Continuous variable valve lift apparatus and engine provided with the same

Information

  • Patent Grant
  • 9890669
  • Patent Number
    9,890,669
  • Date Filed
    Tuesday, December 1, 2015
    9 years ago
  • Date Issued
    Tuesday, February 13, 2018
    6 years ago
Abstract
A continuously variable valve lift apparatus may include a camshaft, a cam portion of which a cam is formed thereto and the camshaft is inserted into therein, a slider housing of which the cam portion is rotatably inserted therein, of which a position with respect to the camshaft is movable and of which a guide slot is formed thereto, a control portion selectively changing the position of the slider housing, a guide shaft disposed parallel to the camshaft and inserted into the guide slot for guiding movement of the slider housing, an output portion rotatable around a pivot shaft and of which a valve shoe is formed thereto and a valve unit driven by the valve shoe.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to and the benefit of Korean Patent Application No. 10-2015-0129217 filed on Sep. 11, 2015, the entire contents of which is incorporated herein for all purposes by this reference.


BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to a continuous variable valve lift apparatus and an engine provided with the same. More particularly, the present invention relates to a continuous variable valve lift apparatus an engine provided with the same which may vary valve lift according to operation conditions of an engine with a simple construction.


Description of Related Art


An internal combustion engine generates power by burning fuel in a combustion chamber in an air media drawn into the chamber. Intake valves are operated by a camshaft in order to intake the air, and the air is drawn into the combustion chamber while the intake valves are open. In addition, exhaust valves are operated by the camshaft, and a combustion gas is exhausted from the combustion chamber while the exhaust valves are open.


Optimal operation of the intake valves and the exhaust valves depends on a rotation speed of the engine. That is, an optimal lift or optimal opening/closing timing of the valves depends on the rotation speed of the engine. In order to achieve such optimal valve operation depending on the rotation speed of the engine, various researches, such as designing of a plurality of cams and a continuous variable valve lift (CVVL) that can change valve lift according to engine speed, have been undertaken.


Also, in order to achieve such an optimal valve operation depending on the rotation speed of the engine, research has been undertaken on a continuously variable valve timing (CVVT) apparatus that enables different valve timing operations depending on the engine speed. The general CVVT may change valve timing with a fixed valve opening duration.


However, the general CVVL and CVVT are complicated in construction and are expensive in manufacturing cost.


The information disclosed in this Background of the Invention section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.


BRIEF SUMMARY

Various aspects of the present invention are directly providing a continuous variable valve lift apparatus and an engine provided with the same which may vary valve lift according to operation conditions of an engine, with a simple construction.


A continuously variable valve lift apparatus according to an exemplary embodiment of the present invention may include a camshaft, a cam portion of which a cam is formed thereto and the camshaft is inserted into therein, a slider housing of which the cam portion is rotatably inserted therein, of which a position with respect to the camshaft is movable and of which a guide slot is formed thereto, a control portion selectively changing the position of the slider housing, a guide shaft disposed parallel to the camshaft and inserted into the guide slot for guiding movement of the slider housing, an output portion rotatable around a pivot shaft and of which a valve shoe is formed thereto and a valve unit configured to be driven by the valve shoe.


The continuously variable valve lift apparatus may further include an inner bracket rotatably disposed within the slider housing, and wherein the inner bracket may transmit rotation of the camshaft to the cam portion.


A camshaft hole may be formed to the camshaft, a cam portion hole may be formed to the cam portion and a pin hole may be formed to the inner bracket, and wherein the continuously variable valve lift apparatus may further include a pin slider rotatably disposed within the pin hole and of which a slider hole is formed thereto and a connecting pin connected to the camshaft hole and slidably inserted into the cam portion hole and the slider hole.


The continuously variable valve lift apparatus may further include a bearing inserted between the inner bracket and the slider housing.


The valve shoe may be formed as a pair and the valve unit may be disposed as a pair and each valve unit may include a swing arm roller contacting each valve shoe.


