1. Field of the Invention
The present invention relates generally to mechanical power transmission systems and more specifically to continuously variable drivetrains.
2. Related Art
Pulley and belt systems used to transmit mechanical energy are very common and have been used extensively in industry for decades. Their benefits of low cost, reliability, modularity, and high efficiency have created thousands of applications. Typically, two pulleys are used, although three, four, five, or more pulleys may be employed. Generally one belt or cable is used, although systems with multiple belts are not uncommon, such as those used in automobiles. With these systems, two or more pulleys have two or more annular grooves that are designed to accommodate two or more belts. Pulleys can be made from steel, aluminum, plastic, and other materials. The material choice is often determined by the amount of power to be transferred. Pulleys come in many different sizes, ranging from miniature pulleys with a diameter of less than 10 millimeters to very large pulleys over a meter in diameter. Belts are made from many different materials, but all of them are flexible. Often, a rubber belt is used with embedded steel strands to increase strength. Other common materials used in belt construction are urethane, neoprene, steel, and composites. The belt profile can be round, V shaped, flat, grooved, or other shapes. Timing belts use a series of tooth shaped ridges which engage corresponding indentations in a pulley to maximize power transfer and eliminate slip. Some belts employ grooves to allow them to wrap around smaller diameter pulleys.
Most pulley and belt drivetrains are endless, which means that they transfer power rotationally from one pulley to another. The pulleys are rigidly attached to rotating drive and driven shafts and a circular belt rotates endlessly in a closed loop. Idler pulleys are frequently used to create and maintain tension on the belt to prevent slippage and premature failure. Idler pulleys do not transfer power and typically employ a bearing in the bore of the pulley to minimize friction and increase life. The bearing and idler pulley assembly is often pressed over a non-rotating shaft.
Reciprocating pulley and belt, or cable, drivetrains are often found in human powered systems. Exercise equipment frequently uses a cable that is attached to weights at one end and to a bar or other device which a person can push or pull. The weight is lifted and then returned to its resting state. An idler pulley is generally suspended at a height above the weights. This lifting and lowering of the weight creates reciprocating motion of the cable and pulley. Similarly, exercise machines such as those simulating the motion of climbing stairs can use similar reciprocating pulley and cable drivetrains. All of these drivetrains suffer from a loss of kinetic energy at the end of each stroke. For example, in a bicep curl, the human grasps a bar with both hands and lifts the bar to a position near the chest, and then returns it to the resting state. Kinetic energy is created during movement of the bar and then lost when the movement is stopped at the end of the stroke. Some exercise machines, including Nautilus type equipment, employ a cam which causes the weights to move more rapidly at the end of the stroke. This effect creates more efficient exercise by minimizing the loss of kinetic energy. The exercise is also more efficient because it becomes more difficult as the muscle contracts. During contraction the mechanical advantage of a muscle increases and it becomes more powerful. As the muscle position changes and creates a larger mechanical advantage, with cam or Nautilus type equipment, the weight simultaneously becomes more difficult to lift.
Linear drive systems in human powered vehicles have been attempted many times. However, they are not as efficient as commonly used drivetrains, such as sprocket and chain systems used on bicycles, due to the loss of kinetic energy at the end of each stroke. Many of the human powered linear drive systems are also complex, and each gear, bearing, pulley, cable, chain, or sprocket used in the drivetrain reduces efficiency. The complex systems are also heavy, and weight is a significant factor in human powered vehicles because it increases inertia and power requirements. Complex systems are also more expensive and more prone to breaking.
The most common human powered vehicle is a bicycle. A bicycle uses a sprocket and chain drivetrain which very efficiently transfers human power to the rear wheel. However, power is only efficiently created through about 60 degrees of the stroke, and only becomes very efficient for about 30 degrees of the 360 degree rotary stroke. This stroke also creates two large torque spikes per revolution. In order to reduce stress on the body (especially the knees), and minimize fatigue, a high pedaling speed is required to achieve high efficiency. This high pedaling speed reduces the torque spikes and also creates momentum to carry the pedals through the power phase of the stroke. However, the majority of people are not comfortable pedaling at a high speed and consequently do not maintain a cadence which maximizes the efficiency inherent in a bicycle's rotary stroke.
Further, the most common complaint from individuals riding bicycles is discomfort created by the bike seat. This discomfort is significant enough to keep many people from riding bikes, and to reduce the frequency that others use their bicycles. Recent studies showing that bicycle riding contributes to impotence and other health problems aggravate the discomfort problem caused from bike seats. However, maximizing the efficiency inherent in the bicycle drivetrain requires that the user stay seated while pedaling. This position is more conducive to a higher cadence and expends less of the user's energy. Riding a bicycle seated creates a situation where most of the user's weight is on the seat, and thus prevents the majority of the user's weight from being applied to the pedals. This loss in force can only be regained by pedaling at high speed, where there is a corresponding drop in torque and less force needs to be applied to the pedals to maintain an efficient power output.
The second most common complaint among bicycle users is difficulty when shifting. While this is rarely a problem with avid cyclists, infrequent users routinely shift in the wrong direction, shifting to a higher gear when starting up a hill, or vice versa. This problem can lead to the chain coming off of a sprocket, binding of the chain, a broken chain, and in rare cases the user getting injured in a fall. The problem frustrates enough people that it reduces the percentage of the population that ride a bicycle.
There exists a need for a human powered drivetrain that eliminates the torque spike inherent in a bicycle drivetrain and that allows lower speed, efficient pedaling at a cadence comfortable for the majority of people. There also exists a need for a linear drivetrain that minimizes or eliminates the loss of kinetic energy at the end of each stroke. There exists a need for a simple, inexpensive, lightweight, and efficient linear drivetrain that can be altered to accommodate different user sizes and preferences. Additionally, there exists a need for human powered vehicles where discomfort from the seat is eliminated and that allows most or all of the user's weight to be applied to the pedals. Finally, there exists a need for a drivetrain which eliminates shifting of the derailleur system used to vary speed and torque on hills.
