Continuously variable transmission and an infinitely variable transmission variator drive

Abstract
A transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of integrating a clutching capability within the transmission. The variable transmissions can be operated in at least two different operating modes, depending on an engagement status of the clutches therein. Methods of running the variable transmissions and drivelines that incorporate such variable transmissions are provided.
Description
BACKGROUND FOR THE PRESENT DISCLOSURE

A vehicle having a driveline including a continuously variable transmission allows an operator of the vehicle or a control system of the vehicle to vary a drive ratio in a stepless manner, permitting a power source of the vehicle to operate at its most efficient rotational speed. Further, the continuously variable transmission may be configured to be an infinitely variable transmission, wherein the vehicle can be steplessly shifted from a forward mode to a neutral mode or even to a reverse mode. Continuously variable transmissions known in the art tend to have limited ratio ranges and typically require the use of a torque convertor or a separate clutching mechanism to facilitate stopping and starting the vehicle.


SUMMARY OF THE PRESENT DISCLOSURE

Provided herein is a transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of integrating a clutching capability within the transmission. The ratio range resulting from the configurations described herein, or obvious to one of skill in the art having read such disclosure will be wider than the variator range and sufficient for a vehicle.


Provided herein is a variable transmission comprising: an input shaft; an output shaft; and a first ring assembly rotatably disposed in a housing selectively drivingly engaged with the input shaft using a clutch, the first ring assembly configured to be prevented from rotating relative to the housing by a grounding clutch and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of variator balls. The variable transmission, in certain embodiments, further comprises a variator carrier assembly rotatably disposed in the housing and drivingly engaged with the input shaft using a sun gear on the input shaft, a plurality of planet gears rotatably disposed in the variator carrier assembly, and a fixed ring gear coupled to the housing, the variator carrier assembly comprising an annular arrangement of the plurality of tiltable variator balls each having ball axle shafts. The variable transmission, in certain embodiments, further comprises a second ring assembly rotatably disposed in the housing drivingly engaged with the output shaft, the second ring assembly comprising a second variator ball engagement surface that is in driving engagement with each of the variator balls. The variable transmission, in certain embodiments, has an infinitely variable operating mode and a continuously variable operating mode.


In some embodiments, the input shaft and the output shaft are at least partially disposed in the housing.


In some embodiments, the input shaft is drivingly engaged with a torsional dampener disposed between an engine and the variable transmission.


In some embodiments, a first middle portion of the input shaft is selectively drivingly engaged with the first ring assembly. In some embodiments, a second middle portion of the input shaft is selectively drivingly engaged with the variator carrier assembly. In some embodiments, a second middle portion of the input shaft forms the sun gear and is drivingly engaged with the variator carrier assembly.


In some embodiments, the input shaft is drivingly engaged with a pump.


In some embodiments, the clutch comprises a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. In some embodiments, the variator carrier assembly comprises a brake clutch which is configured to place the variable transmission in a parking condition.


In some embodiments, the plurality of planet gears are drivingly engaged with the sun gear formed on the input shaft and with the fixed ring gear coupled to the housing.


In some embodiments, the first ring assembly comprises a clutch engagement portion. In some embodiments, the clutch engagement portion extends inwardly from an inner surface of the first ring assembly. In some embodiments, the first ring assembly comprises a grounding clutch engagement portion. In some embodiments, the grounding clutch engagement portion extends outwardly from a surface of the first ring assembly. In some embodiments, the grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly. In some embodiments, the grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the grounding clutch is selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing.


In some embodiments, an output gear formed on an outer surface of the second ring assembly is in driving engagement with a first end of the output shaft. In some embodiments, the output shaft comprises a first end drivingly engaged with second ring assembly through a first output shaft gear formed in the output shaft. In some embodiments, the output shaft comprises a second end drivingly engaged with a vehicle output through a second output shaft gear formed in the output shaft. In some embodiments, the first output shaft gear and the second output shaft gear have differing diameters to adjust a drive ratio between the second ring assembly and the vehicle output.


In some embodiments, the infinitely variable operating mode exists when the clutch is placed in a disengaged position, and the grounding clutch is placed in an engaged position. In some embodiments, the continuously variable operating mode exists when the clutch is placed in an engaged position, and the grounding clutch is placed in a disengaged position. In some embodiments, in the continuously variable operating mode the first ring assembly and the variator carrier assembly rotate in similar directions but at differing rates. In some embodiments, a mode of the transmission depends on the engagement status of the clutch and the grounding clutch.


Provided herein is a variable transmission comprising: an input shaft and a first ring assembly rotatably disposed in a housing, the first ring assembly drivingly engaged with the input shaft using a plurality of double planet gears rotatably disposed on the first ring assembly, the first ring assembly configured to be prevented from rotating relative to the housing by a second grounding clutch, and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of tiltable variator balls. The variable transmission of some embodiments comprises a variator carrier assembly rotatably disposed in the housing and configured to be militated from rotating relative to the housing by a first grounding clutch, the variator carrier assembly comprising a drive shaft drivingly engaged using a second sun gear engaged with a second gear of each of the double planet gears, and an annular arrangement of the plurality of tiltable variator balls each having ball axle shafts. The variable transmission of some embodiments comprises a second ring assembly rotatably disposed in the housing drivingly engaged with a vehicle output, the second ring assembly comprising and a second variator ball engagement surface that is in driving engagement with each of the variator balls. In some embodiments, said transmission has an infinitely variable operating mode and a continuously variable operating mode.


In some embodiments, the input shaft is at least partially disposed in the housing.


In some embodiments, the input shaft is drivingly engaged with a torsional dampener disposed between an engine and the variable transmission.


In some embodiments, a first sun gear is formed on a second end of the input shaft and is drivingly engaged with a first gear of each of the double planet gears. In some embodiments, the first sun gear, the plurality of double planet gears, and the drive shaft form a ringless planetary gearset.


In some embodiments, the first ring assembly driven by the plurality of double planet gears when the variator carrier assembly is fixed is driven when the input shaft is rotated. In some embodiments, the variator carrier assembly driven by the plurality of double planet gears when the first ring assembly is fixed is driven when the input shaft is rotated.


