1. Technical Field of the Invention
This invention relates to a continuous strip of detachable consecutive interconnected products, obtained through folding, notably envelopes, bags, files, cases, foldable packing material, etc.
2. Prior Art
Continuous strips of detachable envelopes have long been used, as is shown a.o. by the following patent specifications U.S. Pat. No. 4,066,206 (Peterson), FR-A-1,488,888 (Gysin) and GB-A-567,925 (Davies).
Such strips of envelopes, however, hold various disadvantages as to the appearance and the finish of the envelopes, after they have been separated. The said envelopes, for instance, clearly show marks of division lines.
The invention inter alia aims at remedying those flaws in a very simple and effective way and at offering a continuous strip of detachable interconnected products, the visible edges of which, for instance, when they are separated, are completely finished in such a way that, as far as finishing and aspect is concerned, they entirely correspond to the ones which are manufactured separately one by one and that they are hardly distinguishable from them, and this, in spite of the envelopes originally being made from a continuous strip, in a somewhat analogous way to the first application set forth in patent GB-A-567925.
To that end, according to the invention, two consecutive products in the continuous strip are interconnected by a joint not being part of the products themselves and being connected, in a detachable way, through successive lines of demarcation, to each of those two consecutive products, in such a way that, on removing the joint, the said two consecutive products are completely severed.
Functionally, at least part of the joints linking the consecutive products can be or are attached to a common carrier in such a way that, together with the carrier, they may be severed from the other products through one single operation.
In a particular application of the continuous strip of consecutive products, a joint piece, according to this invention, if relevant products are being formed from longitudinally consecutive areas of material which are interconnected at least through a folding division line transverse to that direction, extends from the free edge of a so-called end area of a product of that strip to a so-called initial area of material of the consecutive product of the strip.
In a specific application of this invention, if those products consist of envelopes with three successive areas of material constituting, respectively, the closing flap, the front portion and the back portion of an envelope, the closing flap forms the said initial area and the back portion the said end area.
According to a preferred application of the invention, the joints stretch out beyond the products, in such a way that it is possible to print those joints in a similar way to and together with the products which are interconnected through the latter.
The invention also pertains to a process for manufacturing a continuous strip of products produced through folding, consecutive series of areas of material being constituted, which are separated by folding lines transverse to the longitudinal direction of that strip, and two adjacent series of such areas of material being interconnected by division lines through a joint piece, a product out of every series of areas of material being constituted by joining the said areas through folding them round the said folding lines.
Other particulars and advantages from the invention will be shown in the following description of some specific applications of the strip according to the invention and a process to manufacture them this description is only provided by way of an example and does not restrict the scope of the protection claimed; the numbers referred to hereafter pertain to the corresponding drawings.
In the various drawings, the same numbers refer to the same or to analogous elements.
In order to constitute a strip of consecutive products, in a first application of the invention, a basic form 12 from which envelopes are made, is being cut out of a continuous strip of material 1, preferably a strip of paper, cardboard or plastic, as represented in
Further, the folding lines 13, 14 and 15 as well as the division lines 18, 20 are applied to this basic form 12. The folding lines 13 and 14 extend transverse to the length of the strip and right across the width of basic form 12, whereas the folding lines 15 extend along the longitudinal direction of this basic form 12. Folding lines 13, 14 and 15 delineate the front side 16 of an envelope. Folding lines 15 separate sideflaps 17 from this front side 16. Back 19 of an envelope is delineated, on the one hand, by a folding division line 18 and a folding line 14, and, on the other hand, by lines 10 or, accordingly, the longitudinal edge of the basic form 12. Next to front side 16 of an envelope, a closing flap 21 has been provided. This closing flap is delineated by a folding line 13 and a division line 20. Thus, joint piece 22 are constituted, connecting two consecutive envelopes which are delineated by a folding division line 20 and the subsequent folding division line 18.
Consequently, the basic form 12 contains consecutive series of areas of material, each series of those areas being separated by division lines 18, 20.