The systems and methods herein described have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of the Preferred Embodiments” one will understand how the features of the system and methods provide several advantages over traditional systems and methods.
In one aspect, a pulley and cable drivetrain is disclosed which continuously varies speed and torque throughout its stroke. In some systems the continuously variable drivetrain incorporates two pedals, which are contacted by a person's feet, and move in reciprocating motion to transmit power. Each pedal attaches to a crank which rotates along an arc defined by a pivot point at an end opposite the pedal. The cranks attach to a frame, which in some systems comprises the support structure for a human powered vehicle or exercise equipment. Also attached to each crank is a pulley, the pulley positioned at a distance from the crank pivot point to produce the correct rotational speed of a drive pulley. The drive pulley, of which there is one for each crank, has a drive cable wrapped around a deep annular groove. The drive cable terminates at the interior of the drive pulley.
In one aspect the drive cable then travels around a first idler pulley and at a second end is attached to the frame. A second, dependent cable is used to raise one pedal while the other is depressed. The dependent cable is attached at each end to each of the cranks. The dependent cable then travels around a second idler pulley which is attached to the frame. The idler pulley is positioned above the cranks so that the dependent cable is tensioned by each crank.
In some applications the continuously variable drivetrain is used in conjunction with human powered vehicles, specifically a bicycle. The drivetrain allows the seat to be removed from the bicycle. The user stands on the pedals near the rear of the bicycle and in some aspects leans forward on a chest support.
In some embodiments the dependent cable and the dependent pulley are eliminated to allow each crank to be operated independently of the other. This allows the user to pedal with one leg, both legs simultaneously, or to vary the starting and ending positions of the stroke. In some such systems, the pedals may utilize a cover which extends over the top of the foot or fasteners to attach the user's shoes to the pedals.
In some systems the idler pulley is eliminated and the drive cable terminates at and is attached to the crank. This has the effect of reducing the speed at which the drive pulley rotates. In other systems two or more idler pulleys are attached to each crank, which increases the speed at which the drive pulley rotates.
In some systems a compound pulley is used to accelerate the ratio change of the continuously variable drivetrain. The compound pulley, one for each drive pulley, incorporates two deep annular grooves to accommodate two cables. One cable is the drive cable and the second cable is the compound cable. Depending on whether the stroke is in its power or return phase, one cable is unwinding from the compound pulley while the other cable is winding onto the compound pulley.
In another aspect, a compound pulley is attached to each crank, and a lever is attached to each crank. The lever is connected to the crank with a lever pivot, and in one embodiment has lever pulleys attached at both ends of the lever. A lever cable runs from the compound pulley, around the lever pulleys, and terminates at a strong stationary structure, such as the frame. The lever contacts a roller, which causes the lever to swing and pull more cable at the end of the stroke than at the beginning of the stroke.
One aspect of the invention is directed to a drivetrain having a crank coupled to a lever pivot, and a lever operably coupled to the crank; the lever is configured to rotate less than 360 degrees about the lever pivot during a power phase of a stroke. Yet another aspect of the invention concerns a drivetrain having a crank, a pulley attached to the crank, a lever operably coupled to the crank, and a lever stop operably coupled to the lever.
A different aspect of the invention relates to a drivetrain that includes a lever configured to rotate about an axis during a stroke of the drivetrain, the stroke comprising a power phase and a return phase. The drivetrain additionally includes a hook attached to the lever, a lever stop configured to cooperate with the lever, and a drive pulley operationally coupled to the lever. In some embodiments, the invention concerns a drivetrain provided with first and second rotatable cranks and a crank pivot, wherein the cranks are configured to rotate less than 180 degrees about the crank pivot during a power phase of a stroke. The drivetrain can additionally exhibit first and second lever pivots attached respectively to the first and second rotatable cranks, and first and second levers attached respectively to the first and second lever pivots, wherein the levers are configured to rotate less than 300 degrees during the power phase. The drivetrain, in some cases, additionally includes at least one crank pulley attached to each crank, at least one lever stop operably coupled to each lever, and at least one drive pulley operably coupled to each crank.
In yet another aspect, the invention is directed to a drivetrain configured to convert human power to mechanical propulsive power. The drivetrain has a lever configured to rotate less than 360 degrees during a power phase of a stroke, a hook attached to the lever, and a first pulley attached to the lever. In other embodiments, the invention covers a drivetrain with two levers and two lever pivots, wherein each lever pivot attaches to a respective lever, and wherein each lever is configured to rotate less than 360 degrees about a respective lever pivot during a power phase of a stroke. The drivetrain can also have first and second lever pulleys attached to each lever, two compound pulleys, and two flexible tension members, each flexible member contacting a respective compound pulley, first lever pulley, and second lever pulley.
A different aspect of the invention relates to a drivetrain having a crank configured to rotate less than 360 degrees during the power phase of a stroke, a lever pivot coupled to the crank, and a drive pulley having a spiraling root. In some embodiments, the drivetrain includes a flexible tension member operably coupled to the crank and the drive pulley such that a first end of the flexible tension member terminates at the root of the drive pulley, the flexible tension member is spirally wound on the drive pulley at the beginning of the power phase, and the flexible tension member unwinds from the drive pulley during the power phase. Yet one more aspect of the invention concerns a drivetrain having a crank configured to rotate less than 360 degrees during the power phase of a stroke, a lever pivot coupled to the crank, and a lever operably coupled to the crank via the lever pivot; the lever can be configured to rotate less than 360 degrees about the lever pivot during the power phase.
Still another embodiment of the invention addresses a bicycle having first and second cranks, each crank configured to rotate less than 360 degrees during the power phase of a stroke. The bicycle can have first and second lever pivots coupled, respectively, to the first and second cranks. In one case, the bicycle additionally includes first and second levers operably coupled, respectively, to the first and second cranks, the first and second levers configured to rotate less than 360 degrees about the first and second lever pivots during the power phase. The bicycle can also have a frame, wherein the first and second cranks and/or the first and second levers are coupled to the frame. In some embodiments, a front wheel and a rear wheel operably couple to the frame.