In some embodiments, the variator carrier assembly comprises a first grounding clutch engagement portion that forms of the first grounding clutch. In some embodiments, the first grounding clutch engagement portion extends outwardly from a second end of the variator carrier assembly. In some embodiments, the first grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the first grounding clutch is configured to be selectively variably engaged to militate against a relative rotation from occurring between the variator carrier assembly and the housing. In some embodiments, the first grounding clutch is a plate clutch. In some embodiments, the first grounding clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. In some embodiments, the first ring assembly is selectively drivingly engaged with the input shaft using the first grounding clutch.


In some embodiments, the first ring assembly comprises a second grounding clutch engagement portion. In some embodiments, the second grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly. In some embodiments, the second grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the second grounding clutch may be selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing. In some embodiments, the second grounding clutch is a plate clutch. In some embodiments, the second grounding clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. In some embodiments, the first variator carrier assembly may be selectively drivingly engaged with the input shaft using the second grounding clutch.


In some embodiments, the second ring assembly comprises an output gear formed in an outer surface of the second ring assembly. In some embodiments, the output gear is in driving engagement with the vehicle output.


In some embodiments, an operating mode of the variable transmission is dependent on an engagement status of the first grounding clutch and the second grounding clutch. In some embodiments, the continuously variable operating mode is achieved when the first grounding clutch is engaged and the second grounding clutch is disengaged. In some embodiments, the infinitely variable operating mode is achieved when the first grounding clutch is disengaged and the second grounding clutch is engaged


Provided herein is a variable transmission comprising: an input member; an output shaft; and a first ring assembly rotatably disposed in a housing, the first ring assembly selectively drivingly engaged with the input member using a first clutch, the first ring assembly configured to be prevented from rotating relative to the housing by a second grounding clutch, and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of variator balls. In some embodiments, the variable transmission comprises a variator carrier assembly rotatably disposed in the housing and selectively drivingly engaged with the input member using a second clutch, the variator carrier assembly comprising a first grounding clutch engagement portion that selectively variably engages a portion of the first grounding clutch to mitigate against relative rotation between the first ring assembly and the housing, and an annular arrangement of the plurality of variator balls each having ball axle shafts. In some embodiments, the variable transmission comprises a second ring assembly rotatably disposed in the housing drivingly engaged with the output shaft, the second ring assembly comprising and a second variator ball engagement surface that is in driving engagement with each of the variator balls. In some embodiments, the variable transmission has an infinitely variable operating mode and a continuously variable operating mode.


In some embodiments, the input member and the output shaft are at least partially disposed in the housing.


In some embodiments, the input member has a first end drivingly engaged with a pump. In some embodiments, the input member is drivingly engaged with an engine. In some embodiments, the input member is drivingly engaged to the engine through at least one or more of a dampener and a pump. In some embodiments, the dampener is a torsional dampener.


In some embodiments, a second end inner surface of the input member is selectively drivingly engaged with the first ring assembly using the first clutch. In some embodiments, the first clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged.


In some embodiments, the first ring assembly comprises a first clutch engagement portion. In some embodiments, the first clutch engagement portion extends outwardly from a distal end of the first ring assembly. In some embodiments, the first clutch engagement portion is a portion of the first clutch.


In some embodiments, the first ring assembly comprises a second grounding clutch engagement portion. In some embodiments, the second grounding clutch engagement portion extends outwardly from a distal end of the first ring assembly. In some embodiments, the second grounding clutch engagement portion is a portion of the second grounding clutch. In some embodiments, the second grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the second grounding clutch is selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing.


In some embodiments, a second end outer surface of the input member is selectively drivingly engaged with the variator carrier assembly using the second clutch. In some embodiments, the second clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged.


In some embodiments, the variator carrier assembly comprises a second clutch engagement portion. In some embodiments, the second clutch engagement portion extends inwardly from an inner surface of the variator carrier assembly. In some embodiments, the second clutch engagement portion is a portion of the second clutch. In some embodiments, when the second clutch is placed in an engaged position the variator carrier assembly is drivingly engaged with the input member.


In some embodiments, a distal end of the variator carrier assembly comprises the first grounding clutch engagement portion. In some embodiments, first grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly. In some embodiments, the first grounding clutch engagement portion forms a portion of the first grounding clutch.


In some embodiments, the second ring assembly comprises an output gear formed in an outer surface thereof. In some embodiments, the second ring assembly is in driving engagement with a first end of the output shaft. In some embodiments, the output shaft comprises a first end drivingly engaged with the second ring assembly through a first gear formed in the output shaft and a second end drivingly engaged with the vehicle output through a second gear formed in the output shaft. In some embodiments, the first gear and the second gear have differing diameters to adjust a drive ratio between the second ring assembly and the vehicle output.


In some embodiments, an operating mode of the variable transmission is dependent on an engagement status of the first clutch, the second clutch, the first grounding clutch, and the second grounding clutch.


In some embodiments, the continuously variable operating mode is achieved when the first clutch is placed in the engaged position, the second clutch is placed in a disengaged position, the first grounding clutch is placed in the engaged position, and the second grounding clutch is placed in a disengaged position. In some embodiments, when in the continuously variable operating mode, the first ring assembly is drivingly engaged with the first ring assembly input shaft. In some embodiments, when in the continuously variable operating mode, each of the variator balls rotate about their axis to transfer torque from the first ring assembly to the second ring assembly, and to a vehicle output through the output shaft. In some embodiments, when in the continuously variable operating mode and when the ball axle shafts are tilted within the variator carrier assembly, a drive ratio between the first ring assembly and the second ring assembly is adjusted.


In some embodiments, the infinitely variable operating mode is achieved when the first clutch is placed in a disengaged position, the second clutch is placed in the engaged position, the first grounding clutch is placed in a disengaged position, and the second grounding clutch is placed in the engaged position. In some embodiments, when in the infinitely variable operating mode, the variator carrier assembly is drivingly engaged with the first ring assembly input shaft and the first ring assembly is fixed with respect to the housing. In some embodiments, when in the infinitely variable operating mode, and when the ball axle shafts are tilted within the variator carrier assembly, a drive ratio between the variator carrier assembly and the second ring assembly is adjusted to one of a forward operating mode, a powered neutral, and a reverse operating mode.


In some embodiments, the variable transmission comprises an axial force generator configured to generate sufficient axial force to properly operate the vehicle transmission. In some embodiments, the axial force generator comprises one or more clamping mechanisms. In some embodiments, the axial force generator comprises a ball ramp. In some embodiments, the axial force generator comprises a ball ramp thrust ring. In some embodiments, the axial force generator comprises a load applied during assembly of the variable transmission.