In each series, the areas are constituted by, successively, a back 19, a front side 16 and a closing flap 21, separated by folding lines 13, 14, 15 which permit the folding of an envelope. Two consecutive series are interconnected by the aforementioned joint piece 22. Thus, a series of three envelopes A, B and C are represented in basic form 12 of
The folding lines 13, 14, 15 are provided to make the folding easier and more accurate in constituting the envelopes. When the envelopes are machine-made, these folding lines may possibly be left out and the folding of the envelopes requires then but one stage. The forming of the envelopes may therefore take place on the basis of a continuous strip of material, both the aforementioned basic form 12 being cut out and the envelopes being folded and glued all at one stage. The basic form represented in
The outside of the in-turned side flaps 17 and the inside of the in-turned back 19 may also be joined in another way, according to the material used. When folding the back 19 along the lines of the method described above, joint piece 22, following back 19, is folded simply around folding and division line 18, in such a way that this joint piece 22 is now at the side of back 19 which is turned away from front side 16 of the envelope. The other series are folded analogously into envelopes.
The closing flap 21 of an envelope formed from the first series of areas of material of a basic form 12 may be closed or not.
It is self-evident that basic form 12 for the envelopes may be executed in various types, both for continuous series and for a certain amount of envelopes.
The use of joint pieces 22 is also multifunctional. They may take any form without this affecting the quality of the envelopes. In a special application, for instance, joint pieces 22 in basic form 12 are made sufficiently broad, so that, in a strip of folded envelopes, in addition to the entire closing flaps 21, also part of joint pieces 22 exceeds beyond the front portions 16 of the respective envelopes. Thus, these joint pieces 22 may be printed simultaneously with the envelopes. This application is very useful when a counterfoil has to be preserved as a check of the printed envelopes or for filing purposes. In that way, these joint pieces 22 may constitute such a counterfoil which not only extends from under the envelopes, but which may for instance also be filed, after having been printed simultaneously with the envelopes.
In a very advantageous application of the strip 1, according to the invention, uninterrupted series of envelopes are constituted, the joint pieces 22 being attached to a common carrier on the folding of the envelopes. This carrier may, for instance, be a paper strip which, on folding the envelopes is progressively glued to the joints. This application has the advantage that the joint pieces 22 remain fixed to the carrier, when the envelopes are removed. This mainly holds plus-points in filing the joint pieces 22, when the latter constitute the abovementioned counterfoils. Moreover, the envelopes then may be separated from joint pieces 22 through one single operation, by retaining a number of consecutive envelopes, on the one hand, and the said carrier, on the other hand.
This application is illustrated in
If joint pieces 22 are glued to joint piece carrier 22′, as set out above, a unit, called envelope sheet, is formed. Subject to the dimensions and shape of the said basic form 12, this envelope sheet may assume all possible sizes. Thus, when indeed the appropriate dimensions are being applied, the envelope sheet may be given a DIN A4 format, which may be printed by every standard printer. Those envelope sheets may be put per batch in the printer they will automatically be picked up one by one and printed. This makes it possible to handle whole series of envelopes in an ordinary standard printer without any further investment being required. For a printer with a very sensible lifting mechanism, a strip of paper 101 as shown in the enlarged circle A of
When, on basic form 12, division lines 20 and folding and division lines 18 hold but at a few places, i.e., when, for instance, they have been well perforated two or three times for a distance of 1 cm, or are thus provided with a division strip, while the rest of those lines have been cut loose, this permits a great advantage in that the envelopes may be removed from the whole at one pull. Each one of the loose envelopes is fully finished.
The severing of the envelopes should be done as follows: the envelopes, the bases of which are held together, are taken firmly into one hand, while with the other hand the joint piece carrier 22′ is gripped; then a short but fierce tug should be given. The envelopes then will be held in one hand, whereas all joint pieces 22 will be left on joint piece carrier 22′.