One aspect of the invention is directed to a human powered vehicle having a frame, at least one wheel attached to the frame, and at least one crank which is configured to rotate less than 360 degrees during the power phase of a stroke; the crank is operably coupled to the wheel. The human powered vehicle components are configured such that during the power phase a rotation of the crank causes a rotation of the wheel, and wherein the power phase is continuously variable and causes the wheel to rotate more rapidly at the beginning than at the end of the power phase.
In some embodiments, the invention addresses a continuously variable drivetrain having first and second foot pedals and first and second cranks; wherein the first and second foot pedals couple, respectively, to the first and second cranks. The drivetrain can be configured such that the cranks are capable of reciprocating motion, and the cranks rotate along an arc defined by a crank pivot point located at an end distal from the pedals. The drivetrain can further include a frame adapted to support the cranks, and first and second drive pulleys coupled, respectively, to the first and second cranks. The drivetrain additionally has first and second crank pulleys coupled, respectively, to the first and second cranks; the crank pulleys can be positioned at a distance from the crank pivot point. In some cases, the drivetrain has a first drive cable wrapped around the first drive pulley and the first crank pulley, and a second drive cable wrapped around the second drive pulley and the second crank pulley.
These and other improvements will become apparent to those skilled in the art as they read the following detailed description and view the enclosed figures.
Preferred embodiments of the present invention will now be described with reference to the accompanying Figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is intended to be interpreted in its broadest reasonable manner including its specific use herein as well as other uses in the technical field, even though it is being utilized in conjunction with a detailed description of certain specific preferred embodiments. This is further emphasized below with respect to some particular terms used herein. Any terminology intended to be interpreted by the reader in any restricted manner that is different than an accepted plain and ordinary meaning will be expressly and specifically defined as such in this specification and the descriptions of objects or advantages associated with certain embodiments is not intended to require structure fulfilling those objects in all embodiments.
The inventive embodiments disclosed here are related to technology described in U.S. Provisional Patent Application 60/799,601, filed on May 11, 2006, which is hereby incorporated herein by reference in its entirety. As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be obvious to a person of ordinary skill in the relevant technology.
Components which are used on both the left and right side of a vehicle or equipment are designated with the letters a and b. For example, where there are two lever cranks 615, the left lever crank might labeled lever crank 615a, while the right lever crank might labeled lever crank 615b. Generally, all of the components on a side are designated with the letter a, and all substantially similar components on another side are designated with the letter b; when a component is referred to generically without a side designation, the a or b suffix is removed.
Now referring to
The aperture 99 is slightly larger than and fits over the frame 60. The aperture 99 is split on a side below the frame to allow frame fastener 98 to fasten securely and rigidly the support base 97 to the frame 60. In one embodiment, the frame fastener 98 has two fastener holes 88 which extend through both sides of the split in the support base 97, to allow common fasteners such as bolts or quick release clamps to be used to tighten the frame fastener 98 to the frame 60. The support base 97 can be moved along the axis of the frame 60 either closer to the front wheel 80, or closer to rear wheel 84, to accommodate preferences and sizes of different users.
Referring now to
Referring to
Still referring to
Top stays 76 can be integrally formed with the pulley mount 73, or made separately and welded, glued, or otherwise bonded to the pulley mount 73. In one embodiment the top stays 76, one on the left side and one on the right side of the frame 60, are made from the same material as the rest of the frame 60, although in other embodiments a different material can be used. Similarly, the down stays 77 are also attached to the pulley mount 73 at a first end, and can be integrally molded or welded, or glued to the pulley mount 73. The down stays 77, in a preferred embodiment, are made of the same material as the top stays 76. The down stays 77, one on the left side and one on the right side of the frame 60, extend down and slightly rearward from the pulley mount 73, and are positioned on each side of the rear wheel 84. The down stays 77 are generally elongated tubes and become wider, or farther apart from each other and the rear wheel 84, near their second end to allow for attachment of cranks 15. Crank connectors 79 are positioned near the second end, near the bottom of the down stays 77, and a crank shaft 14 is attached to each crank connector 79, providing for arcuate motion of the cranks 15. The cranks 15 are positioned between the rear wheel 84 and the crank connectors 79. Joining the down stays 77, slightly above and closer to the rear axle 33, are crank stays 78. The crank stays 78, are made from the same material as the down stays 77, and serve to support and anchor the cranks 15. The crank stays 78 are generally elongated tubes that move closer together and closer to the rear wheel 84 at a second end near the rear axle 33. The crank stays 78 join the top stays 76 at a second end near the rear axle 33. Dropouts 63 can be either attached to the crank stays 78 or molded integrally into the crank stays 78. In a preferred embodiment, the dropouts 63 are constructed of steel or aluminum and serve as an attachment point for the rear axle 33. The rear wheel 84 is positioned between the crank stays 78, the down stays 77, and the top stays 76. The rear axle 33 is attached to the dropouts 63 with standard fasteners such as nuts and washers.
Referring now to
Referring to
It provides clearance between the user and the frame 60, allowing the user to pedal higher and at a more favorable angle, thus maximizing power,
It moves the user forward on the bicycle 100 so that the user's weight is distributed appropriately, and
It lowers a crank pulley 23 so that a more favorable speed ratio is obtained through positioning of the crank pulley 23 relative to a drive pulley 28.
The cranks 15 can be made from aluminum, steel, titanium, plastic, a composite such as carbon fiber, or another suitable material. The pedals 16 can be conventional bike pedals or can be platforms that are welded or otherwise rigidly attached to the cranks 15. In one embodiment, the pedals 16 are platforms that have limited rotational capability to accommodate the bending of the legs while a user powers the CVD 10. The pedals 16 can be made from aluminum, steel, titanium, plastic, a composite such as carbon fiber, or another suitable material. The user places a foot on each pedal 16, and by alternately depressing each pedal 16a, 16b, delivers power to the CVD 10, which power is then transferred to a bicycle, scooter, exercise equipment, boat, submarine, plane, or any other human powered device.