In some embodiments, each of the ball axle shafts is adjusted using a cam style tilting mechanism. In some embodiments, each of the ball axle shafts is adjusted using a split carrier axle skewing mechanism.


In some embodiments, the first variator ball engagement surface is formed in a distal end of the first ring assembly. In some embodiments, the first variator ball engagement surface is formed in an input ring of the first ring assembly. In some embodiments, the second variator ball engagement surface is formed in a distal end of the first ring assembly. In some embodiments, the first variator ball engagement surface is a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls. In some embodiments, the second variator ball engagement surface is a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls. In some embodiments, the first variator ball engagement surface is in driving engagement with each of the variator balls through one of a boundary layer type friction and an elastohydrodynamic film. In some embodiments, the second variator ball engagement surface is in driving engagement with each of the variator balls through one of a boundary layer type friction and an elastohydrodynamic film.


Provided herein is a vehicle driveline comprising the variable transmission of any arrangement disclosed herein or obvious to one of skill in the art upon reading the disclosure herein, wherein the variable transmission is disposed between an engine and a vehicle output. In some embodiments, the vehicle output comprises a differential and a drive axle.


In some embodiments, the vehicle driveline comprises a torsional dampener disposed between the engine and the variable transmission. In some embodiments, the torsional dampener comprises at least one torsional spring.


Provided herein is a method of changing from between a continuously variable transmission mode, and an infinitely variable transmission mode, comprising engaging or disengaging a clutch and a grounding clutch of the variable transmissions of any arrangement disclosed herein with reference to FIG. 1 or obvious to one of skill in the art upon reading the disclosure herein.


Provided herein is a method of changing from between a continuously variable transmission mode, and an infinitely variable transmission mode, comprising engaging or disengaging a first grounding clutch and a second grounding clutch of the variable transmissions of any arrangement disclosed herein with reference to FIG. 2 or obvious to one of skill in the art upon reading the disclosure herein.


Provided herein is a method of changing from between a continuously variable transmission mode, and an infinitely variable transmission mode, comprising engaging or disengaging first clutch, the second clutch, the first grounding clutch, and the second grounding clutch of the variable transmissions of any arrangement disclosed herein with reference to FIG. 3 or obvious to one of skill in the art upon reading the disclosure herein.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 depicts an embodiment of a vehicle driveline comprising a variable transmission including a planetary gearset located between an engine and a vehicle output.



FIG. 2 depicts an embodiment of a variable transmission including a plurality of double planet gears located between an engine and a vehicle output.



FIG. 3 depicts an embodiment of a variable transmission including two clutches and two grounding clutches located between an engine and a vehicle output.



FIG. 4 is a cutaway view of a currently known and used continuously variable transmission (CVT).



FIG. 5 is a magnified cutaway view of a ball and ring of the CVT of FIG. 4.





DETAILED DESCRIPTION OF THE INVENTION

Provided herein is a transmission having a variator drive capable of being placed in a continuously variable operating mode or an infinitely variable operating mode, capable of having a wide ratio range, and capable of integrating a clutching capability within the transmission. The ratio range resulting from the configurations described herein, or obvious to one of skill in the art having read such disclosure will be wider than the variator range and sufficient for a vehicle. Additional variable transmission details are described in U.S. application Ser. No. 13/743,951 filed Jan. 17, 2013, and/or PCT/US2013/026037 filed Feb. 14, 2013, incorporated herein by reference in their entirety.


In a vehicle, a variable transmission 2a, 2b, 2c may be used to replace a conventional transmission and a clutch in a vehicle driveline. As a non-limiting example, the variable transmission 2a, 2b, 2c that employ a ball type Continuously Variable Transmission (CVT, which is also known as CVP for constant variable planetary, herein) and may replace a conventional transmission and a clutch in a vehicle, such as a front wheel drive automobile. The transmissions disclosed herein may be used in any vehicle type that needs or uses a transmission.


Basic concepts of a ball type Continuously Variable Transmissions are described in US2006084549 and AU2011224083A1, incorporated herein by reference in their entirety. Such a CVT, adapted herein as described throughout this specification, comprises a number of balls, depending on the application, two discs with a conical surface contact with the balls, as input and output, and an idler as shown on FIG. 4. The type of CVT provided herein comprises a variator comprising a plurality of variator balls, depending on the application, two discs or annular rings 995, 996 each having an engagement portion that engages the variator balls 997, at least. The engagement portions are optionally in a conical or toroidal convex or concave surface contact with the variator balls, as input (995) and output (996). The variator optionally includes an idler 999 contacting the balls as well as shown on FIG. 4. The variator balls are mounted on axles 998, themselves held in a cage or carrier allowing charming the ratio by tilting the variator balls' axes. The balls are mounted on axes, themselves held in a cage or carrier allowing changing the ratio by tilting the ball's axes. Other types of ball CVTs also exist, like the one produced by Milner but are slightly different.


The working principle of such a CVT of FIG. 4 is shown on FIG. 5. The CVP itself works with a traction fluid. The lubricant between the ball and the conical rings acts as a solid at high pressure, transferring the power from the input ring, through the balls, to the output ring. By tilting the ball's axis, the ratio can be changed between input and output. When the axis is horizontal the ratio is one, when the axis is tilted the distance between the axis and the contact point change, modifying the overall ratio. All the ball's axes are tilted at the same time with a mechanism included in the cage. In a car, the CVT is used to replace traditional transmission and is located between the engine and the differential, at least.


The variable transmission 2a, 2b, 2c is located between an engine 4 and a vehicle output 6 as shown in FIG. 1, 2, or 3. The vehicle output 6 is a differential 54 and a drive axle; however, it is understood that other vehicle outputs may be used. The vehicle output may comprise bearings 12a, 12b, 12c, 12d, (not shown in FIG. 2) and wheels 24a, 24b of the vehicle. A torsional dampener 16 (not shown in FIG. 1 or FIG. 2) may also be included, the torsional dampener 16 disposed between the engine 4 and the variable transmission 2a, 2b to reduce vibration and torque peaks.


