The present invention relates in general to optical fiber amplifiers and in particular to parametric amplifiers with suppressed crosstalk.
Data communication of different kinds becomes more and more frequent today. This development demands higher bandwidth available for the communication. The capacity of different types of telecommunication systems has increased tremendously during the last decade. An increasing part of the capacity is supplied by optical fibers that present bandwidth enhancements of several magnitudes compared with ordinary wires.
The bandwidth of optical fibers is used in an efficient manner by employing Wavelength Division Multiplexing (WDM) techniques. Many channels using a multitude of slightly different wavelengths may be transported simultaneously in one and the same optical fiber without interfering with each other. In recent years Dense Wavelength Division Multiplexing (DWDM) techniques have developed, bringing the utilization of the frequency dimension one further step. The useful spectrum is divided in different bands, a S-band (Short band) ranging from 1460 nm to 1530 nm, a C-band (Conventional band) ranging from 1525.6 nm to 1562.5 nm and a L-band (Long band) ranging from 1569.4 to 1612.8 nm.
A major problem in optical communication is the attenuation of optical signal due to inherent fiber losses. After being transported some distance, the optical signals are attenuated and have to be restored in one or another way. By introducing optical amplifiers, any transition into electronic signals is unnecessary. However, amplification of broad wavelength bands, e.g. the complete S-, C-, and L-bands, carrying a number of WDM channels is not completely straightforward. Several different amplifier approaches are presented in prior art.
Rare-earth doped optical fiber amplifiers are a class of optical amplifier widely used. They exhibit low noise, they can be operated over fairly large bandwidths and show negligible crosstalk. However, the operational wavelength region depends on the doping ion.
Optical amplifiers have also been based on Raman effects, through the Stimulated Raman Scattering (SRS). SRS is a nonlinear process in which new frequencies are generated through energy transfer between an optical wave and the medium, due to the excitation of an optical phonon. As it is a nonresonant process, gain is made available at any wavelength. In the case of silica, this frequency shift peaks around 13 THz from the pump frequency. The down-shifted frequency is known as the Stokes shifted frequency. The Raman gain extends over about 40 THz, but the useful bandwidth for application purposes is less than that.
A third type of optical amplifiers is a Fiber Optical Parametric Amplifier (FOPA). This type of amplifier has been studied intensively in recent years due to their potential use for amplification and wavelength conversion in Dense Wavelength Division Multiplexing (DWDM) transmission systems. They have attracted interest because the band of amplification depends on the design of the fiber used and thus can be moved outside the conventional rare-earth window band. This will allow the use of the full low-loss window of fused silica fiber. Fiber optical parametric amplifiers are able to operate in any of the telecommunication bands (S-C-L) depending upon pump wavelength and the fiber zero dispersion wavelength, which can in principle be appropriately tailored from 1300 nm to 1600 nm.
A fiber optical parametric amplifier operates based on the nonlinear process of wave mixing, whereby a pump source at a given wavelength close to the zero dispersion wavelength of an optical fiber leads to the generation of idler and signal bands from spontaneous noise. If an externally injected signal is simultaneously applied, it can be amplified in any of the signal or idler band, which are basically symmetrically located with respect to the pump wavelength.
Fiber optical parametric amplifiers are conventionally known for having a low efficiency, which means that very high laser pump power would be needed. The gain of a fiber optical parametric amplifier depends in general on three parameters; the nonlinear coefficient □, the length L of the fiber used as amplification medium and pump power Pp. A low nonlinear coefficient calls for use of a high pump power or a long fiber length. However, recently, optical fibers having higher nonlinear coefficients have been even commercially available.
A relatively large problem with fiber optical parametric amplifiers is that the amplification principle gives rise to crosstalk. Optical signals having one wavelength will during the amplification process give rise to “false” signals at other wavelengths due to Four-Wave mixing (FWM). In DWDM systems, such crosstalk can generally not be accepted.
In U.S. Pat. No. 6,239,903 fiber optical parametric amplifiers are used in series with Raman amplifiers in order to widen the amplification gain. A similar approach is shown in M. C. Ho, K. Uesaka, M. E. Marhic, Y. Akasaka and L. G. Kazovsky, “200-nm-Bandwidth Fiber Optical Amplifier Combined Parametric and Raman Gain”, IEEE J. Lightwave Technol. 19, 977-979 (2001). In U.S. Pat. No. 6,049,417 parallel sub-bands are amplified by use of different types of rare-earth optical amplifiers. In U.S. Pat. No. 5,452,116, parallel optical sub-band amplifiers are used in series with single full-band amplifiers to compensate for uneven gain characteristics. In J. Hansryd and P. A. Andrekson, “Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency”, IEEE Photon. Technol. Lett. 13, 194-196 (2001) multi-segment fiber design is used to achieve a relative large bandwidth and high gain parametric amplifiers. Dual pump schemes have also been employed, see e.g. C. J. McKinstrie, S. Radic and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves”, IEEE Select. Topics Quantum Electron. 8, 538-547 (2002).