Also attached to each crank 15 is the crank pulley 23. In some embodiments the crank pulley 23 is an idler pulley that serves to increase the speed ratio of the CVD 10. The crank pulley 23 can have an idler bearing 26 inserted into its bore to minimize friction. An idler shaft 27 is inserted through the idler bearing 26 and is then threaded into a pulley connector 20 to fasten the crank pulley 23 to the crank 15. Alternatively, the idler shaft 27 can be pressed into the pulley connector 20 or welded, or fastened with other conventional fasteners. In some embodiments the pulley connector 20 is a round through hole, but it can be made with a square, hexagonal, or any other suitable shaped hole. The hole can also be blind, and in some embodiments the idler shaft 27 can be made integral with the crank 15, eliminating the need for the pulley connector 20.
Also comprising part of the crank 15 are clamp mounts 21, which in a preferred embodiment are through holes located on the first section 22 of the crank 15. The clamp mounts 21 can be countersunk so that if a screw or bolt is used for attachment the heads will be flush with the crank 15. The clamp mounts 21 allow insertion of fasteners such as screws, bolts, or pins to provide attachment of cable clamps 29. In some embodiments, the cable clamps 29 are a strong, rigid component made from steel although titanium, aluminum, and other materials may be used. Each cable clamp 29 has two through holes to allow insertion of two machine screws. In some embodiments, the machine screws are inserted first through the clamp mounts 21, then through a first cable clamp 29A1, and then threaded into a second cable clamp 29A2. In other embodiments, the machine screws can be first inserted through the second cable clamp 29A2. In still other embodiments, only one cable clamp 29A is used and a dependent cable 31 is clamped between the crank 15 and the cable clamp 29A.
The dependent cable 31 is a flexible tension member that in some embodiments has minimal creep and a break strength greater than the maximum force exerted by the user. The dependent cable 31 can be constructed of a composite material such as Vectran or Kevlar, but can also be made from other materials, including steel. A first end of the dependent cable 31 is operably attached to the crank 15a, and at a second end it is operably attached to the crank 15b, with the above described cable clamps 29. At an area near its midpoint the dependent cable 31 wraps around the dependent pulley 24 so that when the crank 15a is depressed the crank 15b rises, and vice versa. In one embodiment, the dependent pulley 24 is constructed of aluminum, although steel, plastic (such as glass filled nylon), a composite material, or any other suitable material can be used. The dependent pulley 24 is an idler pulley and has a dependent bearing 32 attached at its center to minimize friction. The dependent pulley 24 is positioned in the cavity 74 of the frame 60 and the pulley shaft (not shown) is inserted through the top of the pulley shaft hole 75, through the bore of the dependent bearing 32, and then through the lower portion of the pulley shaft hole 75.
Referring now to
Attached to the hub shell 41 on its inside diameter are one way clutches 42. The one way clutches 42 each alternately provide torque to the hub shell 41, rotating the rear wheel 84. In some embodiments the one way clutches 42 are roller clutches of the type utilizing hardened steel pins circumferentially spaced around the inside diameter of the roller clutch housing. Hardened steel ramps are positioned around the pins, and springs are attached to the pins to provide for instant lockup of the roller clutch. In another embodiment, the one way clutch can be of the sprag clutch type, where one or more pawls contact ratchet teeth during lock up. The one way clutches 42 are rigidly attached to the hub shell 41 using an interference fit. They can also be attached with welding, adhesive, or standard fasteners. Contacting the roller clutch pins from the inside of the one way clutches 42 are torque drivers 43.
The torque drivers 43 in a preferred embodiment are hardened steel cylinders with a smooth outside diameter. The outside surface of the torque drivers 43 contact the one way clutches 42 using a tolerance so that when torque is transferred to the one way clutches 42 they lock up, thus rotating the hub shell 41. In some embodiments, when the clutch 42a is locked up and transferring torque, the clutch 42b is in clutch mode and freewheeling, and vice versa. The lock up mode of the clutch 42a occurs when the crank 15a is depressed, and the clutch 42b freewheels as the crank 15b is raised.
Still referring to
Referring to
In some embodiments each drive pulley 28 contains a spring hole 48, a cable hole 49, and a clamp hole 50. The spring hole 48 provides a space for insertion of a first end of a return spring 51, which can be positioned concentrically with the rear axle 33. In some embodiments, the return spring 51 is made from spring steel wire and spirals radially away from the rear axle 33. The return spring 51 at a first end is attached to the drive pulley 28 via the spring hole 48. At a second end the return spring 51 is attached to the frame 60. Attachment to the frame 60 can be made with standard fasteners or a hole can be created in the frame 60 into which the second end of the return spring 51 can be inserted. In some embodiments the second end is the outside diameter (the larger diameter) of the return spring 51 and the first end is the inside diameter (the smaller diameter). The return spring 51 can be positioned so that the coils decrease in diameter as the return spring 51 is tensioned when a crank 15 is depressed during the power stroke. In some embodiments the return spring 51 only needs to provide enough tension to prevent the drive cable 52 from becoming slack on the return stroke. In other embodiments, the return spring 51 is strong enough to return the crank 15 to the beginning, or top of, the stroke. The tensioned return spring 51 rotates the drive pulley 28 in the opposite direction that it rotates during the power stroke, returning the drive pulley to its original position, and assists in lifting the crank 15 to a position at the beginning of the stroke. The spring hole 48 is slightly larger than the material comprising the return springs 51 and is a perforation in the side of the drive pulley 28 facing away from the center of the hub 40.
