The field is automated cytometry. More particularly, the field is related to an automated microscope equipped for continuous-motion scanning to acquire images of biological specimens in which focus is automatically maintained using reflection from a moving object supporting a biological specimen.
As used in automated microscopy systems performing high content screening, continuous scanning overcomes the speed limitations of traditional sequential scanners, in which the repeated acceleration and deceleration of a relatively massive microscope stage to sequentially image many adjacent fields of view fundamentally limits speed. An example of an imaging system used in automated microscopy to accomplish continuous scanning employs a time-delay and-integration (TDI) camera. In this regard, see M. E. Bravo, et al., “Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy,” J. Biomed. Optics 12(3), 034011 (May/June 2007).
Bravo et al. taught that image quality is maintained during the continuous scanning process based upon contrast of magnified images of biological specimens acquired by the automated microscopy system as scanning progresses. In this regard, a plurality of specimen images is acquired at axially-spaced focal planes and the focus of the microscope is changed to the focal plane with the highest contrast by adjusting the axial distance between the objective lens. In this regard, see also U.S. Pat. Nos. 5,548,661; 5,790,710; 5,790,710; 5.995,143; 6,640,014; and 6,839,469.
Previous automated microscopy systems that combine image-based autofocus with continuous scanning are known for increasing the throughput of high content screening. The system reported in H. Netten, et al., (“A fast scanner for fluorescence microscopy using a 2-D CCD and time delayed integration □image cytometry□.” Bioimaging 2; 4, pp. 184-192, December 1984) followed a prerecorded focus path during continuous scanning, as does the Aperio Technologies (Vista, Calif.) brightfield and fluorescence system for scanning tissue sections. The system by K. R. Castleman (“The PSI automatic metaphase finder,” J. Radiat. Res. 33; Suppt: 124-8; March 1992) apparently paused to perform static autofocus at regular intervals, and those by Shippey et al. (“A fast interval processor (FIP) for cervical prescreening,” Anal Quant Cytol. 3(1), 9-16 Mar. 1981) and Tucker et al. (“Automated densitometry of cell populations in a continuous-motion imaging cell scanner,” Appl. Opt. 2(16), 3315-3324 (August 1987) autofocused dynamically during scanning. Both Shippey et al. and Netten et al. reported that the focus error was greater than the depth of field, and Tucker et al. reported that a 1 um focus error produced a 12% error in the integrated optical density of the cell nucleus. Autofocus accuracy was reported to be very dependent on the density of cells by Castleman, and the need for many cells in each field of view was common to all of the systems that included autofocus. None of these designs have been widely adopted. None achieved stage speeds larger than 4 mm/sec. Among other practical shortcomings, the techniques and problems reported with them point to large focus errors that would limit use in high-resolution microscopy, relatively few focus updates per image field due to the low-speed nature of autofocus used, and dependence on cell density for reliable focus tracking. The chief shortcoming of all these methods appear to be the use of content-based (or image-based) autofocus method which is slower partly due to its requirement for image acquisition and limits on signal brightness.
An example of the use of surface tracking and confocal imaging in high content screeners comes from the GE high content analysis imagers, which use reflective positioning off of the surface of the substrate for focusing a laser slit-illuminated partial confocal light beam that is scanned continuously. The partial confocal imaging corrects for medium resolution (NA 0.6) focus errors by removing some out-of-focus image information to perform optical sectioning, which makes it less critical to find the average best focus across the field. Similarly, the Evotec Opera™ (Woburn, Mass.) and the BD Pathway™ (Franklin Lakes, N.J.) systems use spinning disk confocal image acquisition to remove out-of-focus light. These confocal systems tend to be 2- to 3-fold more expensive than wide field fluorescence instruments. Moreover, they are often slow due to their inherent sequential scanning method and requirement to accelerate and decelerate from field to field.
In other methods where continuous scanning and surface tracking exist on the same system, they are never used simultaneously. One such method, described in U.S. Pat. No. 7,518,652 uses a reflected laser positioning system to measure focus positions of the specimen at different points prior to the start of the scan. The system then generates a best fit plane through the measured points which is used as a look up table to find best focus. Because of variation in specimen mounting and specimen thickness, this method can require many points to be selected by the user and therefore has limitations in terms of its throughput.
Another reflective focusing system adjusts microscope focus to compensate for axial drift by changing the axial distance between the objective lens and the stage of the microscope so as to obtain the best focus of an optical image reflected from a focal plane on a microscope slide on which a specimen is supported. A manually entered offset value is added to the axial distance so as to maintain the focal plane of the microscope within the specimen. See U.S. Pat. No. 7,071,451, for example. Reflective positioning has advantages of simplicity. However, reflective positioning systems are typically employed in incremental scanning, but are not used in continuous scanning applications.