The envelope sheet, which has been described above, is made of the same kind of paper, since it is formed from a continuous strip of paper, and therefore may be relatively heavy. In order to make it lighter, joint piece carrier 22′ can be reduced to a strip of about 1 cm as from the end of the closing flap 21 of the first envelope. A much lighter type of paper, for instance onionskin, may be glued to that bit, in order to return joint piece carrier 22′ to its size as described above and to handle it further in the above-mentioned way.
As indicated above,
In the embodiment of
It is further possible to make the combination of joint piece carrier and envelopes in a Din-A4 (or other) format wherein the envelopes to be printed are either smaller or larger than the envelopes A, B and C of
With regard to such larger envelopes,
In a similar manner, envelopes smaller than those shown in
As shown in
In still another embodiment of the invention, the joint pieces 22 may have different dimensions in the same continuous strip of material. This can be programmed in the machine manufacturing the continuous strip or in the printer itself.
In this respect, the computer of a central machine can be controlled at distance by the computer of the user. As suggested above, the full automatic machine comprises a printing device for printing the letter and the address on the envelopes, a folding device, a separating device, a device for putting the printed letters (formed by the joint piece, which can be different for each envelope depending on the nature of the printed letters) into the envelopes, a device for closing the envelopes and a device for bringing a stamp on each envelope.
This central machine can be programmed so that it can be used by different users, for instance if such machine is placed in a secured place in Australia, users from the United States can send an order to this machine for printing and sending a letter to an address in Australia or another country.
In
The folding and division lines on the non-cut side bands 30 are also applied, so that they are folded up in the course of the actual forming of the envelopes.
In finishing this variant, an adhesive agent may be applied, on folding, to the places where the side bands 30 overlap or they may be connected in any other way. It would be proper to apply the perforations which must be provided for pin-type feeding devices, after the forming has been completed.
It is important that those side bands or transport bands 30 are only attached sideways to joint pieces 22, so that, when removing those bands 30, no traces of perforated lines are left on the sides of the envelopes.
When the strip of envelopes, according to the invention, is applied to printers using the standard DIN A4 format, irrespective of whether the paper input takes place through a paper tray, through a cutsheet feeder or page by page, the strip of paper (material) must be cut up (shaped) in pieces having a previously set length. The paper (material) treated according to the invention, thus, as a finished product, provides several envelopes the number of which differs according to the desired envelope format. More in particular, a format of a DIN A4 sheet, after the folding and shaping of basic form 12, is attained which may be applied to every printer using a DIN A4 format, if the basic form is given the proper dimensions. In view of the stepped production process, the format of the envelope and therefore the number of envelopes per individually finished envelope sheet, with already formed envelopes, may be adjusted by reducing or enlarging the joint piece 22.
An envelope which is severed from the sheet and which is closed (or is removed from the formed material), in spite of the production process according to which the envelopes (products) remain interconnected until the end use, is characterized by outlines which are intact and show no division marks whatsoever. Briefly, the end product is a fully-completed envelope.
As has been shown above, the strip, according to the invention, differs in many ways from the technical state of affairs of the patents U.S. Pat. No. 4,066,206 (PETERSON), FR-A-I 488 888 (GYSIN) and GB-A-567 924 (DAVIES).
The first two of those patents do indeed pertain to a continuous strip of envelopes, but the envelopes are put together as loose finished units, in view of constituting that strip. The envelopes of that strip, therefore, are not being formed from a continuous strip of paper.
In a first application of patent GB-A-567924 a strip of envelopes is being constituted out of a continuous strip of paper.
It should be pointed out that the said first application of this patent will still show division lines or cutting marks on the edges of the front side of the formed envelopes. Those lines result from removing the transport bands on severing the envelopes from the series. Even if those bands are at the sides of the back of the envelopes or at the sides of the closing flaps, the same problem will still arise.