A radially located cable hole 49 positioned at the root of a drive groove 53 in the drive pulley 28 allows for insertion of a first end of the drive cable 52. In some embodiments the drive cable 52 is attached to the drive pulley 28 with a set screw (not shown) or another suitable fastener that is threaded into a clamp hole 50. The clamp hole 50 can be a tapped hole that is located on a side of the drive pulley 28 facing away from the center of the hub 40. The drive cable 52 is then wrapped around the drive pulley 28 within the drive groove 53 so that the drive cable 52 wraps around itself multiple times.
The number of winds of the drive cable 52 in the drive groove 53 varies considerably with the application, and in the case of a human powered vehicle, is dependent on the speed and diameter of the wheel, propeller, flywheel, or other rotating driven component. The number of winds of the drive cable 52 is also dependent on the size and physical condition of the user and also the diameter of the drive pulley 28. Generally, the drive cable 52 will have from two to six windings but in a few applications the drive cable 52 may be wound more than 12 revolutions around the drive pulley 28 and as few as ½ revolutions. In some applications, the drive cables 52 are wound a sufficient number of revolutions so that there is approximately one revolution left in the drive groove 53 when the cranks 15 are depressed and at the end of their power stroke. By controlling the amount of the drive cable 52 wrapped around the drive groove 53 and leaving approximately one revolution, less tension is applied to the first end of the drive cable 52. If possible, more than one revolution of the drive cable 52 should remain in the drive groove 53 so that the drive cable 52 is wrapped around itself and friction on the sides of the drive cable 52 and at the root of the drive groove 53 will absorb a significant amount of the tension created when the drive cable 52 is pulled. In one embodiment the root diameter surface of the drive groove 53 is knurled or otherwise roughened so that it grabs the drive cable 52 and distributes the tension on the drive cable 52 to a larger area, lessening the stress on the first end of the drive cable 52.
Still referring to
Referring to
Referring now to
Referring to
At the beginning of a stroke, the drive cable 52 has a larger diameter, which decreases speed and increases torque at the drive pulley 28 relative to the smaller diameter of drive cable 52 at the end of a stroke. This variation in speed and torque is continuously variable, meaning that the speed and torque at the drive pulley 28 changes continuously with respect to time throughout the stroke. The rate at which the speed and the torque changes can be varied and is controlled by the root diameter of the drive pulley 28, the diameter of the drive cable 52, the number of revolutions the drive cable 52 is wrapped around the drive pulley 28, the length of the crank 15, the length of the stroke, and other variables.
By combining an increase in speed inherent in the change in angular position of the crank 15 relative to the drive pulley 28, and the decrease in diameter of the drive cable 52 during the power stroke, a significant increase in speed can be realized at the end of the stroke. Significantly, the increase in speed is non-linear and increases rapidly toward the end of the stroke as the rate of change, or percentage of, the decrease in the diameter of the drive cable 52 accelerates. Simultaneously, the angle of the crank 15 relative to the drive pulley 28 increases the amount of drive cable 52 pulled. The combined effect of these two phenomena creates a seamless increase in speed throughout the stroke. This speed increase is difficult to realize on a CVD bicycle because the bicycle begins to accelerate rapidly, the cranks 15 become difficult to depress, and significantly more force is required to be applied by the user. The amount of acceleration can be controlled through proper design of the CVD 10. In some embodiments, the increase in force required to reach the end of the stroke is insufficient under normal operating conditions. This means that the cranks 15 will slow down and stop on the power stroke before reaching the end of the stroke unless the user applies significant power. This eliminates the loss in kinetic energy at the end of each stroke.
Referring to
Referring now to FIGS. 1 and 11-13, the length and position of the stroke can be controlled by varying the length and the position of the drive cables 52 and the dependent cable 31. The length of the dependent cable 31 can be adjusted by loosening the two machine screws that are inserted into the clamp mounts 21 of a crank 15. This loosens the force that the cable clamps 29 apply to the dependent cable 31. The length of the dependent cable 31 can then be lengthened or shortened. If the dependent cable 31 is lengthened the cranks 15 move farther away from the dependent pulley 24, or closer to the ground when the CVD 10 is used in conjunction with the bicycle 100. This changes the position of the user on the bicycle 100 and changes the speed of the bicycle 100. When the cranks 15 move farther from the dependent pulley 24, the distance between each of the cranks 15 also increases and unwinds some of the drive cable 52 from the drive pulleys 28. This increases the speed ratio of the CVD 10 and the bicycle 100.
The length of the drive cables 52 can be adjusted in the same manner. If the fasteners attaching the drive cables 52 to the cable ends 54 are loosened, the drive cables 52 can be lengthened or shortened. If the drive cables 52 are lengthened, the return springs 51 wind the additional drive cable 52 onto the drive pulleys 28, decreasing speed and increasing torque to drive pulleys 28. If the drive cables 52 are shortened, speed increases and torque decreases. Thus, the user can configure the speed ratio of the CVD 10 to suit his or her personal preference.
Referring now to
Referring to
The curve D denotes the torque through the stroke of the CVD 10. Torque is steady and level throughout the stroke because not only are the degrees of rotation through the stroke small (between 20-40 degrees in some embodiments) and ideally configured to produce power, but also because the radius of the drive cable 52 to the center of the drive pulley 28 decreases as the crank 15 moves through the power phase of the stroke. This action decreases torque. Concurrently, as the legs straighten the leg muscles become more efficient and produce more force towards the end of the stroke, offsetting the decrease in distance of the drive cable 52 to the center of the drive pulley 28. Still referring to
Referring now to
Still referring to
Referring now to
Still referring to
Referring now to
Referring now to
Referring now to
Referring now to
Still referring to
Still referring to
Referring now to
Referring to
Referring now to
Referring now to
Referring now to
Passing to
In one embodiment, the lever 609 is provided with a lever pivot attachment coupling 385, which is positioned between the lever pivot end 381 and the slider guide end 382. As shown in
Referring now to
Still referring to
Referencing
Passing to
In some embodiments, downstays 4140 couple the down tube 4115 to a rear wheel axle (not shown) of the bicycle 4100. In one embodiment, for example, the downstays 4140 couple to the rear wheel axle by a bracket 4145. In some embodiments, crank stays 4150 couple the downstays 4140 to the down tube 4115. Hence, in some cases, the down tube 4115 is provided with an extension, connecting hub, or shaft 4155 adapted to couple to the crank stays 4150. As shown in
A crank 4160, which in some embodiments is reciprocating and adapted to turn only through an angle that is less than 360 degrees, can be coupled to the down tube 4115 and/or to the crank stay 4160. In one embodiment, the crank 4160 is rotationally coupled to the connecting hub 4155. A lever stop 4165 can be attached to the crank stay 4150 to provide a guide structure to a movement of a lever (not shown in
The foregoing description details certain inventive embodiments. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the inventions disclosed here can be practiced in many ways. It should be noted that the use of particular terminology when describing certain features or aspects of the inventive embodiments should not be taken to imply that the terminology is being redefined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.