The continuously variable valve lift apparatus may further include an output roller mounted between the valve shoes and contacting to the cam.


An engine according to an exemplary embodiment of the present invention may include a camshaft, a cam portion of which a cam is formed thereto and the camshaft is inserted into therein, a slider housing of which the cam portion is rotatably inserted therein, of which a position with respect to the camshaft is movable and of which a guide slot is formed thereto, a control portion selectively changing the position of the slider housing, a guide shaft disposed parallel to the camshaft and inserted into the guide slot for guiding movement of the slider housing, an output portion rotatable around a pivot shaft and of which a valve shoe is formed thereto and a valve unit configured to be driven by the valve shoe.


The engine may further include an inner bracket rotatably disposed within the slider housing, and wherein the inner bracket may transmit rotation of the camshaft to the cam portion.


A camshaft hole may be formed to the camshaft, a cam portion hole may be formed to the cam portion and a pin hole may be formed to the inner bracket, and wherein the continuously variable valve lift apparatus may further include a pin slider rotatably disposed within the pin hole and of which a slider hole is formed thereto and a connecting pin connected to the camshaft hole and slidably inserted into the cam portion hole and the slider hole.


The engine may further include a bearing inserted between the inner bracket and the slider housing.


The valve shoe may be formed as a pair and the valve unit may be disposed as a pair and each valve unit may include a swing arm roller contacting each valve shoe.


The engine may further include an output roller mounted between the valve shoes and contacting to the cam.


The control portion may include an eccentric shaft rotatably connected to the slider housing and a motor selectively rotating the eccentric shaft.


As described above, a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention may vary valve lift according to operation conditions of an engine, with a simple construction.


The continuous variable valve lift apparatus according to an exemplary embodiment of the present invention may reduce duration in minimum valve lift comparing to general continuous variable valve lift apparatuses.


The continuous variable valve lift apparatus according to an exemplary embodiment of the present invention may advance closing timing of an intake valve so that may reduce pumping loss and enhance fuel economy.


The continuous variable valve lift apparatus according to an exemplary embodiment of the present invention may be reduced in size and thus the entire height of a valve train may be reduced.


Since the continuous variable valve lift apparatus may be applied to an existing engine without excessive modification, thus productivity may be enhance and production cost may be reduced.


The methods and apparatuses of the present invention have other features and advantages which will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention.



FIG. 2 is an exploded perspective view of a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention.



FIG. 3 is a cross-sectional view along line III-III of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in low lift mode.



FIG. 4 is a cross-sectional view along line IV-IV of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in low lift mode.



FIG. 5 is a cross-sectional view along line V-V of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in high lift mode.



FIG. 6 is a cross-sectional view along line VI-VI of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in high lift mode.



FIG. 7 is a graph of a valve profile of a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention.



FIG. 8 is a graph of pressure volume diagram of an engine.





It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features illustrative of the basic principles of the invention. The specific design features of the present invention as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes will be determined in part by the particular intended application and use environment.


In the figures, reference numbers refer to the same or equivalent parts of the present invention throughout the several figures of the drawing.


DETAILED DESCRIPTION

Reference will now be made in detail to various embodiments of the present invention(s), examples of which are illustrated in the accompanying drawings and described below. While the invention(s) will be described in conjunction with exemplary embodiments, it will be understood that the present description is not intended to limit the invention(s) to those exemplary embodiments. On the contrary, the invention(s) is/are intended to cover not only the exemplary embodiments, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended claims.


In the following detailed description, only certain exemplary embodiments of the present invention have been shown and described, simply by way of illustration.


As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention


A part irrelevant to the description will be omitted to clearly describe the present invention, and the same or similar elements will be designated by the same reference numerals throughout the specification.


In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity.


Throughout the specification and the claims, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.


An exemplary embodiment of the present invention will hereinafter be described in detail with reference to the accompanying drawings.



FIG. 1 is a perspective view of a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention and FIG. 2 is an exploded perspective view of a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention.



