This disclosure relates to an apparatus for the cutting of earth formations and, more particularly, to drum-type cutters on mining machines.
Machines for cutting earth formations such as coal and other mineral deposits, rocky soil, etc., often employ rotary cutters comprising cylindrical cutter drums which carry pointed cutter bits. The cylindrical drums are connected to a rotary drive shaft that rotates the drums at the same time that the cutter is advanced against an earth formation to cut there through.
In some mining machines, for example, carrier arms extend forwardly from a vehicle body and carry a rotary cutter mechanism that rotates about a transverse horizontal axis. The cutter mechanism comprises a support housing and a drive shaft assembly rotatably mounted within the housing, and a series of longitudinally spaced cutter drums connected to the drive shaft assembly to be rotatably driven thereby.
Some of the cutter drums (outside drums) are located to the outside of the carrier arms and comprise one-piece cylinders that can be slid axially over the housing and suitably fastened in place. Others of the drums (inside drums) are located between the carrier arms. These inside drums cannot be conveniently removed in an axial direction and thus are usually formed of semi-cylindrical segments that can be separated radially to provide access to the support housing and drive shaft assemblies for maintenance. Such a mining machine is illustrated in U.S. Pat. No. 4,190,296, which includes a plurality of cutter drums connected to a drive shaft assembly, the cutter drums including a first pair of cutter drums located longitudinally outwardly of a pair of arms, and a second pair of drums located between the arms, each of the second drums comprising a pair of semi-cylindrical segments.
More particularly, the center drum two halves are bolted together during installation on the machine's cutter head shaft. There is therefore a seam, commonly called a “split line”, at the interface between the two halves. Generally, the interface between the two halves all lies within a single plane.
An array of bit holders is welded to both halves of the drum. The axial and angular position of the bit holders is carefully selected to provide desired cutting characteristics. A welding fixture is used to provide the precise locating of the bit holders.
In some cases, the desired location of a bit holder falls on the split line (seam) in the drum. When this happens, the usual solution has been to locate the bit holder as close as possible to the desired location, while avoiding the split line. This compromised bit holder location will often result in rough cutting and failure of bits, bit holders, and drive components. Another solution, rarely used, is to weld the bit holder in the preferred location, even though that means welding it across the split line. Welding across the split line is undesirable because it must be done at machine assembly time or even underground, without the benefit of the fixture for precise positioning. The overlapping bit holder also makes later drum removal difficult. Further, the welding of a bit holder on a split line may not be as robust as a fully supported holder since the mating surfaces do not fit up perfectly.
There therefore exists a need for a continuous miner center drum in which all the bit holders can be placed in the optimum locations.
This invention provides a continuous miner with a center drum in which the interface between the two halves falls in multiple planes. At certain axial locations along the drum, the interface will be stepped or offset, so as to fall clear of any bit holders in that location.
This invention will allow for smoother-cutting continuous miners by avoiding compromises in the bit pattern necessitated by the split line in the center drum.
Before one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of the construction and the arrangements of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Use of “including” and “comprising” and variations thereof as used herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Use of “consisting of” and variations thereof as used herein is meant to encompass only the items listed thereafter and equivalents thereof Further, it is to be understood that such terms as “forward”, “rearward”, “left”, “right”, “upward” and “downward”, etc., are words of convenience and are not to be construed as limiting terms.
A preferred embodiment is discussed in conjunction with a mining machine 10, as shown in
The continuous mining cutting center drum 5 shown in
In
In the preferred embodiment the two halves of the cylindrical drum 30 are identical before the bit holders 22 are welded to them.
It is sometimes desired to angularly offset the bit pattern on one side of the axial center 34 of the cylindrical drum 30 relative to the other side, so that no two bits 18 strike the coal at the same time, resulting in smoother cutting. While no bit holders are shown on the left side as in
It should also be noted that in
In
Various other features and advantages of the disclosure are apparent from the following claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 12/542,206, now U.S. Pat. No. 8,628,147, filed Aug. 17, 2009, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12542206 | Aug 2009 | US |
Child | 14153832 | US |