Another drawback is the fact that those envelopes can only be severed one by one. No trace is left of the severed envelope, which may be used as a voucher to be filed. The continuous strip can only be applied to machines which are equipped with pin-type feeding.
The requirement to apply the labels later on, one by one, to the envelopes still is a time-consuming and little effective process. In addition, automatic envelope machines still not only have trouble in coping with labeled envelopes, but also with window envelopes, which did provide a solution through skipping the stage of the separate addressing of the envelopes. Using labels or window envelopes then generally results in putting the items to be sent or to be distributed in the envelope by hand. The invention provides a solution to the above-mentioned problem. The end user can also print series of envelopes through his own printer, without this entailing any extra hardware expenses. He also still has a filing voucher per envelope, which holds an identification system. In some applications, still more extra information may be printed on this filing voucher. The invention also eliminates the sideways division lines at the front or the back of the envelopes, which were still apparent at envelopes that also were formed from a continuous strip of paper, while still being interconnected.
The technical problem the invention solves, is that the separate envelope may be formed from a continuous strip of paper and remains interconnected, while, in spite of that characteristic, it is being made fully ready for use and finished without there being any division lines or cutting marks on the edges of any part of the envelope. This is possible through leaving the chosen basic forms of the envelopes interconnected by means of a joint piece which, even after the forming of the finished product, is preserved as a joint piece.
This application is a continuation of U.S. application Ser. No. 10/445,798, filed May 28, 2003, now U.S. Pat. No. 7,100,348 which is a division of U.S. application Ser. No. 09/426,638, filed Oct. 25, 1999, which was a continuation-in-part of U.S. application Ser. No. 08/913,051, filed Sep. 5, 1997, now U.S. Pat. No. 5,971,260, which was a 371 of PCT/BE96/00023, filed Mar. 6, 1996.
Number | Name | Date | Kind |
---|---|---|---|
722038 | Pidgeon | Mar 1903 | A |
1801155 | Harson | Apr 1931 | A |
2351805 | Claud | Jun 1944 | A |
2464490 | Davies | Mar 1949 | A |
2610784 | Henry | Sep 1952 | A |
2776085 | Furey | Jan 1957 | A |
3028069 | Willis | Apr 1962 | A |
3228586 | Hayes, Jr. | Jan 1966 | A |
3332604 | Whitman | Jul 1967 | A |
3547343 | Alton | Dec 1970 | A |
3557519 | Lyon, Jr. | Jan 1971 | A |
3559875 | Wilson | Feb 1971 | A |
3626821 | Gendron | Dec 1971 | A |
3790068 | Stutz | Feb 1974 | A |
3980006 | Welch | Sep 1976 | A |
3998138 | Walters | Dec 1976 | A |
4066206 | Peterson | Jan 1978 | A |
4437852 | Volk, Jr. et al. | Mar 1984 | A |
4454980 | Poehler | Jun 1984 | A |
4497509 | Gore | Feb 1985 | A |
4600141 | Bradley et al. | Jul 1986 | A |
4630768 | Bradley | Dec 1986 | A |
4651920 | Stenner | Mar 1987 | A |
4731048 | Marella et al. | Mar 1988 | A |
4804135 | Bourbeau | Feb 1989 | A |
4886205 | Schnitzer | Dec 1989 | A |
4896821 | Bell | Jan 1990 | A |
5069384 | Bell | Dec 1991 | A |
5398867 | Murphy | Mar 1995 | A |
5971260 | Mertens | Oct 1999 | A |
7100348 | Mertens | Sep 2006 | B2 |
Number | Date | Country |
---|---|---|
0 226 990 | Jul 1987 | EP |
1 488 888 | Jul 1967 | FR |
567924 | Jan 1946 | GB |
2145032 | Mar 1985 | GB |
Number | Date | Country | |
---|---|---|---|
20060272295 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09426638 | Oct 1999 | US |
Child | 10445798 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10445798 | May 2003 | US |
Child | 11504069 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08913051 | US | |
Child | 09426638 | US |