One common problem with parametric amplifier solutions according to prior-art is according to previous discussions potential crosstalk from four-wave mixing products. Moreover, there is a general lack of flatness of the available gain bandwidth, calling for extra flattening devices. Furthermore, an increased bandwidth is also generally requested.
An object of the present invention is therefore to provide a parametric amplifier device and method with improved suppression of crosstalk. A further object of the present invention is to provide a parametric amplifier device and method giving amplification in a wide frequency band. Yet a further object of the present invention is to provide a parametric amplifier device and method having a gain flatness sufficient for e.g. wavelength division multiplexing applications. Additional objects are to produce high gains, preferably over 20 dB over wide bandwidths. Also, the amplifiers should preferably be operable in any spectral region within the low-loss band of optical fibers.
The above objects are achieved by devices, systems and methods according to the enclosed patent claims. In general, a number of nonlinear optical fibers are configured in a parallel configuration. The fibers are pumped with optical pumps having a wavelength slightly longer than the zero dispersion wavelength for each fiber. By admitting optical signals within a certain wavelength interval to enter and exit the different fibers, parametric amplification can be achieved. By selecting the admitted wavelength intervals, preferably located at a high-gain part of the amplified spectrum, such that the pump wavelength is situated outside the interval, crosstalk due to conjugated signals with respect to the pump wavelength will be suppressed.
The nonlinear fibers can be pumped by separate laser pumps, or two or more of the nonlinear fibers can be pumped by the same pump, depending on the different fiber properties. By tailoring fiber properties such as the zero dispersion wavelength, the second order dispersion coefficient and the fourth order dispersion coefficient, beneficial amplification characteristics can be achieved in different wavelength intervals. By combining a number of such tailored sub-band amplifiers, crosstalk suppressed parametric amplification can be achieved. The amplifiers are preferably used in WDM or DWDM systems.
With the present invention, practically all crosstalk due to conjugate generation is suppressed. Furthermore, high gains are achieved within a broadband spectrum ranging from about 1250 nm to about 1650 nm, thus covering the S-C-L band. Under appropriate conditions, these generated bands are flat enough that no extra flattening device is required.
The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken together with the accompanying drawings, in which:
In the present invention, it will be demonstrated a new scheme employing parallel configuration, which makes it possible to reduce crosstalk. The same scheme may be further utilized to expand the useful bandwidth. Even using commercially available optical fibers, with the highest nonlinearity they allow, it will be shown that with the present scheme a much greater bandwidth is possible.
The basic operation principle of fiber optical parametric amplifiers is known in prior art. An optical fiber is used, having nonlinear properties. Due to four-wave mixing, a high-intensity optical signal may be transferred into optical signals having a different wavelength. If one specific frequency is applied to a nonlinear optical fiber, the sideband frequencies may build up from noise under the proper circumstances. The optimum operational condition occurs when the pump wavelength is slightly longer than the zero dispersion wavelength of the nonlinear fiber. Gain spectra are approximately symmetrical with respect to the pump presenting a signal and an idler band. For a deeper understanding of the basic physical principles, references are made to G. P. Agrawal, “Nonlinear fiber optics”, 2nd ed., Academic Press, San Diego, 1995, pp. 404-35, and J. Hansryd, P. A. Andrekson, M. Westlund, J. Li and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications”, IEEE Select. Topics Quantum Electron. 8, 506-520 (2002).
However, generation of the idler can lead to Four-Wave Mixing (FWM) crosstalk with channels in the idler band. This particular crosstalk originates from creation of conjugated signals with respect to the pump wavelength and is a large contributor to the total crosstalk in parametric amplifiers. The origin of the conjugated signal crosstalk is found in the nonlinear effects in the optical fiber and is thus unique for parametric amplifiers. The creation of crosstalk signals limits the useful bandwidth in a typical case to half the total created gain spectrum. This also sets a limit of the practical use of prior-art fiber optical parametric amplifiers, because the signal band is in practice only on the order of 15 to 25 nm. However, if one exploits a parallel geometry, such as the one proposed below, one is able to reduce crosstalk, in particular conjugated signals with respect to the optical pump wavelength. As a further advantage, the useful band of operation can be increased and a flat gain spectrum may be created.
