Swern, Daniel et al in “Baileys Industrial Oil and Fat Products”, John Wiley & Sons, Inc. USA, 1964, p. 797 Fuller, Glenn in “Animal and vegetable Oils, Fats and Waxes”—Riegel's Handbook of Industrial Chemistry Edited by James Kent, 8th Edition, 1982, p. 439,
1. Technical Field
The present invention refers to a new process for splitting fatty acids from glicerides of vegetable oils of any nature by the hydrolysis at 60° C. and atmospheric pressure using a high contact area between reactants and catalyst to allow the production of toilet soap and many other industrial products from free fatty acids.
2. Background Art
So far, the splitting of fatty acids through the hydrolysis reaction of glyceryl ester components of vegetable oils to produce free fatty acids was only obtained at the temperature of 250° C. and 49 kg/cm2 of pressure (Mills process) as a hydrolytic process to produce fatty acids as raw material to manufacture toilet soap from vegetable, animal oil and fats, using only 1% of catalyst, generally sodium or potash hydroxide (NaOH or KOH). FULLER wrote, “Over the years, fatty acids have been produced by four basic processes, i.e., saponification of fats followed by acidulation, the Twitchell Process, batch autoclave splitting, and continuous high-pressure, high temperature hydrolysis.”
The processes developed for the production of toilet soaps with fatty acids, patented between 1935 and 1940, by Procter & Gamble and Colgate Palmolive (Mills process), used the splitting of fatty acids and glycerol with the continuous process of hydrolysis in insulated towers at high temperatures with superheated steam (240° C.) at high pressure (49 kg/cm2) in counter flow during 2 to 3 hours.
The production of fatty acids in Europe by splitting using the hydrolysis reaction was carried out in an autoclave where the oil-water mixture was submitted to a temperature of 250° C. at 10 kg/cm2 in a batch process during 5 to 6 hours. Another process known in the USA as the TWITCHELL Process is no longer used. This is also a batch process, submitted to the oil-water mixture with 0.1 to 0.2% of sulfuric acid during 36 to 48 hours to saturate steam at atmospheric pressure. This process was important before the Second World War.
However, according to the present inventors' study, a new process was needed to avoid high-energy costs and the low speed of the reaction. This process should include a new splitting process based on the use of a low cost and abundant catalyst, the CaO.MgO in stones, extended contact between reactants and catalyst, and, consequently, the splitting of fatty acids by the reaction of hydrolysis at low energy costs and high reaction speed.
The theoretical principle is based on the heterogeneous catalysis that presents the characteristic of ionic transitory exchange between the catalyst and reactants, using calcium and magnesium oxide (CaO.MgO) as the heterogeneous catalyst in stones that are 1/15 of the column diameter, thus increasing the contact area between the very finely divided emulsion of water and oil and the catalyst (Cao.MgO). This process intensifies the ionic exchange, and accelerates the hydrolysis process, which occurs almost instantly (2.5 seconds) during the fall through the catalyst stones into a one-meter high bed. SWERN et al wrote, “If the catalyst is a solid, however, its behavior will depend not only upon its chemical composition, but also to a very large degree upon both the nature and extent of its surface.” “In heterogeneous catalysis it is now generally assumed that reaction proceeds through the formation of unstable intermediate compounds or absorption complexes, in which the catalyst is temporarily combined with one or more of the reactants.”
The use of a large contact area between the reactants, with a low cost heterogeneous catalyst as is CaO.Mg.O as a column-packer, drastically reduced the hydrolysis time at the low temperature of 60° C., at atmospheric pressure, in such a way that at the bottom of the column the separation of fatty acids and the glycerol is complete, making fatty acids production feasible, at very low costs, high yields and easily scalable.
The chemical reaction of the process is the following:
C3H5(OOCR)3+3 HOH=C3H5(OH)3+3 HOOCR
The main differences of this process to other splitting processes that guarantee its originality are: