Embodiments herein generally relate to a method for manufacturing a print cartridge cleaning blade, and more particularly, concerns a method of using a continuous core to create a print cartridge cleaning blade.
Therefore, the embodiments herein present a method that feeds a continuous core of a print cartridge cleaning blade along a path. The path passes, in the following order, firstly through a coating bath or spray coating station, secondly by a curing station, thirdly through a cutter, and fourthly to a finisher station. In one example, the continuous core can be fed between the different manufacturing stations along guides.
Thus, the methods herein first coat portions of the continuous core that are in the coating bath/spray station with an outer covering. For example, the core can be supplied to the coating bath from a spool of core material. When performing such bath coating, the methods herein can apply an electrical charge to the coating bath and the continuous core.
For portions of the continuous core that are adjacent the curing station, the method cures the outer covering of the continuous core. The curing process can comprise, for example, evaporating moisture and solvents from the coating, applying heat to the coating, and/or applying ultra-violet light to the coating.
Similarly, for portions of the continuous core that are in the cutter, the method cuts the continuous core into predetermined lengths; and for portions of the predetermined lengths of the continuous core that are adjacent the finishing station, the method finishes the outer covering of the predetermined lengths of the continuous core to produce a finished print cartridge cleaning blade.
These and other features are described in, or are apparent from, the following detailed description.
Various exemplary embodiments of the systems and methods are described in detail below, with reference to the attached drawing figures, in which:
As mentioned above, coated-core print cartridge cleaner blades have not been mass produced previously. Therefore, the disclosed manufacturing process captures the cost savings and process control advantages that continuous manufacturing offers over batch manufacturing
As shown in flowchart form in
While
The methods herein first coat portions of the continuous core using a coating bath 260. The coating bath 260 leaves an outer covering on the core. When performing bath coating, the methods herein can apply an electrical charge (if electrophoretic (EP) processing is utilized) that is generated by a power supply 252 and transferred to the coating bath 260 and/or core material 252 through electrical contacts 260 and 262 to the coating bath and the continuous core. There are many well-known coating processes that use coating baths and electrophoretic coating (for example see U.S. Pat. No. 5,888,436, the complete disclosure of which is incorporated herein by reference) and the details of such well-known processes are not discussed herein for the sake of brevity. Similarly, the coating materials utilized can vary depending upon the design of the cleaning blade. For example, the coating material could comprise any of the materials mentioned in U.S. Patent Publication Number 2008/0027184 and U.S. Pat. Nos. 6,547,369 and 6,453,146, the complete disclosures of which are incorporated herein by reference. Similarly, the coating material could comprise any of the materials mentioned above in co-pending U.S. patent application Ser. No. ______. Thus, the coating material could comprise rubber, nylon, polymer, etc.
Item 266 illustrates a curing station 266 which can comprise a heater for applying heat to the coating and evaporating moisture and solvents from the coating and/or a ultra-violet (UV) light source for applying ultra-violet light to the coating. Thus, the portions of the continuous core that are adjacent the curing station 266, are cured. Item 256 represents an automated cutter. Portions of the continuous core that are in the cutter 256 are cut into predetermined lengths.
Further,
The coating by the bath/spray station controls the thickness of outer covering by adjusting chemical concentrations and exposure times. Similarly, the curing process controls the thickness of the outer covering by adjusting power levels and exposure times. Also, the finishing station controls the thickness of the outer covering by varying the shaping and polishing processes.
Thus, as shown above, stock for the core, with the appropriate cross section and edge properties, is pulled through the coating bath or spray-coating area. If electrophoretic deposition is employed, an electric potential is applied between the stock and a counter-electrode. If required by the material, the coating is cured (e.g. by evaporation, thermal, or UV illumination) as it exits the bath. The blade is then cut to length and any additional geometry is imposed (e.g. by a rolling die). The radius of the cleaning edges is controlled according to the application process used. Additional returns to scale may be realized by running multiple rolls of stock in parallel and sharing the bath, drive shafts, idle shafts, power supplies, curing apparatus, and material handling apparatus as appropriate. Blades manufactured in the continuous process achieve better inboard-to-outboard uniformity than blades manufactured in a batch dipping process.
Note that while the use of coating baths, curing stations, cutting stations, finishing stations, etc. has been introduced previously (for example, see U.S. Pat. No. 5,888,436, mentioned above) the present embodiments are distinct from such teachings because contrary to a more general continuous manufacturing method, more properties of the coating are subject to direct control. These properties, e.g. coating thickness and corner radius, are critical to the functionality of the finished product. They may be controlled through such parameters as the viscosity of the bath solution, the rate at which stock is pulled from the bath, the surface tension of the bath solution, the adhesion between the core and the bath solution, and (if electrophoretic (EP) processing is utilized) the electrode geometry. The present embodiments are substantially distinct from batch dip coating in that the stock must be pulled vertically from the bath and that the continuous process generates a uniform coating along the length of a blade while maintaining a constant pull rate.
The coated-core cleaning blades 500 can be used in many different devices. For example,
The front 180, top 146, rear end 182, and bottom member 172 of the developer subassembly define a chamber 202, having an opening 204, for containing developer material (not shown). The first and second agitators 186, 188 are shown within the chamber 202 for mixing and moving developer material towards the opening 204. The developer material biasing device 184 and a charge trim and metering blade 206 are mounted at the opening 204. As also shown, the magnetic developer roll 92 is mounted at the opening 204 for receiving charged and metered developer material from such opening, and for transporting such developer material into a development relationship with the photoreceptor 84.
