This invention relates generally to the field of digitally controlled printing devices, and in particular to continuous ink jet printers in which a liquid ink stream breaks into droplets, some of which are selectively deflected.
Traditionally, digitally controlled color printing capability is accomplished by one of two technologies. Both require independent ink supplies for each of the colors of ink provided. Ink is fed through channels formed in the printhead. Each channel includes a nozzle from which droplets of ink are selectively extruded and deposited upon a medium. Typically, each technology requires separate ink delivery systems for each ink color used in printing. Ordinarily, the three primary subtractive colors, i.e. cyan, yellow and magenta, are used because these colors can produce, in general, up to several million shades or color combinations.
The first technology, commonly referred to as “droplet on demand” ink jet printing, selectively provides ink droplets for impact upon a recording surface using a pressurization actuator (thermal, piezoelectric, etc.). Selective activation of the actuator causes the formation and ejection of a flying ink droplet that crosses the space between the printhead and the print media and strikes the print media. The formation of printed images is achieved by controlling the individual formation of ink droplets, as is required to create the desired image. Typically, a slight negative pressure within each channel keeps the ink from inadvertently escaping through the nozzle, and also forms a slightly concave meniscus at the nozzle helping to keep the nozzle clean.
Conventional droplet on demand ink jet printers utilize a heat actuator or a piezoelectric actuator to produce the ink jet droplet at orifices of a print head. With heat actuators, a heater, placed at a convenient location, heats the ink to cause a localized quantity of ink to phase change into a gaseous steam bubble that raises the internal ink pressure sufficiently for an ink droplet to be expelled. With piezoelectric actuators, a mechanical force causes an ink droplet to be expelled.
The second technology, commonly referred to as “continuous stream” or simply “continuous” ink jet printing, uses a pressurized ink source that produces a continuous stream of ink droplets. Traditionally, the ink droplets are selectively electrically charged. Deflection electrodes direct those droplets that have been charged along a flight path different from the flight path of the droplets that have not been charged. Either the deflected or the non-deflected droplets can be used to print on receiver media while the other droplets go to an ink capturing mechanism (catcher, interceptor, gutter, etc.) to be recycled or disposed. U.S. Pat. No. 1,941,001, issued to Hansell, on Dec. 26, 1933, and U.S. Pat. No. 3,373,437 issued to Sweet et al., on Mar. 12, 1968, each disclose an array of continuous ink jet nozzles wherein ink droplets to be printed are selectively charged and deflected towards the recording medium.
U.S. Pat. No. 3,709,432, issued to Robertson, on Jan. 9, 1973, discloses a method and apparatus for stimulating a filament of working fluid causing the working fluid to break up into uniformly spaced ink droplets through the use of transducers. The lengths of the filaments before they break up into ink droplets are regulated by controlling the stimulation energy supplied to the transducers with high amplitude stimulation resulting in short filaments and low amplitudes resulting in long filaments. A flow of air across the paths of the fluid at a point intermediate to the ends of the long and short filaments affects the trajectories of the filaments before they break up into droplets more than it affects the trajectories of the ink droplets themselves. Thus, by controlling the lengths of the filaments, the trajectories of the ink droplets can be controlled, or switched from one path to another. As such, some ink droplets may be directed into a catcher while allowing other, selected ink droplets to be applied to a receiving member.
U.S. Pat. No. 6,079,821, issued to Chwalek et al., on Jun. 27, 2000, discloses a continuous ink jet printer that uses actuation of asymmetric heaters to create individual ink droplets from a filament of working fluid and to deflect those ink droplets. A printhead includes a pressurized ink source and asymmetric heaters, operable to form printed ink droplets and non-printed ink droplets. Printed ink droplets flow along a printed ink droplet path ultimately striking a print media, while non-printed ink droplets flow along a non-printed ink droplet path ultimately striking a catcher surface. These non-printed ink droplets are then recycled or disposed of through an ink removal channel formed in the catcher. While the ink jet printer disclosed in Chwalek et al. works extremely well for its intended purpose, using the asymmetric heater to create and deflect ink droplets increases the energy and power requirements of this device.