Thus, provided herein is a variable transmission comprising: an input shaft; an output shaft; and a first ring assembly rotatably disposed in a housing selectively drivingly engaged with the input shaft using a clutch, the first ring assembly configured to be prevented from rotating relative to the housing by a grounding clutch and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of variator balls. The variable transmission, in certain embodiments, further comprises a variator carrier assembly rotatably disposed in the housing and drivingly engaged with the input shaft using a sun gear on the input shaft, a plurality of planet gears rotatably disposed in the variator carrier assembly, and a fixed ring gear coupled to the housing, the variator carrier assembly comprising an annular arrangement of the plurality of tiltable variator balls each having ball axle shafts. The variable transmission, in certain embodiments, further comprises a second ring assembly rotatably disposed in the housing drivingly engaged with the output shaft, the second ring assembly comprising a second variator ball engagement surface that is in driving engagement with each of the variator balls. The variable transmission, in certain embodiments, has an infinitely variable operating mode and a continuously variable operating mode.


In some embodiments, the input shaft and the output shaft are at least partially disposed in the housing.


In some embodiments, the input shaft is drivingly engaged with a torsional dampener disposed between an engine and the variable transmission.


In some embodiments, a first middle portion of the input shaft is selectively drivingly engaged with the first ring assembly. In some embodiments, a second middle portion of the input shaft is selectively drivingly engaged with the variator carrier assembly. In some embodiments, a second middle portion of the input shaft forms the sun gear and is drivingly engaged with the variator carrier assembly.


In some embodiments, the input shaft is drivingly engaged with a pump.


In some embodiments, the clutch comprises a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. In some embodiments, the variator carrier assembly comprises a brake clutch which is configured to place the variable transmission in a parking condition.


In some embodiments, the plurality of planet gears are drivingly engaged with the sun gear formed on the input shaft and with the fixed ring gear coupled to the housing.


In some embodiments, the first ring assembly comprises a clutch engagement portion. In some embodiments, the clutch engagement portion extends inwardly from an inner surface of the first ring assembly. In some embodiments, the first ring assembly comprises a grounding clutch engagement portion. In some embodiments, the grounding clutch engagement portion extends outwardly from a surface of the first ring assembly. In some embodiments, the grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly. In some embodiments, the grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the grounding clutch is selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing.


In some embodiments, an output gear formed on an outer surface of the second ring assembly is in driving engagement with a first end of the output shaft. In some embodiments, the output shaft comprises a first end drivingly engaged with second ring assembly through a first output shaft gear formed in the output shaft. In some embodiments, the output shaft comprises a second end drivingly engaged with a vehicle output through a second output shaft gear formed in the output shaft. In some embodiments, the first output shaft gear and the second output shaft gear have differing diameters to adjust a drive ratio between the second ring assembly and the vehicle output.


In some embodiments, the infinitely variable operating mode exists when the clutch is placed in a disengaged position, and the grounding clutch is placed in an engaged position. In some embodiments, the continuously variable operating mode exists when the clutch is placed in an engaged position, and the grounding clutch is placed in a disengaged position. In some embodiments, in the continuously variable operating mode the first ring assembly and the variator carrier assembly rotate in similar directions but at differing rates. In some embodiments, a mode of the transmission depends on the engagement status of the clutch and the grounding clutch.


Provided herein is a variable transmission comprising: an input shaft and a first ring assembly rotatably disposed in a housing, the first ring assembly drivingly engaged with the input shaft using a plurality of double planet gears rotatably disposed on the first ring assembly, the first ring assembly configured to be prevented from rotating relative to the housing by a second grounding clutch, and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of tiltable variator balls. The variable transmission of some embodiments comprises a variator carrier assembly rotatably disposed in the housing and configured to be militated from rotating relative to the housing by a first grounding clutch, the variator carrier assembly comprising a drive shaft drivingly engaged using a second sun gear engaged with a second gear of each of the double planet gears, and an annular arrangement of the plurality of tiltable variator balls each having ball axle shafts. The variable transmission of some embodiments comprises a second ring assembly rotatably disposed in the housing drivingly engaged with a vehicle output, the second ring assembly comprising and a second variator ball engagement surface that is in driving engagement with each of the variator balls. In some embodiments, said transmission has an infinitely variable operating mode and a continuously variable operating mode.


In some embodiments, the input shaft is at least partially disposed in the housing.


In some embodiments, the input shaft is drivingly engaged with a torsional dampener disposed between an engine and the variable transmission.


In some embodiments, a first sun gear is formed on a second end of the input shaft and is drivingly engaged with a first gear of each of the double planet gears. In some embodiments, the first sun gear, the plurality of double planet gears, and the drive shaft form a ringless planetary gearset.


In some embodiments, the first ring assembly driven by the plurality of double planet gears when the variator carrier assembly is fixed is driven when the input shaft is rotated. In some embodiments, the variator carrier assembly driven by the plurality of double planet gears when the first ring assembly is fixed is driven when the input shaft is rotated.


In some embodiments, the variator carrier assembly comprises a first grounding clutch engagement portion that forms of the first grounding clutch. In some embodiments, the first grounding clutch engagement portion extends outwardly from a second end of the variator carrier assembly. In some embodiments, the first grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the first grounding clutch is configured to be selectively variably engaged to militate against a relative rotation from occurring between the variator carrier assembly and the housing. In some embodiments, the first grounding clutch is a plate clutch. In some embodiments, the first grounding clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. In some embodiments, the first ring assembly is selectively drivingly engaged with the input shaft using the first grounding clutch.


In some embodiments, the first ring assembly comprises a second grounding clutch engagement portion. In some embodiments, the second grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly. In some embodiments, the second grounding clutch is at least partially disposed on an inner surface of the housing, In some embodiments, the second grounding clutch may be selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing. In some embodiments, the second grounding clutch is a plate clutch. In some embodiments, the second grounding clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. In some embodiments, the first variator carrier assembly may be selectively drivingly engaged with the input shaft using the second grounding clutch.


In some embodiments, the second ring assembly comprises an output gear formed in an outer surface of the second ring assembly. In some embodiments, the output gear is in driving engagement with the vehicle output.


In some embodiments, an operating mode of the variable transmission is dependent on an engagement status of the first grounding clutch and the second grounding clutch. In some embodiments, the continuously variable operating mode is achieved when the first grounding clutch is engaged and the second grounding clutch is disengaged. In some embodiments, the infinitely variable operating mode is achieved when the first grounding clutch is disengaged and the second grounding clutch is engaged.


Provided herein is a variable transmission comprising: an input member; an output shaft; and a first ring assembly rotatably disposed in a housing, the first ring assembly selectively drivingly engaged with the input member using a first clutch, the first ring assembly configured to be prevented from rotating relative to the housing by a second grounding clutch, and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of variator balls. In some embodiments, the variable transmission comprises a variator carrier assembly rotatably disposed in the housing and selectively drivingly engaged with the input member using a second clutch, the variator carrier assembly comprising a first grounding clutch engagement portion that selectively variably engages a portion of the first grounding clutch to mitigate against relative rotation between the first ring assembly and the housing, and an annular arrangement of the plurality of variator balls each having ball axle shafts. In some embodiments, the variable transmission comprises a second ring assembly rotatably disposed in the housing drivingly engaged with the output shaft, the second ring assembly comprising and a second variator ball engagement surface that is in driving engagement with each of the variator balls. In some embodiments, the variable transmission has an infinitely variable operating mode and a continuously variable operating mode.


In some embodiments, the input member and the output shaft are at least partially disposed in the housing.


In some embodiments, the input member has a first end drivingly engaged with a pump. In some embodiments, the input member is drivingly engaged with an engine. In some embodiments, the input member is drivingly engaged to the engine through at least one or more of a dampener and a pump. In some embodiments, the dampener is a torsional dampener.


In some embodiments, a second end inner surface of the input member is selectively drivingly engaged with the first ring assembly using the first clutch. In some embodiments, the first clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged.


In some embodiments, the first ring assembly comprises a first clutch engagement portion. In some embodiments, the first clutch engagement portion extends outwardly from a distal end of the first ring assembly. In some embodiments, the first clutch engagement portion is a portion of the first clutch.


In some embodiments, the first ring assembly comprises a second grounding clutch engagement portion. In some embodiments, the second grounding clutch engagement portion extends outwardly from a distal end of the first ring assembly. In some embodiments, the second grounding clutch engagement portion is a portion of the second grounding clutch. In some embodiments, the second grounding clutch is at least partially disposed on an inner surface of the housing. In some embodiments, the second grounding clutch is selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing.


In some embodiments, a second end outer surface of the input member is selectively drivingly engaged with the variator carrier assembly using the second clutch. In some embodiments, the second clutch is a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged.


In some embodiments, the variator carrier assembly comprises a second clutch engagement portion. In some embodiments, the second clutch engagement portion extends inwardly from an inner surface of the variator carrier assembly. In some embodiments, the second clutch engagement portion is a portion of the second clutch. In some embodiments, when the second clutch is placed in an engaged position the variator carrier assembly is drivingly engaged with the input member.


In some embodiments, a distal end of the variator carrier assembly comprises the first grounding clutch engagement portion. In some embodiments, first grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly. In some embodiments, the first grounding clutch engagement portion forms a portion of the first grounding clutch.


In some embodiments, the second ring assembly comprises an output gear formed in an outer surface thereof. In some embodiments, the second ring assembly is in driving engagement with a first end of the output shaft. In some embodiments, the output shaft comprises a first end drivingly engaged with the second ring assembly through a first gear formed in the output shaft and a second end drivingly engaged with the vehicle output through a second gear formed in the output shaft. In some embodiments, the first gear and the second gear have differing diameters to adjust a drive ratio between the second ring assembly and the vehicle output.


In some embodiments, an operating mode of the variable transmission is dependent on an engagement status of the first clutch, the second clutch, the first grounding clutch, and the second grounding clutch.


In some embodiments, the continuously variable operating mode is achieved when the first clutch is placed in the engaged position, the second clutch is placed in a disengaged position, the first grounding clutch is placed in the engaged position, and the second grounding clutch is placed in a disengaged position. In some embodiments, when in the continuously variable operating mode, the first ring assembly is drivingly engaged with the first ring assembly input shaft. In some embodiments, when in the continuously variable operating mode, each of the variator balls rotate about their axis to transfer torque from the first ring assembly to the second ring assembly, and to a vehicle output through the output shaft. In some embodiments, when in the continuously variable operating mode and when the ball axle shafts are tilted within the variator carrier assembly, a drive ratio between the first ring assembly and the second ring assembly is adjusted.


In some embodiments, the infinitely variable operating mode is achieved when the first clutch is placed in a disengaged position, the second clutch is placed in the engaged position, the first grounding clutch is placed in a disengaged position, and the second grounding clutch is placed in the engaged position. In some embodiments, when in the infinitely variable operating mode, the variator carrier assembly is drivingly engaged with the first ring assembly input shaft and the first ring assembly is fixed with respect to the housing. In some embodiments, when in the infinitely variable operating mode, and when the ball axle shafts are tilted within the variator carrier assembly, a drive ratio between the variator carrier assembly and the second ring assembly is adjusted to one of a forward operating mode, a powered neutral, and a reverse operating mode.


In some embodiments, the variable transmission comprises an axial force generator configured to generate sufficient axial force to properly operate the vehicle transmission. In some embodiments, the axial force generator comprises one or more clamping mechanisms. In some embodiments, the axial force generator comprises a ball ramp. In some embodiments, the axial force generator comprises a ball ramp thrust ring. In some embodiments, the axial force generator comprises a load applied during assembly of the variable transmission.


In some embodiments, each of the ball axle shafts is adjusted using a cam style tilting mechanism. In some embodiments, each of the ball axle shafts is adjusted using a split carrier axle skewing mechanism.


In some embodiments, the first variator ball engagement surface is formed in a distal end of the first ring assembly. In some embodiments, the first variator ball engagement surface is formed in an input ring of the first ring assembly. In some embodiments, the second variator ball engagement surface is formed in a distal end of the first ring assembly. In some embodiments, the first variator ball engagement surface is a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls. In some embodiments, the second variator ball engagement surface is a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls. In some embodiments, the first variator ball engagement surface is in driving engagement with each of the variator balls through one of a boundary layer type friction and an elastohydrodynamic film. In some embodiments, the second variator ball engagement surface is in driving engagement with each of the variator balls through one of a boundary layer type friction and an elastohydrodynamic film.


Provided herein is a vehicle driveline comprising the variable transmission of any arrangement disclosed herein or obvious to one of skill in the art upon reading the disclosure herein, wherein the variable transmission is disposed between an engine and a vehicle output. In some embodiments, the vehicle output comprises a differential and a drive axle.


