the wireless router connect to the broadband service of the wired network via the single access point. Wireless devices may also communicate with each other via the single access point. In a mobile ad-hoc network, wireless devices, such as laptops outfitted with wireless modems, communicate directly with each other in a peer-to-peer (P2P) mode. Although ad-hoc P2P WLANs may employ an AP-like device to perform various administrative functions, they do not employ a dedicated AP through which other wireless devices communicate.
Regardless of whether a dedicated AP or an AP-like device is employed, it represents a single point of failure in the WLAN that can prevent all the wireless devices from communicating with one another.
In accordance with the present invention method is provided that includes participating in a peer-to-peer wireless communications network that includes a group controller for creating and ending the network and controlling access to the network by wireless stations. A member of the network receives a status indicator from the group controller indicating that the group owner is or will be no longer serving as group owner.
In accordance with another aspect of the invention, a wireless station includes an RF interface configured to exchange wireless signals with remote devices over peer-to-peer connections in a wireless communications network having a group controller for creating and ending the network and controlling access to the network by the remote devices. The wireless station also includes a processor configured to detect a status indicator from the group controller indicating that the group owner is or will be no longer serving as the group owner.
Hereafter, the term “station” (STA) includes, but is not limited to, a wireless transmit/receive unit (WTRU), user equipment, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment.
An AP may be considered as a special class of a station. It provides management service, as well as access service for other stations associated with the access point to the distribution system. The area over which an access point provides service is referred to as the basic service area (BSA). The BSA is approximately defined by the RF coverage of the access point, and is nominally fixed. Changes in the RF environment, such as arising from building reconstruction or movement of large equipment, however, may alter the BSA topology.
Stations within the BSA form a network connection to a WLAN by becoming associated with the access point. The set of stations associated with an access point is referred to as the basic service set (BSS) of the access point. These stations are also referred to as members of the associated BSS. In WLAN 100, the basic service set BSS 102 of the access point AP 104 is the set of stations STA1106-STA4112 associated with access point AP 104. In
Recently, various approaches have been proposed to enable wireless peer-to-peer connectivity so that users can connect a wide variety of consumer electronic devices and mobile handsets. One proposal from the Wi-Fi Alliance eliminates the need for a dedicated AP by allowing any station to an ad hoc WLAN to serve as an AP-like entity. A station that functions in this capacity is referred to as a peer-to-peer (P2P) group owner, or simply the group owner.
When a Wi-Fi P2P group is first formed the P2P devices negotiate as to which of the devices will serve as the group owner. The group owner serves a number of functions, including, for example, creating and ending the P2P group, controlling admission to the group, discovering which devices are delivering a service, inviting a device to join the group, authenticating a new P2P device (if required) and supplying credential and network information (e.g., a group ID and password) to allow a non-P2P device to be manually configured so that it can join the group.
Stations enter a BSS by associating with one another. An association service is used to make a logical connection between the stations. The association process may include a negotiation procedure during which the stations determine which device will serve as the P2P group owner. During the association process MAC and PHY layer frames are exchanged to perform a variety of control and management tasks.
One particular example of an association process that may be employed involves the use of the master negotiation process currently defined by the Wi-Fi Alliance in the Wi-Fi P2P Specifications issued by the Wi-Fi P2P Technical Task Group, which are hereby incorporated by reference in their entirety. Another example of an association process in the context of IEEE 802.11 when one of the stations serves as the group owner will be presented below.
In order to establish the association between two stations in a P2P WLAN in which one of the stations serves as the group owner, a IEEE 802.11 protocol may be employed in which transmission intervals are partitioned into beacon intervals (BIs). A beacon is a frame with a data frame body containing a number of fields that are specified in the IEEE 802.11 standards. The first field contains a timestamp, referenced to the radio clock of the station, and the second field specifies the beacon interval.
As seen in
One problem that arises when a Wi-Fi network is operated in a P2P mode using one of the stations as the group owner is that the group owner's role is critical during the entire pendency of the connection among the various stations in the P2P network. For instance, if the group owner loses its connection with the other stations in the network, or if the group owner needs to terminate such connections temporarily, all connections involving these stations are totally lost. Therefore, the group owner is a single point of failure in an IEEE 802.11 or Wi-Fi P2P network.
Recovery of the network from such a failure involves recreating its connections at all levels (e.g., physical, logical, link, network, etc.). Unfortunately, this is an involved process requiring tasks such as network querying and the determination of nearby stations. Moreover, authentication and key exchange procedures may also need to be performed for the P2P network to be recovered. Such procedures are undesirable because they require a substantial amount of valuable time. Moreover, disappearance of the group owner may cause data to be lost if the network cannot be reformed.
To overcome or at least ameliorate these problems that arise when a group owner shuts down or otherwise ceases serving as the group owner or moves out of range of the other stations, the group owner may initiate an orderly shut down sequence in which it sends a message or other indicator that informs the other stations of the group owner's change in status. For instance, the message or other indicator, referred to herein as a status indicator, may be a beacon transmission with information that indicates the change in status. When the other stations receive such a beacon, they will reinitiate a master negotiation sequence to assign a new group owner. In some cases this renegotiation sequence may include some or all of the processes used in the association procedure described above in connection with
In some implementations the specific data indicating the group owner's change in status may be inserted in any appropriate field during the data frame body of the beacon transmission described above in connection with
The status data indicating that a station serving as the group owner will cease functioning in that role may be generated and transmitted upon the occurrence of a variety of different events. For instance, the data may be generated and transmitted when a failure in the station is detected which prevents it from serving as the group owner. Alternatively, the data may be generated and transmitted when the station receives any of a number of different user inputs such as a user input that powers down or otherwise turns off the station.
In some cases RF interface 410 is configured to be compatible with one or more of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 frequency band standards for wireless local area networks (WLAN). For example, RF interface 410 may be configured for compatibility and/or backward compatibility with the IEEE 802.11 (a-b) (g) and/or (n) standards.
Baseband and MAC processing portion 450 communicates with RF interface 410 to process receive/transmit signals and may include, by way of example only, an analog-to-digital converter 452 for down converting received signals, a digital to analog converter 454 for up converting signals for transmission, a baseband processor 456 for physical (PHY) layer processing of respective receive/transmit signals, and one or more memory controllers 458 for managing read-write operations from one or more internal and/or external memories (not shown). Processing portion 450 may also include processor 459 for medium access control (MAC)/data link layer processing. Processor 459 or additional circuitry (not shown) may be configured to perform the processes for constructing data frames with a shut down indicator for transmission and for decoding received data frames with a shut down indicator via a wireless link. Alternatively or in addition, baseband processor 456 may share processing for these functions or perform these processes independent of processor 459. MAC and PHY processing may also be integrated into a single component if desired.
The components and features of apparatus 400 may be implemented using any combination of discrete circuitry, application specific integrated circuits, logic gates and/or single chip architectures. Further, the features of apparatus 400 may be implemented using microcontrollers, programmable logic arrays and/or microprocessors or any combination of the foregoing where suitably appropriate. Although a specific architecture has been described in connection with apparatus 400, including specific functional elements and relationships, it is contemplated that the apparatus may be implemented in a variety of ways. For example, functional elements may be packaged together or individually, or may be implemented by fewer, more or different devices, and may be either integrated within other products, or adapted to work with other products externally. When one element is indicated as being responsive to another element, the elements may be directly or indirectly coupled.
The processes described above, including but not limited to those presented in connection with