In some aspects of continuous-motion scanning cytometry, an automated microscopy system may require an autofocus system that is inexpensive and simpler and easier to operate than prior art autofocus systems.
A system and method for continuous-scanning image acquisition in an automated microscopy system uses an image reflected off of a surface of an object that supports a specimen being imaged to automatically focus the microscopy system.
In some aspects, autofocus is maintained by a reflective positioning system for continuous-scanning time-delay-and-integration (TDI) image acquisition in an automated microscopy system.
In some aspects, the reflected image used for autofocus is obtained from a surface of an object supporting the specimen.
In this description, an automated microscopy system is equipped for continuous-scanning image acquisition using reflective autofocus. In this regard, continuous-scanning image acquisition can be implemented in a number ways, including, without limitation, time-delay-and-integration, line array charge-coupled-devices, or any equivalent thereof. Therefore, the use of any particular continuous-scanning implementation described herein is to be understood as being merely illustrative of continuous-scanning image acquisition.
The automated microscopy system scans specimens at very high throughputs by collecting images while the specimen is moving. In traditional microscopy applications, images are collected field by field while the specimen is moved to the field, stopped for image collection and then moved to the next field. The need to accelerate and decelerate the specimen can be responsible for a large portion of the scan time in this method. In continuous scanning, however, images are collected as the specimen moves at a constant speed, eliminating the need to accelerate and decelerate and hence increasing imaging throughput.
An illustrative example of continuous-scanning image acquisition is presented in
A complete scan consists of m strips that sufficiently cover the desired ROI to be scanned, as indicated in
In pixel space, each strip is Wi wide and (Li*MAGNIFICATION/PIXEL_SIZE) long. As indicated in
A linear pixel array can substitute the TDI camera and accomplish the continuous scanning. For the purposes of this description, the linear pixel array can be viewed of as a two dimensional array of pixels with the scan dimension having size one. In this case, transfers of charges are not necessary and the pixel data is read off at each image read-off interval.
With reference to
In order to allow users to image an arbitrary plane of interest away from the mounting substrate, an offset can be set in the tracking system. The offset effectively manipulates the target position of the tracking system so that the distance between the objective and the object of interest is close to the working distance of the objective (i.e., image in-focus at the image plane). Implementation of this offset can be enabled by physically moving the position sensor in the tracking system, by arbitrary addition of an offset to the measured position, by addition of optical components in the tracking or imaging light path, or by other methods.
An exemplary implementation of an automated microscopy system equipped for continuous-scanning image acquisition maintains focus by use of a reflective autofocus that tracks a surface, or a layer, or a lamina of the mounting substrate via a through-the-lens reflective positioning mechanism. For example, a Nikon® Ti Eclipse microscope equipped with a Perfect Focus (PF) system can be used as a base imaging platform. The PF system employs a laser light path through the objective lens to detect the position of the mounting substrate at any time. It then moves the objective lens to ensure it is always at its working distance from the imaging plane. An offset is employed to account for the distance between the surface, layer, or lamina being tracked (e.g., cover glass) and where biological specimen of interest resides.
In the case of the PF system, the measurement of displacement is accomplished by monitoring the reflection of a laser beam off of one of the surfaces (top or bottom, for example) of the mounting substrate as imaged on a linear CCD light detector. As the mounting surface moves up or down, the reflected image of the laser beam moves away from the center of the linear CCD. This displacement away from the center of the linear CCD is then used to calculate the approximate physical displacement of the mounting substrate. The objective or mounting substrate is then moved by the same amount to position the reflected image back to the center of the linear CCD.