In some embodiments, the vehicle driveline comprises a torsional dampener disposed between the engine and the variable transmission. In some embodiments, the torsional dampener comprises at least one torsional spring.


Provided herein is a method of changing from between a continuously variable transmission mode, and an infinitely variable transmission mode, comprising engaging or disengaging a clutch and a grounding clutch of the variable transmissions of any arrangement disclosed herein with reference to FIG. 1 or obvious to one of skill in the art upon reading the disclosure herein.


Provided herein is a method of changing from between a continuously variable transmission mode, and an infinitely variable transmission mode, comprising engaging or disengaging a first grounding clutch and a second grounding clutch of the variable transmissions of any arrangement disclosed herein with reference to FIG. 2 or obvious to one of skill in the art upon reading the disclosure herein.


Provided herein is a method of changing from between a continuously variable transmission mode, and an infinitely variable transmission mode, comprising engaging or disengaging first clutch, the second clutch, the first grounding clutch, and the second grounding clutch of the variable transmissions of any arrangement disclosed herein with reference to FIG. 3 or obvious to one of skill in the art upon reading the disclosure herein.


Thus, a first configuration of a vehicle driveline including a variable transmission 2a according to an embodiment of the invention is shown in FIG. 1. The variable transmission 2a includes an input shaft 20, a variator carrier assembly, a first ring assembly, a second ring assembly, and an output shaft 22. The input shaft 20 and the output shaft 22 are at least partially disposed in a housing (not shown). The variator carrier assembly, the first ring assembly, and the second ring assembly are rotatably disposed in the housing.


Ball ramps, indicated in FIG. 1 by a circle between a pair of vertical lines, making up a first thrust ring on the first ring assembly and a second thrust ring on the second ring assembly are disposed between components of the variable transmission 2a as shown to generate an amount of axial force necessary for proper operation of the variable transmission; however, it is understood that the amount of axial force necessary for proper operation may be generated by a clamping mechanism (not shown) or as a load applied during assembling of the variable transmission.


The input shaft 20 has a first end drivingly engaged with the engine 4, a first middle portion which may be selectively drivingly engaged with the first ring assembly, a second middle portion drivingly engaged with the variator carrier assembly, and a second end drivingly engaged with a pump 56. The first middle portion may be selectively drivingly engaged with the first ring assembly using a clutch 8. The clutch 8 may be a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. The second middle portion forms a sun gear 50 and is drivingly engaged with the variator carrier assembly.


The variator carrier assembly is rotatably disposed in the housing and includes a plurality of ball axle shafts tiltably disposed therein in an annular arrangement. Each of the ball axle shafts includes a variator ball 18a, 18b rotatably disposed thereon. Each of the ball axle shafts may be adjusted using one of a cam style tilting mechanism and a split carrier axle skewing mechanism. Further, it is understood that the variator carrier assembly may include a brake clutch (not shown) which may be used to place the variable transmission in a parking condition. The variator carrier assembly includes a plurality of planet gears 48a, 48b rotatably disposed therein. The plurality of planet gears 48a, 48b are drivingly engaged with the sun gear 50 formed on the input shaft 20 and, thereby, with a fixed ring gear 42 coupled to the housing. The sun gear 50 formed on the input shaft 20, the plurality of planet gears 48a, 48b, and the fixed ring gear 42 form a planetary gearset 10. The plurality of planet gears 48a, 48b, and thus the variator carrier assembly, is driven when the input shaft 20 is rotated. The planet gears 48a, 48b are part of a planetary gearset 10. The sun gear 50 and the fixed ring gear 42 may also be considered part of the planetary gearset. 10.


The first ring assembly is an annular member rotatably disposed in the housing. As mentioned hereinabove, the first ring assembly may be selectively drivingly engaged with the input shaft 20 using the clutch 8. The first ring assembly includes a clutch engagement portion 34 extending inwardly from an inner surface of the first ring assembly. The first ring assembly includes a grounding clutch engagement portion 36 extending outwardly from a surface of the first ring assembly. The grounding clutch engagement portion 36 may extend outwardly from an outer surface of the first ring assembly. A grounding clutch 28 at least partially disposed on an inner surface of the housing may be selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing. A first variator ball engagement surface 38 is formed in a distal end of the first ring assembly. The first variator ball engagement surface 38 may be a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls 18a, 18b. The first variator ball engagement surface 38 is in driving engagement with each of the variator balls 18a, 18b through one of a boundary layer type friction and an elastohydrodynamic film.


The second ring assembly is an annular member rotatably disposed in the housing. The second ring assembly is drivingly engaged with the output shaft. An output gear 58 formed in an outer surface of the second ring assembly is in driving engagement with a first end of the output shaft 22 (output shaft end 44). A second variator ball engagement surface 52 is formed in a distal end of the second ring assembly. The second variator ball engagement surface 52 may be a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls 18a, 18b. The second variator ball engagement surface 52 is in driving engagement with each of the variator balls 18a, 18b through one of a boundary layer type friction and an elastohydrodynamic film.


The output shaft 22 has the first end drivingly engaged with second ring assembly gear 58 through a first output shaft gear or end 44 formed in the output shaft 22 and a second end drivingly engaged with the vehicle output 6 through a second output shaft gear 60 formed in the output shaft 22. It is understood that the first output shaft gear or end 44 and the second output shaft gear 60 may have differing diameters to adjust a drive ratio between the second ring assembly and the vehicle output 6.


The variable transmission 2a as shown in FIG. 1 may be operated in at least two different operating modes, depending on an engagement status of the clutch 8 and the grounding clutch 28. The variable transmission 2a may be operated in a continuously variable operating mode when the clutch 8 is placed in an engaged position and the grounding clutch 28 is placed in a disengaged position. In the continuously variable operating mode, the first ring assembly and the variator carrier assembly rotate in similar directions (but at differing rates) due to the planetary gearset 10. The variable transmission 2a may be operated in an infinitely variable operating mode when the clutch 8 is placed in a disengaged position and the grounding clutch 28 is placed in an engaged position.


A second configuration of a vehicle driveline including a variable transmission 2b according to an embodiment of the invention is shown in FIG. 2. The variable transmission 2b includes an input shaft 20, a variator carrier assembly, a first ring assembly, and a second ring assembly. The input shaft 20 is at least partially disposed in a housing (not shown). The variator carrier assembly, the first ring assembly, and the second ring assembly are rotatably disposed in the housing.