In U.S. Pat. No. 6,851,796, which issued on Feb. 8, 2005, an ink droplet forming mechanism selectively creates a stream of ink droplets having a plurality of different volumes traveling along a first path. An air flow directed across the stream of ink droplets interacts with the stream of ink droplets. This interaction deflects smaller droplets more than larger droplets and thereby separates ink droplets having one volume from ink droplets having other volumes.
As the drop selection mechanism described above depends on drop size, it is necessary for large-volume droplets to be fully formed before being exposed to the deflection air flow. Consider, for example, a case where the large-volume droplet is to have a volume equal to four small-volume droplets. It is often seen during droplet formation that the portion of the ink stream that is to form the large-volume droplet will separate from the main stream as desired, but will then break apart before coalescing to form the large-volume droplet. It is necessary for this coalescence to be complete prior to passing through the droplet deflecting air flow. Otherwise the separate fragments that are to form the large-volume droplet will be deflected by an amount greater than that of a single large-volume droplet. Similarly, the small-volume droplets must not merge in air before having past the deflection air flow. If separate small-volume droplets merge, they will be deflected less than desired.
It has been found that the small-volume droplets between coalesced large-volume droplets can be very unevenly spaced. In extreme circumstances, the large-volume droplet often remains only partially formed until the large-volume droplet is well beyond the deflection air flow. The partially formed large-volume droplet and the small-volume droplet immediately in front of it must merge to produce the completed large-volume droplet. Occasionally, an undesirable merging of a small-volume droplet and a large-volume droplet will occur at some distance from the orifices. It is desirable to have the merging droplets coalesce as quickly as possible after break off without additional merging of the small-volume droplets with large-volume droplets or with adjacent small-volume droplets.
Accordingly, it is an object of the present invention to have large droplet fragments coalesce as quickly as possible after break off and without the merging of the small-volume droplets with large-volume droplets or with adjacent small-volume droplets.
It is another object of the present invention to improve the uniformity of drop velocity of the small-volume droplets so that undesirable merging of small-volume droplets is delayed.
These and other objects of the present invention are accomplished, in part, by manipulating droplet velocity and break off time using specialized voltage/current pulse waveforms delivered to the heater resistors of the device.
Accordingly, it is a feature of the present invention to operate a liquid drop generator for selective formation of large-volume droplets and small-volume droplets by providing a droplet generator having a nozzle opening and an associated and adjustable stimulation device; supplying a liquid under pressure to the droplet generator such that a liquid stream of a predetermined diameter, D, emanates from the nozzle opening; activating the associated stimulation device to produce a first set of perturbations on the diameter of the liquid stream, the perturbations having a period, x, such as to cause the liquid stream to form into small-volume droplets; selectively adjusting the stimulation device to produce a second set of perturbations on the diameter of the liquid stream, the second set of perturbations having a period, Nx, such as to cause a segment of the liquid stream to form into a large-volume droplet, whereby the large-volume droplet is N times the volume of the small-volume droplets; and further adjusting the stimulation device to produce a third set of perturbations on the diameter of the liquid stream during the period Nx, the time period, τ, between the perturbations of the third set of perturbations being sufficiently short that the segment of the liquid stream that forms the large-volume droplet is not broken up thereby.
Other features and advantages of the present invention will become apparent from the following description of the preferred embodiments of the invention and the accompanying drawings, wherein:
a)-2(f) illustrates a frequency control of a heater according to the prior art;
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
Referring to
At least one nozzle 18 is formed on printhead 12. Nozzle 18 is in fluid communication with ink supply 14 through an ink passage 19 also formed in printhead 12. Printhead 12 can incorporate additional ink supplies with corresponding nozzles in order to provide multi-drop gray scale printing and/or color printing using multiple ink colors.
An ink droplet forming stimulation device 21 is positioned proximate to nozzle 18. In this embodiment, stimulation device 21 is a heater 20. However, ink droplet forming stimulation device 21 can also be a piezoelectric actuator, a thermal actuator, etc. Heater 20 is at least partially formed or positioned on printhead 12 around a corresponding nozzle 18. Although heater 20 may be disposed radially away from an edge of corresponding nozzle 18, heater 20 is preferably disposed close to corresponding nozzle 18 in a concentric manner. In a preferred embodiment, heater 20 is formed in a substantially circular or ring shape. However, heater 20 can be formed in a partial ring, square, etc. Heater 20, in a preferred embodiment, includes an electric resistive heating element electrically connected to electrical contact pads 22 via conductors 24.
