This invention relates to internal combustion engines, turbines and other engines that generate torque from a difference in pressure of gases or fluids.
Many variations of internal combustion engines have been proposed. Those with reciprocating parts have the drawback that a large share of the energy is lost in moving the parts in opposite directions. Many designs without reciprocating parts have either increased complexity of number of moving parts and/or moving surfaces that make contact leading to loss of energy and/or wear of the parts involved. Designs with smaller contact surfaces and/or sealing to reduce drag, can have leakage reducing the performance.
The primary objective is to overcome some of the shortcomings of the reciprocating and rotary combustion engines known today, allowing usage of different fuel types, a longer combustion period and optionally operated oil-free and/or with variable combustion timing.
The invention provides a non-reciprocating engine providing an expandable combustion compartment transferring pressure to torque with the compartment formed by a stator and casing, and revolving parts without making contact other than to guide rotation and with sufficient surface area of opposing moving parts to reduce leakage. Depending on materials used and precise manufacturing to minimize distance between moving parts creating a variable closed compartment that is used to drive the piston, it could avoid the need for sealing.
The invention provides intake, combustion, compression and exhaust in one revolution/cycle. Optionally combustion can be skipped one or more cycles to increase compression. Combustion can also take place in an external compartment. It allows for the usage of electronic timed valves for optimizing fuel burn under variable speed of rotation.
This invention describes a continuous motion revolving piston engine, a machine, which ensures a first closed compartment for combustion has considerable surface area between opposing moving parts to avoid the need for sealing and has no contact between moving parts other than to guide rotation. As it can operate oil free it can reduce problematic exhaust emissions as compared with current designs. Using a piston and a disc to close the first closed compartment during combustion, a so long burn cycle can reduce unwanted emissions, provide more efficient utilization of fuel and reduce noise.
Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
Many variations of revolving piston or rotary engines exist, generally having small contact surfaces between moving parts leading to leakage mitigated by sealing that cause drag and wear of moving parts and loss of energy due reciprocating parts. This invention design has large opposing surfaces between moving parts to ensure a combustion compartment has low leakage and can transfer pressure differentiation to the piston and create torque reducing the need for sealing and can optionally operate oil-free.
The numbers in drawings refer to the following:
Main parts contributing to the engine are depicted in
Using
Combustion: With piston 1, at around 12 o'clock and the disc cavity 6 in disc 5 also at 12 o'clock, a first closed compartment is formed left of the piston 1 in which combustion can take place driving the piston 1 clockwise.
Compression: While the piston 1 moves from around 12 o'clock to around 7 o'clock, with the disc 5 forming second closed compartment in front of the direction of piston 1 rotation allowing intake air to be compressed. This can be led to an internal chamber 13 to store, to be released later on to flow into the first closed compartment in which combustion can take place.
Exhaust: As the piston 1 passes through the disc cavity 6 in disc 5, gases can exit through casing outlet channel 12 in the casing 7 as the disc cavity 6 in disc 5 passes the casing outlet channel 12 (
Intake: Intake of air would be driven through casing inlet channel 9 in the casing 7, from the start that exhaust takes place, up to the moment the disc cavity 6 in disc 5 reaches the top of cavity 4.
In the preferred embodiment of this invention multiple pistons would be included to allow continuous torque being generated allowing a smooth operation. This can be done with multiple pistons served by one disc 5 (
As depicted in
In the preferred embodiment, gears 14 as depicted in
The output shaft 8 would extend outside the casing 7 to provide torque power for the intended usage of the engine (
In the preferred embodiment, positioning of channels 15, 16 and 17 would be such that these serve as valves;
Other types of mechanically or electronically controlled values could also be used to perform these functions.
Rings 2 could have material removed (hollow) on the side of the piston 1 or weight added on the opposite side to where the piston 1 is to have them evenly balanced. The rotating disc 5 could have material removed (hollow) in the opposite side of the disc cavity 6 in the disc 5 to be evenly balanced.
Materials used should be heat resistant and preferably have low expansion ratio when warming.
As the piston 1 turns with continuous motion, there is no energy lost to oscillation/reciprocating parts.
The piston 1, rings 2, stator circular base 3 with cavity 4, disc 5 and casing 7 can be shaped to have considerable opposing surfaces of moving parts with the aim of reducing leakage and avoiding the need for additional sealing. Without seals making contact with the casing 7 and stator circular base 3 there will be no wear and less energy loss as compared with designs requiring seals. Various ignition forms, fuel/air intake and outlets can be positioned to accommodate different fuels and air to fuel ratios, i.e. air intake and fuel mix. Depending on casing inlet/outlet positioning, the piston 1 can serve to compress air (with or without ‘waste’ cycles) and retain heat from previous combustion. A (exhaust driven) compression of intake air placed exterior to the casing could be added.
Depending on design of the piston 1 size and rotation length and casing inlet/outlet channels, longer burn cycles and low exhaust pressure (less noise etc.) can be zoo achieved by varying the duration of pressure differentiation driving the piston before exhaust starts and/or the mix of intake air and combustible fuel. As the pressure in the first closed compartment serving as combustion compartment is directly applied to rotation and no parts oscillate, energy can effectively be transformed to rotation. While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives of the present invention, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Additionally, feature(s) and/or elements(s) from any embodiment may be used singly or in combination with other embodiment(s). Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present inventions.
This application is a continuation of U.S. patent application Ser. No. 15/863,660, filed Jan. 5, 2018 which is not admitted to be prior art with respect to the present invention by its mention in the cross-reference section.
Number | Name | Date | Kind |
---|---|---|---|
53915 | Behrens | Apr 1866 | A |
748348 | Cooley | Dec 1903 | A |
2651177 | Pridham | Sep 1953 | A |
3358439 | De Coye De Castelet | Dec 1967 | A |
5518382 | Gennaro | May 1996 | A |
20090094988 | Dunn | Apr 2009 | A1 |
20120041665 | Pursifull | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1176990 | Oct 1984 | CA |
Number | Date | Country | |
---|---|---|---|
Parent | 15863660 | Jan 2018 | US |
Child | 15911121 | US |