In an all-in-one, discharged area development (DAD) electrostatographic process cartridge, it has been found that in order to have consistent high quality toner image development and transfer, the included electrostatographic process components must have critical acting regions relative to an imaging region on the photoreceptor, and relative to one another. Referring now to
On the other hand, the acting regions of the developer roll 92, as well as those of a grid member 216 and of a shield member 218 both also of the charging subassembly 76, can extend slightly to either end beyond the imaging length Li, as shown. Importantly, in accordance with one aspect of the present invention, where the direction of waste toner flow is indicated by the arrow 220, the cleaning blade 138 of the cleaning subassembly 80 is not centered, but is offset as shown by a distance 224 relative to the imaging length Li, and in the direction of waste toner flow 220. The acting region of the detack device although not shown on
The finalized blades are shown in
The core 502 (first material) is substantially rigid compared to the coating 504 (second material). Therefore, the first material is said to have a first flexibility that is much less than a second flexibility of the second material. For example, the elastic modulus of the core 502 can be at least five times that of the coating 504, and can be tens or hundreds times the modulus of the coating 504, depending upon the specific application.
For example, the core 502 can comprise a plastic, a ceramic, a metal, and/or an alloy, etc. To the contrary, the coating 504 can comprise a plastic, a rubber, and/or a polymer, etc. (e.g., urethane and polycarbonate, etc.). The core 502 material, potentially a metal (such as stainless steel), plastic, or other appropriate candidate, can be chosen by the designer to achieve a specific beam stiffness, depending upon the specific environment in which the cleaner blade 500 will be used.
The core 502 has a rectangular shape. Thus, the core 502 has a length (L), a height (H) perpendicular to the length, and a thickness (T) perpendicular to the length and the height. Because it is an elongated rectangle, the length is greater in size than the thickness and the height; and the height is also greater in size than the thickness. Thus, the rectangular shape has a top, a bottom, sides, and ends. The top and bottom are rectangular planes defined by the thickness and the length. The sides are rectangular planes defined by the height and the length. The ends are rectangular planes defined by the height and the thickness.
The square corners 516 of the core 502 below the blade edges 506 are located where the sides of the rectangular shape meet the top and the bottom, and the square comers 516 run from one end to the opposite end. The core 502 has “sharp” square edges (for example, the edge radius could be on the order of as small as 1 to 3 microns (or larger or smaller) depending upon material selection and designer specifications). For example, the core could be a stainless steel material manufactured with tightly controlled dimensions and with “square” edges (much in the fashion of producing razor blades).
Such sharp square comers 516 allow the coating material 504 to also have corresponding sharp comers 506, as illustrated in
Because the rigidness of the cleaner blade 500 is supplied solely by the core 502, the coating 504 material can be chosen based solely on durability and cleaning effectiveness. Further, the coating material can be quite thin (e.g., 5 microns, 10 microns, 15 microns, 25 microns etc.). Thus, the coating 504 can be much more compliant than bulk material of conventional cleaner blades, which must compromise on other material properties because of the need to apply pressure against the photoreceptor.
Thus, the blade edges 506 of the coated-core cleaner blade 500 have a very precise square edge 506 because the outer covering 504 may be applied with a range of shapes overlying the very square corners 516 of the core 502. This allows the cleaner blade 500 to provide increased cleaning performance and/or durability when compared to conventional cleaner blades. Further, the rigid core 502 prevents the cleaner blade 500 from acquiring a set or permanent bend. Therefore, the coated-core cleaner blade 500 will perform better and more consistently than conventional cleaning blades that can relax the force applied against the photoreceptor over time.
In addition, the core 502 allows the cleaner blade 500 to have up to four blade edges 506. More specifically, the rigid core 502 allows the outer covering 504 to be applied evenly on all surfaces, avoiding the distinction between the “outside” (air side) or marked “inside” that occurs with conventional cleaner blades. Because the cleaner blade 500 has four blade edges 506, this permits the cleaner blade 500 to be flipped and/or rotated to utilize a new blade edge, rather than being replaced. Therefore, this shape allows much greater service life when compared to conventional cleaner blades that only have a single edge.
The cleaner blade 500 can be mounted on the same casing/frame that supports the drum or belt using a mounting bracket (508 in
Thus, as discussed above, the embodiments herein provide a cleaning blade 500 having a thin (e.g., 5 micron, 10 micron, 15 micron, 25 micron etc.), coating 504 that is applied to a thin, stiff “sharp” square edged core 502. This structure separates the functional requirements for the cleaning blade to be compliant and flexible, from those necessary for providing the blade load on the photoreceptor. Additionally, because the coating 504 is thin, the likelihood of localized tearing is significantly reduced.
The word “printer” or “image output terminal” as used herein encompasses any apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, etc., which performs a print outputting function for any purpose. The details of printers, printing engines, etc. are well-known by those ordinarily skilled in the art and are discussed in, for example, U.S. Pat. No. 6,032,004, the complete disclosure of which is fully incorporated herein by reference. The embodiments herein can encompass embodiments that print in color, monochrome, or handle color or monochrome image data. All foregoing embodiments are specifically applicable to electrostatographic and/or xerographic machines and/or processes.
It will be appreciated that the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. The claims can encompass embodiments in hardware, software, and/or a combination thereof. Unless specifically defined in a specific claim itself, steps or components of the invention should not be implied or imported from any above example as limitations to any particular order, number, position, size, shape, angle, color, or material.
This application is related to co-pending U.S. patent application Ser. No. ______, having Attorney Docket No. 20071854-US-NP, entitled “Coated-Core Cleaner Blades”, by Jeffrey M. Fowler et al., filed Sep. 30, 2008, the complete disclosure of which, in its entirety, is herein incorporated by reference.