FIG. 3 is a cross-sectional view along line III-III of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in low lift mode and FIG. 4 is a cross-sectional view along line IV-IV of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in low lift mode.


Referring to FIG. 1 to FIG. 4, an engine 1 according to an exemplary embodiment of the present invention includes a cylinder head 10 and a continuous variable valve lift apparatus mounted to the cylinder head 10.


The continuously variable valve lift apparatus according to an exemplary embodiment of the present invention includes a camshaft 30, a cam portion 40 of which a cam 42 is formed thereto and the camshaft 30 is inserted into therein, a slider housing 60 of which the cam portion 40 is rotatably inserted therein, of which a position with respect to the camshaft 30 is movable and of which a guide slot 64 is formed thereto, a control portion 100 selectively changing the position of the slider housing 60, a guide shaft 66 disposed parallel to the camshaft 30 and inserted into the guide slot 64 for guiding movement of the slider housing 60, an output portion 50 rotatable around a pivot shaft 52 and of which a valve shoe 54 is formed thereto and a valve unit 200 configured to be driven by the valve shoe 54.


A mounting bracket 90 is connected to the cylinder head 10, a bracket hole 91 is formed to the mounting bracket 90 and the pivot shaft 52 is inserted into the bracket hole 91. In the detailed description and claims, the cylinder head 10 is interpreted as including a cam carrier.


A shaft hole 58 is formed to the output portion 50 and the pivot shaft 52 is inserted into the shaft hole 58.


An inner bracket 70 is rotatably inserted into the slider housing 60 and the inner bracket 70 transmits rotation of the camshaft 30 to the cam portion 40.


A camshaft hole 32 is formed to the camshaft 30, a cam portion hole 44 is formed to the cam portion 40 and a pin hole 72 is formed to the inner bracket 70.


A pin slider 80 of which a slider hole 82 is formed thereto is rotatably disposed within the pin hole 72. And a connecting pin 32 is connected to the camshaft hole 32 and is slidably inserted into the cam portion hole 44 and the slider hole 82.


A bearing 62 is interposed between the inner bracket 70 and the slider housing 60. Thus, rotation of the inner bracket 70 may be easily performed. In the drawings, the bearing 62 is depicted as a needle bearing, however it is not limited thereto. On the contrary, various bearings such as a ball bearing, a roller bearing and so on may be applied thereto.


The valve shoe 54 may be formed as a pair and the valve unit 200 may be disposed as a pair and each valve unit 200 includes a swing arm roller 202 contacting each valve shoe 54.


Roller holes 57 are formed to the output portion 50 and an output roller 56 contacting the cam 42 is mounted between the valve shoes 54 through the roller holes 57.


The control portion 100 includes an eccentric shaft 102 rotatably connected to the slider housing 60 and a control motor 104 or an actuator selectively rotates the eccentric shaft 102 for changing the position of the slider housing 60.


A connecting cap 92 may be connected to the slider housing 60 and the eccentric shaft 102 may be rotatably disposed between the slider housing 60 and the connecting cap 92.



FIG. 5 is a cross-sectional view along line V-V of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in high lift mode, FIG. 6 is a cross-sectional view along line VI-VI of FIG. 1 describing a continuously variable valve lift apparatus according to an exemplary embodiment of the present invention operated in high lift mode and FIG. 7 is a graph of a valve profile of a continuous variable valve lift apparatus according to an exemplary embodiment of the present invention.


Hereinafter, referring to FIG. 1 to FIG. 7, operations of the continuously variable valve lift apparatus according to an exemplary embodiment of the present invention will be described.


When rotation centers of the camshaft 30 and the slider housing 60 are coincident, the valve 204 realizes a predetermined valve lift profile.


According to engine operation states, the ECU transmits control signals to the motor 104 of the control portion 100 to change the relative position of the slider housing 60.