The automated microscopy system includes a continuous-scanning image acquisition unit that operates according to the time-domain-and-integration principles illustrated in
Biological samples and the surfaces they are mounted to are not always flat and often contain fluctuations which cause out of focus images. In order to circumvent this, a sample tracking method according to
The process of scanning, illustrated in
The scan process, as detailed in
At 201 the XY-stage is positioned beginning of the ith strip at a prescribed position in order to image the entirety of the ith strip. This positioning includes any necessary motions orthogonal to the scan direction. At 202 the objective is moved to a prescribed z-position close to the surface representing a sufficient level of focus. At 203 the automatic tracking mechanism is activated, rendering the z control of the objective to the mechanism in order to keep the specimen sufficiently in focus optically. At 204 the end of the strip is set as the target position in the XY-stage controller in order to image the entire length Li of the ith strip. At 205, the desired velocity, V, and acceleration in the XY-stage controller commensurate with the desired “exposure time” are set for the given experimental conditions; a faster velocity corresponds to a shorter exposure time, and vice-versa. At 206 the Internal Line Rate (IRL) is calculated to be utilized by the camera(s), determined by IRL=V*Magnification/Pixel_Size. At 207 the camera(s) are configured to acquire data at the calculated IRL. At 208 the needed number of data bundles, N_BUNDLES, is calculated each of a prescribed number of data lines, BUNDLE_SIZE, according to:
N_BUNDLES=┌{(Li*MAGNIFICATION/(PIXEL_SIZE*BUNDLE_SIZE)}┐
where the brackets ┌ ┐ indicate rounding up to the nearest integer. N_BUNDLES can not be fractional and needs to be sufficiently large to accommodate the image data of the entire ith strip. This bundling is a necessary consequence of the internal buffering and data transfer mechanism of the camera(s); for camera(s) that continuously stream image data BUNDLE_SIZE=1, for example. At 209 the size of a buffer needed to accommodate one image data bundle is calculated according to:
BUFFER_SIZE=BUNDLE_SIZE*Wi*BITDEPTH
where Wi is the width (in pixels) of the image in the direction orthogonal to the scan direction and BITDEPTH is the number of bits the camera utilizes for representing the detected light intensity for each pixel. For convenience in data handling, the BITDEPTH might be rounded up to the nearest byte size (e.g., each pixel from a 12-bit camera might be handled “off the camera” as a 16-bit (two byte) data point). At 210 K buffers are allocated in memory, each with size BUFFER_SIZE. These K buffers form the “circular buffer” utilized in passing the data from camera to memory disk, and initialize a buffer loading counter for these buffers. k=1. At 211 two counters are initialized, one for the reading of the image data in BUNDLE_SIZE image line increments and one for writing the data to disk in BUFFER_SIZE increments. Those two counters are represented as J and J_W, respectively, so that both J=1 and J_W=1 initially. At 212 the imaging light source is turned on according to the prescribed experimental conditions. At 213 stage movement in the scan direction starts. At 214 image acquisition in the camera(s) starts. It should be noted that the initiation of the stage movement and the image acquisition could be coordinated with a hardware or software trigger and may include a prescribed lag from stage movement to image acquisition (or vice versa) to accommodate intrinsic hardware lags. At 215 the Jth image data bundle is read from the camera and written to the kth buffer in memory (e.g., the first image data bundle (J=1) is written to the first buffer (k=1) in the “circular” buffer). At this point the CAMERA READ LOOP and the WRITE TO DISK LOOP illustrated in
With reference to
It is the responsibility of the WRITE TO DISK LOOP to write each buffer to disk in a coordinated fashion so that no image data is overwritten in any of the K buffers by new image data before it is written to disk. At 214e upon the reading of the first image bundle from the camera(s), a separate buffer unloading counter, l=1 is initialized. This buffer unloading counter functions in much the same way as the buffer loading counter k of steps 214c and 214d, but it controls which allocated memory buffer (and its image bundle data) is written to disk. At no time will the two counters k and l point to the same allocated memory buffer (of the K available), as the buffer unloading (i.e., the writing to disk) should always lag the buffer loading (i.e., the image acquisition). At 214g, the lth buffer is written to disk. At 214h, the image bundles written counter is incremented J_W=J_W+1. At 214i, as writing the image bundles to disk must always lag the acquisition of the image bundles, a check is performed to confirm that J_W<J. If it is not, the WRITE TO DISK LOOP pauses (i.e., repeatedly check if J_W<J) until J exceeds J_W. At 214j, the loop checks the number of bundles written counter to determine whether J_W is less than or equal to the number of bundles in the strip, N_BUNDLE. If not (i.e., all N_BUNDLE image data bundles have been written), the WRITE TO DISK LOOP for the ith strip is complete and the strip counter i can be incremented (mentioned in step 214b). If there are still image bundles to write (J_W is less than or equal to N_BUNDLE), then the buffer unloading counter is incremented by l=l+1 at 214k. At 214l If the buffer unloading counter l is less than or equal to K (the number of allocated memory buffers), the lth buffer is written to disk, appending the data to that which has already been written to disk. If the buffer unloading counter l is greater than K, write the buffer is written to disk and l=1 is reinitialized at 214f. The WRITE TO DISK LOOP is traversed until all N_BUNDLE image bundles are written to disk (i.e., J_W=N_BUNDLE), always lagging the acquisition of image bundles in the CAMERA READ LOOP.
Returning to
As a result of its fast surface tracking and continuous scanning method, an implementation of an automated cytometry system illustrated in
Although an automated cytometry system have been described with reference to representative embodiments, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the protection to be accorded to the automated cytometry system and method is limited only by the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 13714292 | Dec 2012 | US |
Child | 15653920 | US |