Ball ramps, not shown in FIG. 2, may make up a first thrust ring on the first ring assembly and a second thrust ring on the second ring assembly are disposed between components of the variable transmission 2b as shown to generate an amount of axial force necessary for proper operation of the variable transmission; however, it is understood that the amount of axial force necessary for proper operation may be generated by a clamping mechanism (not shown) or as a load applied during assembling of the variable transmission.


The input shaft 20 has a first end drivingly engaged with the engine and a second end drivingly engaged with the first ring assembly through a plurality of double planet gears 26a, 26b rotatably disposed on the first ring assembly. A first sun gear 50a is formed on the second end of the input shaft 20 and is drivingly engaged with a first gear 40a, 40b of each of the double planet gears 26a, 26b.


The variator carrier assembly is rotatably disposed in the housing and includes a plurality of ball axle shafts tiltably disposed therein in an annular arrangement. Each of the ball axle shafts includes a variator ball 18a, 18b rotatably disposed thereon. Each of the ball axle shafts may be adjusted using one of a cam style tilting mechanism and a split carrier axle skewing mechanism. The variator carrier assembly includes a drive shaft 46 formed in a first end thereof. The drive shaft is drivingly engaged using a second sun gear 50b with a second gear 62a, 62b of each of the double planet gears 26a, 26b. The first sun gear 50a is formed on the input shaft. The first sun gear 50a along with the plurality of double planet gears 26a, 26b and the drive shaft 46 form a ringless planetary gearset. The sun gear 50b is formed on the drive shaft 46. The first ring assembly (driven by the plurality of double planet gears 26a, 26b when the variator carrier assembly is fixed) or the variator carrier assembly (driven by the plurality of double planet gears 26a, 26b when the first ring assembly is fixed) may be driven when the input shaft 20 is rotated.


The variator carrier assembly includes a first grounding clutch engagement portion 66 extending outwardly from a second end of the variator carrier assembly. A first grounding clutch 64 at least partially disposed on an inner surface of the housing may be selectively variably engaged to militate against a relative rotation from occurring between the variator carrier assembly and the housing. As shown in FIG. 2, the first grounding clutch 64 is a plate clutch. The first grounding clutch 64 may be a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. The first ring assembly may be selectively drivingly engaged with the input shaft using the first grounding clutch 64.


The first ring assembly is an annular member rotatably disposed in the housing. The first ring assembly includes a second grounding clutch engagement portion 68 extending outwardly from an outer surface of the first ring assembly. A second grounding clutch 30 at least partially disposed on an inner surface of the housing may be selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing. As shown in FIG. 2, the second grounding clutch 30 is a plate clutch. The second grounding clutch 30 may be a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. The first variator carrier assembly may be selectively drivingly engaged with the input shaft 20 using the second grounding clutch 30.


A first variator ball engagement surface 38 is formed in a distal end of the first ring assembly. The first variator ball engagement surface 38 may be a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls 18a, 18b. The first variator ball engagement surface 38 is in driving engagement with each of the variator balls 18a, 18b through one of a boundary layer type friction and an elastohydrodynamic film.


The second ring assembly is an annular member rotatably disposed in the housing. The second ring assembly is drivingly engaged with the vehicle output. An output gear 58 formed in an outer surface of the second ring assembly is in driving engagement with the vehicle output 6. A second variator ball engagement surface 52 is formed in a distal end of the second ring assembly. The second variator ball engagement surface 52 may be a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls 18a, 18b. The second variator ball engagement surface 52 is in driving engagement with each of the variator balls 18a, 18b through one of a boundary layer type friction and an elastohydrodynamic film.


The variable transmission as shown in FIG. 2 may be operated in at least two different operating modes, depending on an engagement status of the first grounding clutch 64 and the second grounding clutch 30. The variable transmission may be operated in a continuously variable operating mode when the first grounding clutch 64 is placed in an engaged position and the second grounding clutch 30 is placed in a disengaged position. The variable transmission may be operated in an infinitely variable operating mode when the first grounding clutch 64 is placed in a disengaged position and the second grounding clutch 30 is placed in an engaged position.


A third configuration of a vehicle driveline including a variable transmission according to an embodiment of the invention is shown in FIG. 3. The variable transmission includes an input member 32, a variator carrier assembly, a first ring assembly, a second ring assembly, and an output shaft 22. The input member 32 and the output shaft 22 are at least partially disposed in a housing (not shown). The variator carrier assembly, the first ring assembly, and the second ring assembly are rotatably disposed in the housing.


Ball ramps, indicated in FIG. 3 by a circle between a pair of vertical lines, making up a first thrust ring on the first ring assembly and a second thrust ring on the second ring assembly are disposed between components of the variable transmission 2c as shown to generate an amount of axial force necessary for proper operation of the variable transmission; however, it is understood that the amount of axial force necessary for proper operation may be generated by a clamping mechanism (not shown) or as a load applied during assembling of the variable transmission.


The input member 32 has a first end drivingly engaged with a pump 56, a second end inner surface, and a second end outer surface. As shown in FIG. 3, the input member 32 is drivingly engaged with an engine 4 through a dampener 16 and the pump 56; however, it is understood that the input member 32 may be directly drivingly engaged with the engine 4. The second end inner surface 74 may be selectively drivingly engaged with the first ring assembly using a first clutch 70. The first clutch 70 may be a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged. The second end outer surface 76 may be selectively drivingly engaged with the variator carrier assembly using a second clutch 72. The second clutch 72 may be a wet plate clutch, a dry plate clutch, a cone clutch, or any other clutch type that may be variably engaged.


The variator carrier assembly is rotatably disposed in the housing and includes a plurality of ball axle shafts tiltably disposed therein in an annular arrangement. Each of the ball axle shafts includes a variator ball 18a, 18b rotatably disposed thereon. Each of the ball axle shafts may be adjusted using one of a cam style tilting mechanism and a split carrier axle skewing mechanism. A distal end of the variator carrier assembly includes a second clutch engagement portion 78 extending inwardly from an inner surface of the variator carrier assembly; the second clutch engagement portion 78 forming a portion of the second clutch 72. When the second clutch 72 is placed in an engaged position the variator carrier assembly is drivingly engaged with the input member 32. The variator carrier assembly also includes a first grounding clutch engagement portion 66 extending outwardly from an outer surface of the variator carrier assembly at the distal end thereof. A first grounding clutch 64 at least partially disposed on an inner surface of the housing may be selectively variably engaged with the first grounding clutch engagement portion 66 to militate against a relative rotation from occurring between the variator carrier assembly and the housing.