This application is a continuation of U.S. patent application Ser. No. 11/747,068, filed on May 10, 2007, which claims priority to U.S. Provisional Patent Application 60/799,601, filed on May 11, 2006. The entire disclosure of each of the above applications is hereby incorporated by reference in its entirety. This Application is related to U.S. patent application Ser. No. 11/951,921, U.S. patent application Ser. No. 11/952,000, U.S. patent application Ser. No. 11/951,950, U.S. patent application Ser. No. 11/951,857, U.S. patent application Ser. No. 11/951,989, U.S. patent application Ser. No. 11/951,878, U.S. patent application Ser. No. 11/951,985, and U.S. patent application Ser. No. 11/951,838, all filed on even date and which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
719595 | Huss | Feb 1903 | A |
1121210 | Techel | Dec 1914 | A |
1175677 | Barnes | Mar 1916 | A |
1380006 | Nielson | May 1921 | A |
1629902 | Arter et al. | May 1927 | A |
1858696 | Weiss | May 1932 | A |
1903228 | Thomson | Mar 1933 | A |
2060884 | Madle | Nov 1936 | A |
2086491 | Dodge | Jul 1937 | A |
2112763 | Cloudsley | Mar 1938 | A |
2152796 | Erban | Apr 1939 | A |
2209254 | Ahnger | Jul 1940 | A |
2469653 | Kopp | May 1949 | A |
2596538 | Dicke | May 1952 | A |
2675713 | Acker | Apr 1954 | A |
2730904 | Rennerfelt | Jan 1956 | A |
2868038 | Billeter | Jan 1959 | A |
2913932 | Oehru | Nov 1959 | A |
2931234 | Hayward | Apr 1960 | A |
2931235 | Hayward | Apr 1960 | A |
2959063 | Perry | Nov 1960 | A |
2959972 | Madson | Nov 1960 | A |
3184983 | Kraus | May 1965 | A |
3216283 | General | Nov 1965 | A |
3248960 | Schottler | May 1966 | A |
3273468 | Allen | Sep 1966 | A |
3280646 | Lemieux | Oct 1966 | A |
3374009 | Jeunet | Mar 1968 | A |
3487726 | Burnett | Jan 1970 | A |
3487727 | Gustafsson | Jan 1970 | A |
3661404 | Bossaer | May 1972 | A |
3695120 | Titt | Oct 1972 | A |
3707888 | Schottler | Jan 1973 | A |
3727474 | Fullerton | Apr 1973 | A |
3736803 | Horowitz et al. | Jun 1973 | A |
3768715 | Tout | Oct 1973 | A |
3769849 | Hagen | Nov 1973 | A |
3891235 | Shelly | Jun 1975 | A |
3954282 | Hege | May 1976 | A |
3984129 | Hege | Oct 1976 | A |
3996807 | Adams | Dec 1976 | A |
4053173 | Chase, Sr. | Oct 1977 | A |
4169609 | Zampedro | Oct 1979 | A |
4177683 | Moses | Dec 1979 | A |
4227712 | Dick | Oct 1980 | A |
4382188 | Cronin | May 1983 | A |
4391156 | Tibbals | Jul 1983 | A |
4459873 | Black | Jul 1984 | A |
4464952 | Stubbs | Aug 1984 | A |
4493677 | Ikenoya | Jan 1985 | A |
4496051 | Ortner | Jan 1985 | A |
4549874 | Wen | Oct 1985 | A |
4574649 | Seol | Mar 1986 | A |
4585429 | Marier | Apr 1986 | A |
4628766 | De Brie Perry | Dec 1986 | A |
4630839 | Seol | Dec 1986 | A |
4647060 | Tomkinson | Mar 1987 | A |
4700581 | Tibbals, Jr. | Oct 1987 | A |
4725258 | Joanis, Jr. | Feb 1988 | A |
4735430 | Tomkinson | Apr 1988 | A |
4744261 | Jacobson | May 1988 | A |
4756211 | Fellows | Jul 1988 | A |
4806066 | Rhodes et al. | Feb 1989 | A |
4856374 | Kreuzer | Aug 1989 | A |
4857035 | Anderson | Aug 1989 | A |
4869130 | Wiecko | Sep 1989 | A |
4900046 | Aranceta-Angoitia | Feb 1990 | A |
4909101 | Terry | Mar 1990 | A |
4961477 | Sweeney | Oct 1990 | A |
5020384 | Kraus | Jun 1991 | A |
5037361 | Takahashi | Aug 1991 | A |
5069655 | Schievelbusch | Dec 1991 | A |
5121654 | Fasce | Jun 1992 | A |
5125677 | Ogilvie et al. | Jun 1992 | A |
5156412 | Meguerditchian | Oct 1992 | A |
5230258 | Nakano | Jul 1993 | A |
5236211 | Meguerditchian | Aug 1993 | A |
5236403 | Schievelbusch | Aug 1993 | A |
5273501 | Schievelbusch | Dec 1993 | A |
5318486 | Lutz | Jun 1994 | A |
5323570 | Kuhlman et al. | Jun 1994 | A |
5330396 | Lohr et al. | Jul 1994 | A |
5355749 | Obara et al. | Oct 1994 | A |
5375865 | Terry, Sr. | Dec 1994 | A |
5379661 | Nakano | Jan 1995 | A |
5383677 | Thomas | Jan 1995 | A |
5451070 | Lindsay et al. | Sep 1995 | A |
5508574 | Vlock | Apr 1996 | A |
5601301 | Liu | Feb 1997 | A |