Conductors 24 and electrical contact pads 22 may be at least partially formed or positioned on printhead 12 and provide an electrical connection between controller 16 and heater 20. Alternatively, the electrical connection between controller 16 and heater 20 may be accomplished in any well-known manner. Additionally, controller 16 may be a relatively simple device (a power supply for heater 20, etc.) or a relatively complex device (logic controller, programmable microprocessor, etc.) operable to control many components (heater 20, ink droplet forming mechanism 10, etc.) in a desired manner.
a-2b illustrate an example of electrical activation waveforms provided by controller 16 to heater 20 according to the prior art. Generally, a high frequency of activation of heater 20 results in small-volume droplets 26, while a low frequency of activation of heater 20 results in large-volume droplets 28. Depending on the application, either large-volume droplets 28 or small-volume droplets 26 can be used for printing while small-volume droplets 26 or large-volume droplets 28 are captured for ink recycling or disposal.
The electrical waveform of heater 20 actuation for one printing case is presented schematically in
e) is a schematic representation of the electrical waveform of heater 20 activation for mixed image data wherein a transition is shown from a non-printing state, to a printing state, and back to a non-printing state.
Referring to
Referring to
An ink collection structure 48, disposed on one wall of lower plenum 44 near path X, intercepts the path of small-volume droplets 26 moving along path S, while allowing large-volume droplets 28 traveling along large-volume droplet path K to continue on to the recording media W carried by print drum 58. Small-volume droplets 26 strike porous element 50 in ink collection structure 48. Porous element 50 can be a wire screen, mesh, sintered stainless steel, or ceramic-like material. Small-volume droplets 26 are drawn into the recesses in the porous material 50 by capillary forces and therefore do not form large-volume droplets on the surface of porous element 50. Ink recovery conduit 52 communicates with the back side of porous element 50 and operates at a reduced gas pressure relative to that in lower plenum 44. The pressure reduction in conduit 52 is sufficient to draw in recovered ink, however it is not large enough to cause significant air flow through porous element 50. In this manner of operation, foaming of the recovered ink is minimized. Ink recovery conduit 52 communicates also with recovery reservoir 54 to facilitate recovery of non-printed ink droplets by an ink return line 56 for subsequent reuse. Ink recovery reservoir 54 can contain an open-cell sponge or foam 64, which prevents ink sloshing in applications where the printhead 12 is rapidly scanned. A vacuum conduit 62, coupled to a negative pressure source can communicate with ink recovery reservoir 54 to create a negative pressure in ink recovery conduit 52 improving ink droplet separation and ink droplet removal as discussed above.
The gas pressure in droplet deflector 40 is adjusted in combination with the design of plenums 42, 44 so that the gas pressure in the print head assembly near ink guttering structure 48 is positive with respect to the ambient air pressure near print drum 58. Environmental dust and paper fibers are thusly discouraged from approaching and adhering to ink guttering structure 48 and are additionally excluded from entering lower plenum 44.
In operation, a recording media W is transported in a direction transverse to axis x by print drum 58 in a known manner. Transport of recording media W is coordinated with movement of printing apparatus 10 and/or movement of printhead 12. This can be accomplished using controller 16 in a known manner. Recording media W may be selected from a wide variety of materials including paper, vinyl, cloth, other fibrous materials, etc.
Droplet generation from continuous ink jet devices for use in air deflection print heads requires production of droplets in a predictable fashion having binary volumes. For example, small-volume droplets my have a fundamental volume of “x” and large-volume droplets, that are comprised of multiple “N” coalesced small-volume droplets, may have volumes Nx. That is, N of the 1x small-volume droplets merging in flight after break off creates one Nx large-volume droplet. For this description, it is assumed that N=4 and the large-volume droplet volume is 4x.