In
The first and second nonlinear optical fibers 12A and 12B have in the present embodiment substantially the same properties, regarding e.g. nonlinearity or dispersion. An optical pump, in this embodiment a laser pump 18 is arranged to supply both the nonlinear optical fibers 12A, 12B with basically monochromatic light, having a pump wavelength λp. The laser pump 18 is preferably tunable for enabling fine adjustments of the pump wavelength λp. A linewidth of about 0.1 nm is preferred since Brillouin scattering effects then are avoided. The optical fibers 12A, 12B are nonlinear, i.e. they present a γ value (nonlinearity coefficient) larger than zero, preferably considerably larger. The optical fibers 12A, 12B have further a zero dispersion wavelength λ0, which is slightly shorter than the pump wavelength λp.
The nonlinear optical fibers 12A and 12B are further connected to an optical multiplexer 16, merging or multiplexing the signals from the nonlinear optical fibers 12A, 12B into an optical output 20, e.g. an outgoing optical fiber. The optical multiplexer 16 is a “mirror” device to the optical demultiplexer 14 in the sense that only signals appearing in the first sub-band are allowed from the first nonlinear optical fiber 12A and only signals appearing in the second sub-band are allowed from the second nonlinear optical fiber 12B.
If only optical signals 106 in a sub-band Δλ1 are allowed, where the sub-band Δλ1 is limited to one side of the pump wavelength λp, any crosstalk signals 108, being conjugated signals of the optical signals 106 with respect to the pump signal, will appear at the other side of the pump wavelength λp. In
Studying
The gain of
In
In
The result of such amplification is clear from the diagram of
In
In
The result of such amplification is clear from the diagram of
In the light of the above embodiments, anyone skilled in the art realizes that various combinations and alternatives are possible. First of all, almost any number of branches, i.e. nonlinear optical fibers, can be used, which increases the possibilities to extend the bandwidth and to improve the total gain characteristics. Each nonlinear optical fiber can be pumped with an own pump or a pump common to one or several other nonlinear optical fibers. The optical fiber in each branch utilizing parametric amplification has dispersive and nonlinear properties, which are adapted for the used pump wavelength and the particular wavelength interval selected by the optical demultiplexer. In each nonlinear optical fiber, either signal band or idler band is utilized, but not both in the same fiber. However, the signal band can be used in one fiber and the idler band can be used in another fiber simultaneously.
A gain diagram corresponding to a theoretical 10-branch arrangement is illustrated in
The principles of the present invention have also been demonstrated experimentally. Two different Dispersion Shifted Fibers (DSF) with zero dispersion at 1545 nm and 1556 nm, respectively, were pumped using two erbium doped fiber ring lasers. The pump lasers had wavelengths of 1546.6 and 1558.6 nm, respectively. These lasers were tunable and had linewidths of about 0.4 nm. Optical signal to be amplified was generated with a tunable external cavity diode laser. The signal was coupled to one fiber or the other depending on wavelength by a broadband WDM used in reverse direction (as demultiplexer), with the first window or sub-band from 1525 nm to 1540 nm and the second window above 1540 nm. At this point, signal and pump are simultaneously coupled to the appropriate DSF. The signals from the two fibers were combined via another broadband WDM of the same kind (used as a multiplexer) and connected to an optical spectrum analyzer.
The experimental results gave that the whole useful bandwidth with gain above 12 dB was about 27 nm, which is of the same order as usual erbium-doped amplifiers. The entire system was built using only standard dispersion shifted fibers and off-the-shelf optical components.
When evaluating the benefits of the present invention, one realizes that the performance is strongly dependent on the actual choice of fiber properties, pump wavelengths and pump powers. By tailoring parameters of the fiber, e.g. nonlinear coefficient γ or dispersion terms, suitable gain responses can be achieved. Most commonly used fibers have nonlinear coefficients γ of up to 2 W−1km−1. However, optical fibers with nonlinear coefficients of 20 W−1km−1 are not unusual today. Since the total gain strongly depends on the pump power, the fiber length and the nonlinear coefficient, nonlinear coefficients γ over 10 W−1km−1 are to prefer.
Dispersion terms, such as zero dispersion wavelengths λ0 and second order dispersion coefficient β2 can be varied during manufacturing of optical fibers, in order to adjust each nonlinear fiber to suit a specific wavelength region. It is also found that even the fourth order dispersion coefficient β4 is useful in tailoring suitable fiber properties. In
Another embodiment of the present invention is illustrated in
An embodiment of a procedure according to the present invention is illustrated by a flow diagram in
In
It will be understood by those skilled in the art that various further modifications and changes may be made to the present invention without departure from the scope thereof, which is defined by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BR02/00174 | 12/5/2002 | WO | 9/7/2005 |