5645507 | Hathaway | Jul 1997 | A |
5651750 | Imanishi et al. | Jul 1997 | A |
5690346 | Keskitalo | Nov 1997 | A |
5746676 | Kawase et al. | May 1998 | A |
5846155 | Taniguchi et al. | Dec 1998 | A |
5899827 | Nakano et al. | May 1999 | A |
5967933 | Valdenaire | Oct 1999 | A |
5984826 | Nakano | Nov 1999 | A |
6000707 | Miller | Dec 1999 | A |
6045481 | Kumagai | Apr 2000 | A |
6053833 | Masaki | Apr 2000 | A |
6053841 | Koide et al. | Apr 2000 | A |
6066067 | Greenwood | May 2000 | A |
6071210 | Kato | Jun 2000 | A |
6076846 | Clardy | Jun 2000 | A |
6095940 | Ai et al. | Aug 2000 | A |
6119539 | Papanicolaou | Sep 2000 | A |
6119800 | McComber | Sep 2000 | A |
6159126 | Oshidan | Dec 2000 | A |
6186922 | Bursal et al. | Feb 2001 | B1 |
6241636 | Miller | Jun 2001 | B1 |
6243638 | Abo et al. | Jun 2001 | B1 |
6293575 | Burrows et al. | Sep 2001 | B1 |
6322475 | Miller | Nov 2001 | B2 |
6325386 | Shoge | Dec 2001 | B1 |
6340067 | Fujiwara | Jan 2002 | B1 |
6390946 | Hibi et al. | May 2002 | B1 |
6406399 | Ai | Jun 2002 | B1 |
6419608 | Miller | Jul 2002 | B1 |
6461268 | Milner | Oct 2002 | B1 |
6499373 | Van Cor | Dec 2002 | B2 |
6523223 | Wang | Feb 2003 | B2 |
6551210 | Miller | Apr 2003 | B2 |
6575047 | Reik et al. | Jun 2003 | B2 |
6676559 | Miller | Jan 2004 | B2 |
6679109 | Gierling et al. | Jan 2004 | B2 |
6689012 | Miller | Feb 2004 | B2 |
6805654 | Nishii | Oct 2004 | B2 |
6931316 | Joe et al. | Aug 2005 | B2 |
6945903 | Miller | Sep 2005 | B2 |
6949049 | Miller | Sep 2005 | B2 |
6991579 | Kobayashi et al. | Jan 2006 | B2 |
7011600 | Miller et al. | Mar 2006 | B2 |
7011601 | Miller | Mar 2006 | B2 |
7014591 | Miller | Mar 2006 | B2 |
7032914 | Miller | Apr 2006 | B2 |
7036620 | Miller et al. | May 2006 | B2 |
7044884 | Miller | May 2006 | B2 |
7063640 | Miller | Jun 2006 | B2 |
7074007 | Miller | Jul 2006 | B2 |
7074154 | Miller | Jul 2006 | B2 |
7074155 | Miller | Jul 2006 | B2 |
7086979 | Frenken | Aug 2006 | B2 |
7111860 | Grimaldos | Sep 2006 | B1 |
7112158 | Miller | Sep 2006 | B2 |
7112159 | Miller et al. | Sep 2006 | B2 |
7125297 | Miller et al. | Oct 2006 | B2 |
7131930 | Miller et al. | Nov 2006 | B2 |
7140999 | Miller | Nov 2006 | B2 |
7147586 | Miller et al. | Dec 2006 | B2 |
7153233 | Miller et al. | Dec 2006 | B2 |
7156770 | Miller | Jan 2007 | B2 |
7160222 | Miller | Jan 2007 | B2 |
7163485 | Miller | Jan 2007 | B2 |
7163486 | Miller et al. | Jan 2007 | B2 |
7166052 | Miller et al. | Jan 2007 | B2 |
7166056 | Miller et al. | Jan 2007 | B2 |
7166057 | Miller et al. | Jan 2007 | B2 |
7166058 | Miller et al. | Jan 2007 | B2 |
7169076 | Miller et al. | Jan 2007 | B2 |
7172529 | Miller et al. | Feb 2007 | B2 |
7175564 | Miller | Feb 2007 | B2 |
7175565 | Miller et al. | Feb 2007 | B2 |
7175566 | Miller et al. | Feb 2007 | B2 |
7192381 | Miller et al. | Mar 2007 | B2 |
7197915 | Luh et al. | Apr 2007 | B2 |
7198582 | Miller et al. | Apr 2007 | B2 |
7198583 | Miller et al. | Apr 2007 | B2 |
7198584 | Miller et al. | Apr 2007 | B2 |
7198585 | Miller et al. | Apr 2007 | B2 |
7201693 | Miller et al. | Apr 2007 | B2 |
7201694 | Miller et al. | Apr 2007 | B2 |
7201695 | Miller et al. | Apr 2007 | B2 |
7204777 | Miller et al. | Apr 2007 | B2 |
7214159 | Miller et al. | May 2007 | B2 |
7217215 | Miller et al. | May 2007 | B2 |
7217219 | Miller | May 2007 | B2 |
7232395 | Miller et al. | Jun 2007 | B2 |
7235031 | Miller et al. | Jun 2007 | B2 |
7238136 | Miller et al. | Jul 2007 | B2 |
7238137 | Miller et al. | Jul 2007 | B2 |
7238138 | Miller et al. | Jul 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7250018 | Miller et al. | Jul 2007 | B2 |
7261663 | Miller et al. | Aug 2007 | B2 |
7275610 | Kuang et al. | Oct 2007 | B2 |
7288043 | Miller et al. | Oct 2007 | B2 |
7320660 | Miller | Jan 2008 | B2 |
7322901 | Miller et al. | Jan 2008 | B2 |
20010008192 | Morisawa | Jul 2001 | A1 |
20020153695 | Wang | Oct 2002 | A1 |
20030022753 | Mizuno et al. | Jan 2003 | A1 |