By way of background to the droplet formation process, ink supplied to the drop generator passes through the nozzles of the orifice plate, forming a cylinder of fluid having a diameter, D, which is also approximately the diameter of the nozzle. This cylinder, or jet of fluid, moves at a velocity Vjet. When an activation drive pulse is applied to the stimulation device (i.e., the heater 20 surrounding the nozzle), a perturbation is created in the diameter of the jet at the nozzle. This perturbation moves with the fluid at the velocity, Vjet. If another pulse is applied to the stimulation device, another perturbation is created in the diameter of the jet at the nozzle, which also moves with the jet at Vjet. It is well known that if the spacing of the perturbations on the jet is greater than Rayleigh limit, that is approximately π*D, then the amplitude of the perturbation can grow (see generally, Lord Rayleigh, “On the Instability of Jets,” Proc. London Math. Soc. X (1878)). As the perturbation grows, eventually it will grow to the point that it will cause a drop to separate from the jet. On the other hand, if the spacing is less than the Rayleigh limit, the amplitude of the perturbation will shrink, and it will not cause a drop to break off from the jet.
An example of the traditional waveform of activation drive pulses used for producing a single 4x large-volume droplet followed by eight small-volume droplets is shown as
As previously described, each activation drive pulse so the stimulation device produces a perturbation on the liquid stream. The time between adjacent activation drive pulses 2-8 in the
The relative amplitude of each pulse, shown in Column 1 of the waveform data
As can be seen in
It is desirable to have the merging droplets coalesce as quickly as possible after break off without the merging of the 1x small-volume droplets with Nx large-volume droplets or with adjacent small-volume droplets. According to the present invention, controlling small-volume and large-volume droplet production from a continuous ink jet device is accomplished by manipulating droplet velocity and break off time using specialized voltage/current pulse waveforms delivered to the heater resistors of the device.
By way of background, ink supplied to the drop generator passes through the nozzles of the orifice plate, forming a cylinder of fluid having a diameter, D, which is approximately the diameter of the nozzle. This cylinder or jet of fluid moves at a velocity Vjet. When the pulses are applied to the stimulation device (i.e., the heater surrounding the nozzle), a perturbation is created in the diameter of the jet at the nozzle. This perturbation moves with the fluid. The perturbation therefore moves at the velocity, Vjet. If another pulse is applied to the stimulation device, another perturbation is created in the diameter of the jet at the nozzle that also moves with the jet at Vjet. It is well known that if the spacing of the perturbations on the jet is greater than Rayleigh limit, that is approximately π*D, the amplitude of the perturbation can grow (see generally, Lord Rayleigh, “On the Instability of Jets,” Proc. London Math. Soc. X (1878)). As the perturbation grows, eventually it will grow to the point that it will cause a drop to separate from the jet. On the other hand, if the spacing is less than the Rayleigh limit, the amplitude of the perturbation will shrink, and it will not cause a drop to break off from the jet.
The primary means employed in this invention to improve large-volume droplet coalescence and uniform small-volume droplet stability is by the introduction of a higher frequency burst of stimulations pulses during the time interval that is to form the large-volume droplet. Comparing
In accordance with one embodiment of the present invention,
The small-volume droplet burst pulses (i.e. the closely spaced pulses in
In accordance with another embodiment of the present invention,
It can be seen that the small-volume droplet spacing anomaly of the unmodified large-volume droplet burst waveform of
In the description above, the frequency of the activation drive pulse during burst of activation drive pulses employed during formation of the large drop have twice the frequency of the activation drive pulses used for creation of the small drop, producing evenly spaced perturbations on the jet having a period half that of the perturbations used to create the small drop. The invention is not limited to this ratio of frequencies.
Other methods of custom designing the third set of perturbations may offer features that are different but necessary for a particular CIJ system. For example, and expanding upon the embodiment of
Other embodiments may include the modulation of the period for the third set, wherein the period increases or decreases with subsequent perturbations. Again, the duty cycle could modulate with each variable period. However, such modulations would require that the number of perturbations within the third set to change accordingly such that the Nx time constraint is not altered.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1941001 | Hansell | Dec 1933 | A |
3373437 | Sweet et al. | Mar 1968 | A |
3709432 | Robertson | Jan 1973 | A |
6079821 | Chwalek et al. | Jun 2000 | A |
6505921 | Chwalek et al. | Jan 2003 | B2 |
6851796 | Jeanmaire et al. | Feb 2005 | B2 |
20070064066 | Piatt et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 2007031500 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080284827 A1 | Nov 2008 | US |