As shown FIG. 4 and in FIG. 5, for example, in low lift mode the slider housing 60 moves to the down direction according to the operation of the control portion 100. Thus, the rotation center of the slider housing 60 with respect to the rotation center X of the camshaft 30 is changed to Y1.


Since the connecting pin 34 is slidable within the cam portion hole 44 and the slider hole 82 and the pin slider 80 is rotatable within the pin hole 72, the rotation of the camshaft 30 is transmitted to the cam portion 40 through the connecting pin 34.


The camshaft 30 rotates around the center X and the cam 42 rotates around the changed rotation center Y1.


Since the relative rotation of the cam 42 is changed, the output portion 50 relatively rotates in a counterclockwise direction around the pivot shaft 52.


Since the output portion 50 relatively rotates in a counterclockwise direction around the pivot shaft 52, a contacting position of the valve shoe 54 and the swing arm roller 202 are changed to the left direction.


As shown in FIG. 5 and FIG. 6, for example, in high lift mode the slider housing 60 moves to the upward direction according to the operation of the control portion 100. Thus, rotation center Y2 of the slider housing 60 relatively moves upward with respect to the rotation center X of the camshaft 30.


Since the connecting pin 34 is slidable within the cam portion hole 44 and the slider hole 82 and the pin slider 80 is rotatable within the pin hole 72, the rotation of the camshaft 30 is transmitted to the cam portion 40 through the connecting pin 34.


The camshaft 30 rotates around the center X and the cam 42 rotates around the changed rotation center Y2.


Since the relative rotation of the cam 42 is changed, the output portion 50 relatively rotates in a clockwise direction around the pivot shaft 52.


Since the output portion 50 relatively rotates in a clockwise direction around the pivot shaft 52, the contacting position of the valve shoe 54 and the swing arm roller 202 are changed to the right direction.


In the exemplary embodiment of the present invention, according to the relative position of the slider housing 60 with respect to the camshaft 30, the rotation center Y1 and Y2 of the cam 42 is changed and thus a contacting position of the output roller 56 and the cam 42 is changed. Thus, when the operation mode of the continuously variable valve lift apparatus is changed to the low lift mode, valve closing timing may be advanced. Also, since the contacting position of the swing arm roller 202 and the valve shoe 54 is changed, the valve lift is adjusted.


A high lift profile A or a low lift profile B of the valve 204 may be performed according to the relative rotation center of the cam 42 with respect to the camshaft 30, relative positions of the camshaft 30 and the output roller 56 and the contacting position of the valve shoe 54 and the swing arm roller 202.


While only the high lift profile A and the low lift profile are shown in FIG. 7, however it is not limited thereto. The relative position of the slider housing 60 may perform various valve profile.


As shown in FIG. 7, comparing to a valve duration C of a general continuously variable valve lift apparatus in the low lift mode, a valve duration D of the continuously variable valve lift apparatus according to an exemplary embodiment of the present invention may be reduced.


And valve closing time may be advanced comparing to valve closing time of the general continuously variable valve lift apparatus in the low lift mode due to contacting position change of the cam 42 and the output roller 56.



FIG. 8 is a graph of pressure volume diagram of an engine.


As shown in FIG. 8, an engine provided with a continuous variable valve lift apparatus may reduce pumping loss F comparing to pumping loss E of an engine without a continuous variable valve lift apparatus.


However, the continuously variable valve lift apparatus may reduce valve duration and advance valve closing time so that may reduce pumping loss G and may enhance fuel economy.


The continuous variable valve lift apparatus according to an exemplary embodiment of the present invention may be reduced in size and thus the entire height of a valve train may be reduced.


Since the continuous variable valve lift apparatus may be applied to an existing engine without excessive modification, thus productivity may be enhance and production cost may be reduced.


In the exemplary embodiment of the present invention, since valve lifts of two cams may be controlled using one cam and one slider housing, thus total numbers of elements may be reduced.


For convenience in explanation and accurate definition in the appended claims, the terms “upper”, “lower”, “inner” and “outer” are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures.