20030176247 | Gottschalk | Sep 2003 | A1 |
20030221892 | Matsumoto et al. | Dec 2003 | A1 |
20050178893 | Miller et al. | Aug 2005 | A1 |
20050227809 | Bitzer et al. | Oct 2005 | A1 |
20060084549 | Smithson et al. | Apr 2006 | A1 |
20060108956 | Clark | May 2006 | A1 |
20060180363 | Uchisasai | Aug 2006 | A1 |
20070041823 | Miller | Feb 2007 | A1 |
20070049450 | Miller | Mar 2007 | A1 |
20070142161 | Miller | Jun 2007 | A1 |
20070155567 | Miller et al. | Jul 2007 | A1 |
20070155580 | Nichols et al. | Jul 2007 | A1 |
20070167275 | Miller | Jul 2007 | A1 |
20070167277 | Miller | Jul 2007 | A1 |
20070167278 | Miller | Jul 2007 | A1 |
20070167279 | Miller | Jul 2007 | A1 |
20070167280 | Miller | Jul 2007 | A1 |
20070179013 | Miller et al. | Aug 2007 | A1 |
20070197337 | Miller et al. | Aug 2007 | A1 |
20070228687 | Parker | Oct 2007 | A1 |
20070270265 | Miller et al. | Nov 2007 | A1 |
20070270266 | Miller et al. | Nov 2007 | A1 |
20070270267 | Miller et al. | Nov 2007 | A1 |
20070270268 | Miller et al. | Nov 2007 | A1 |
20070270269 | Miller et al. | Nov 2007 | A1 |
20070270270 | Miller et al. | Nov 2007 | A1 |
20070270271 | Miller et al. | Nov 2007 | A1 |
20070270272 | Miller et al. | Nov 2007 | A1 |
20070270278 | Miller et al. | Nov 2007 | A1 |
20070275809 | Miller et al. | Nov 2007 | A1 |
20070281819 | Miller et al. | Dec 2007 | A1 |
20070287577 | Miller | Dec 2007 | A1 |
20070287578 | Miller | Dec 2007 | A1 |
20070287579 | Miller et al. | Dec 2007 | A1 |
20070287580 | Miller | Dec 2007 | A1 |
20080032852 | Smithson et al. | Feb 2008 | A1 |
20080032853 | Smithson et al. | Feb 2008 | A1 |
20080032854 | Smithson et al. | Feb 2008 | A1 |
20080034585 | Smithson et al. | Feb 2008 | A1 |
20080034586 | Smithson et al. | Feb 2008 | A1 |
20080039269 | Smithson et al. | Feb 2008 | A1 |
20080039270 | Smithson et al. | Feb 2008 | A1 |
20080039271 | Smithson et al. | Feb 2008 | A1 |
20080039272 | Smithson et al. | Feb 2008 | A1 |
20080039273 | Smithson et al. | Feb 2008 | A1 |
20080039274 | Smithson et al. | Feb 2008 | A1 |
20080039275 | Smithson et al. | Feb 2008 | A1 |
20080039276 | Smithson et al. | Feb 2008 | A1 |
20080039277 | Smithson et al. | Feb 2008 | A1 |
20080040008 | Smithson et al. | Feb 2008 | A1 |
20080070729 | Miller et al. | Mar 2008 | A1 |
20080073136 | Miller et al. | Mar 2008 | A1 |
20080073137 | Miller et al. | Mar 2008 | A1 |
20080073467 | Miller et al. | Mar 2008 | A1 |
20080079236 | Miller et al. | Apr 2008 | A1 |
20080081715 | Miller et al. | Apr 2008 | A1 |
20080085795 | Miller et al. | Apr 2008 | A1 |
20080085796 | Miller et al. | Apr 2008 | A1 |
20080085797 | Miller et al. | Apr 2008 | A1 |
20080085798 | Miller et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
118064 | Dec 1926 | CH |
1157379 | Aug 1997 | CN |
498 701 | May 1930 | DE |
2 310880 | Sep 1974 | DE |
2 136 243 | Jan 1975 | DE |
39 40 919 | Jun 1991 | DE |
10155372 | May 2003 | DE |
0 432 742 | Dec 1990 | EP |
635639 | Jan 1995 | EP |
1136724 | Sep 2001 | EP |
1811202 | Jul 2007 | EP |
620375 | Apr 1927 | FR |
2590638 | May 1987 | FR |
592320 | Sep 1947 | GB |
906 002 | Sep 1962 | GB |
1 376 057 | Dec 1974 | GB |
2 035 482 | Jun 1980 | GB |
2 080 452 | Aug 1982 | GB |
42-2844 | Feb 1967 | JP |
48-54371 | Jul 1973 | JP |
51-150380 | Dec 1976 | JP |
47-20535 | Aug 1977 | JP |
53 048166 | Jan 1978 | JP |
55-135259 | Apr 1979 | JP |
59069565 | Apr 1984 | JP |
63219953 | Sep 1988 | JP |
02157483 | Jun 1990 | JP |
02271142 | Jun 1990 | JP |
52-35481 | Sep 1993 | JP |
08170706 | Jul 1996 | JP |
09024743 | Jan 1997 | JP |
411063130 | Mar 1999 | JP |
2004162652 | Jun 2004 | JP |
8-247245 | Sep 2004 | JP |
2005240928 | Sep 2005 | JP |
98467 | Jul 1961 | NE |
WO 2007077502 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080073136 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60799601 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11747068 | May 2007 | US |
Child | 11951974 | US |