The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described in order to explain certain principles of the invention and their practical application, to thereby enable others skilled in the art to make and utilize various exemplary embodiments of the present invention, as well as various alternatives and modifications thereof. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.

Claims
  • 1. A continuously variable valve lift apparatus comprising: a camshaft;a cam portion of which a cam is formed thereto and the camshaft is inserted into therein;a slider housing of which the cam portion is rotatably inserted therein, of which a position with respect to the camshaft is movable and of which a guide slot is formed thereto;a control portion selectively changing the position of the slider housing;a guide shaft disposed parallel to the camshaft and inserted into the guide slot for guiding movement of the slider housing;an output portion rotatable around a pivot shaft and of which a valve shoe is formed thereto;a valve unit driven by the valve shoe; andan inner bracket rotatably disposed within the slider housing, wherein the inner bracket transmits rotation of the camshaft to the cam portion.
  • 2. The continuously variable valve lift apparatus of claim 1, wherein a camshaft hole is formed to the camshaft;wherein a cam portion hole is formed to the cam portion; andwherein a pin hole is formed to the inner bracket, andwherein the continuously variable valve lift apparatus further comprises: a pin slider rotatably disposed within the pin hole and of which a slider hole is formed thereto; anda connecting pin connected to the camshaft hole and slidably inserted into the cam portion hole and the slider hole.
  • 3. The continuously variable valve lift apparatus of claim 1, further comprising a bearing inserted between the inner bracket and the slider housing.
  • 4. The continuously variable valve lift apparatus of claim 1, wherein the valve shoe is formed as a pair; andthe valve unit is disposed as a pair and each valve unit comprises a swing arm roller contacting each valve shoe.
  • 5. The continuously variable valve lift apparatus of claim 4, further comprising an output roller mounted between the valve shoes and contacting to the cam.
  • 6. The continuously variable valve lift apparatus of claim 1, wherein the control portion comprises an eccentric shaft rotatably connected to the slider housing.
  • 7. An engine comprising: a camshaft;a cam portion of which a cam is formed thereto and the camshaft is inserted into therein;a slider housing of which the cam portion is rotatably inserted therein, of which a position with respect to the camshaft is movable and of which a guide slot is formed thereto;a control portion selectively changing the position of the slider housing;a guide shaft disposed parallel to the camshaft and inserted into the guide slot for guiding movement of the slider housing;an output portion rotatable around a pivot shaft and of which a valve shoe is formed thereto; anda valve unit driven by the valve shoe; andan inner bracket rotatably disposed within the slider housing, wherein the inner bracket transmits rotation of the camshaft to the cam portion.
  • 8. The engine of claim 7, wherein a camshaft hole is formed to the camshaft;wherein a cam portion hole is formed to the cam portion; andwherein a pin hole is formed to the inner bracket, andwherein the continuously variable valve lift apparatus further comprises: a pin slider rotatably disposed within the pin hole and of which a slider hole is formed thereto; anda connecting pin connected to the camshaft hole and slidably inserted into the cam portion hole and the slider hole.
  • 9. The engine of claim 7, further comprising a bearing inserted between the inner bracket and the slider housing.
  • 10. The engine of claim 9, wherein the valve shoe is formed as a pair; andthe valve unit is disposed as a pair and each valve unit comprises a swing arm roller contacting each valve shoe.
  • 11. The engine of claim 10, further comprising an output roller mounted between the valve shoes and contacting to the cam.
  • 12. The engine of claim 7, wherein the control portion comprises: an eccentric shaft rotatably connected to the slider housing; anda motor selectively rotating the eccentric shaft.
Priority Claims (1)
Number Date Country Kind
10-2015-0129217 Sep 2015 KR national
US Referenced Citations (1)
Number Name Date Kind
20130146006 Kim Jun 2013 A1
Foreign Referenced Citations (2)
Number Date Country
2015-117692 Jun 2015 JP
10-2010-0047673 May 2010 KR
Related Publications (1)
Number Date Country
20170074129 A1 Mar 2017 US