The first ring assembly is an annular member rotatably disposed in the housing. As mentioned hereinabove, the first ring assembly may be selectively drivingly engaged with the input member 32 using the first clutch 70. The first ring assembly includes a first clutch engagement portion 80 extending outwardly from the first ring assembly input shaft 82 at a first distal end thereof. The first ring assembly also includes a second grounding clutch engagement portion 68 extending outwardly from an outer surface of the first ring assembly at a second distal end thereof. A second grounding clutch 30 at least partially disposed on an inner surface of the housing may be selectively variably engaged to militate against a relative rotation from occurring between the first ring assembly and the housing. A first variator ball engagement surface 38 is formed in the first ring assembly. The first variator ball engagement surface 38 may be a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls 18a, 18b. The first variator ball engagement surface 38 is in driving engagement with each of the variator balls 18a, 18b through one of a boundary layer type friction and an elastohydrodynamic film.


The second ring assembly is an annular member rotatably disposed in the housing. The second ring assembly is drivingly engaged with the output shaft 22. An output gear 58 formed in an outer surface of the second ring assembly is in driving engagement with a first end of the output shaft. A second variator ball engagement surface 52 is formed in a distal end of the second ring assembly. The second variator ball engagement surface 52 may be a conical surface or a concave toroidal surface in contact with or slightly spaced apart from each of the variator balls 18a, 18b. The second variator ball engagement surface 52 is in driving engagement with each of the variator balls 18a, 18b through one of a boundary layer type friction and an elastohydrodynamic film.


The output shaft 22 has a first end drivingly engaged with second ring assembly through a first gear 40 formed in the output shaft 22 and a second end drivingly engaged with the vehicle output 6 through a second gear 62 formed in the output shaft 22. It is understood that the first gear 40 and the second gear 62 may have differing diameters to adjust a drive ratio between the second ring assembly and the vehicle output 6.


The variable transmission 2c as shown in FIG. 3 may be operated in at least two different operating modes, depending on an engagement status of the first clutch 70, the second clutch 72, the first grounding clutch 64, and the second grounding clutch 30. The variable transmission 2c may be operated in a continuously variable operating mode or an infinitely variable operating mode. The variable transmission 2c may be operated in the continuously variable operating mode when the first clutch 70 is placed in the engaged position, the second clutch 72 is placed in a disengaged position, the first grounding clutch 64 is placed in the engaged position, and the second grounding clutch 30 is placed in a disengaged position. When placed in the continuously variable operating mode, the first ring assembly is drivingly engaged with the first ring assembly input shaft 82. Each of the variator balls 18a, 18b rotate about their axis to transfer torque from the first ring assembly to the second ring assembly, and to the vehicle output 6 through the output shaft 22. When the ball axle shafts are tilted within the variator carrier assembly, a drive ratio between the first ring assembly and the second ring assembly may be adjusted.


The variable transmission 2c may be operated in the infinitely variable operating mode when the first clutch 70 is placed in a disengaged position, the second clutch 72 is placed in the engaged position, the first grounding clutch 64 is placed in a disengaged position, and the second grounding clutch 30 is placed in the engaged position. When placed in the infinitely variable operating mode, the variator carrier assembly is drivingly engaged with the first ring assembly input shaft 82 and the first ring assembly is fixed with respect to the housing. When the ball axle shafts are tilted within the variator carrier assembly, a drive ratio between the variator carrier assembly and the second ring assembly is adjusted to one of a forward operating mode, a powered neutral, and a reverse operating mode.


While the figures and description herein are directed to ball-type variators (CVTs), another embodiment may use version of a variator (CVT), such as a Variable-diameter pulley (VDP) or Reeves drive, a toroidal or roller-based CVT (Extroid CVT), a Magnetic CVT or mCVT, Ratcheting CVT, Hydrostatic CVTs, Naudic Incremental CVT (iCVT), Cone CVTs, Radial roller CVT, Planetary CVT, or any other version CVT. It is to be understood that the invention may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the specification herein are simply exemplary embodiments of the inventive concepts defined herein. Hence, specific dimensions, directions or other physical characteristics relating to the embodiments disclosed are not to be considered as limiting, unless expressly stated otherwise.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A variable transmission comprising: an input shaft;a first ring assembly rotatably disposed in a housing, the first ring assembly drivingly engaged with the input shaft using a plurality of double planet gears rotatably disposed on the first ring assembly, the first ring assembly configured to be prevented from rotating relative to the housing by a second grounding clutch, and the first ring assembly comprising a first variator ball engagement surface that is in driving engagement with a plurality of tiltable variator balls;a variator carrier assembly rotatably disposed in the housing and configured to be militated from rotating relative to the housing by a first grounding clutch, the variator carrier assembly comprising a drive shaft drivingly engaged using a second sun gear engaged with a second gear of each of the double planet gears, andan annular arrangement of the plurality of tiltable variator balls each having ball axle shafts; anda second ring assembly rotatably disposed in the housing drivingly engaged with a vehicle output, the second ring assembly comprising and a second variator ball engagement surface that is in driving engagement with each of the variator balls,wherein said transmission has an infinitely variable operating mode and a continuously variable operating mode.
  • 2. The variable transmission of claim 1, wherein the input shaft is at least partially disposed in the housing.
  • 3. The variable transmission of claim 1, wherein a first sun gear is formed on a second end of the input shaft and is drivingly engaged with a first gear of each of the double planet gears.
  • 4. The variable transmission of claim 3, wherein the first sun gear, the plurality of double planet gears, and the drive shaft form a ringless planetary gearset.
  • 5. The variable transmission of claim 1, wherein the first ring assembly driven by the plurality of double planet gears when the variator carrier assembly is fixed is driven when the input shaft is rotated.
  • 6. The variable transmission of claim 1, wherein the variator carrier assembly driven by the plurality of double planet gears when the first ring assembly is fixed is driven when the input shaft is rotated.
  • 7. The variable transmission of claim 1, wherein the variator carrier assembly comprises a first grounding clutch engagement portion that forms of the first grounding clutch.
  • 8. The variable transmission of claim 7, wherein the first grounding clutch engagement portion extends outwardly from a second end of the variator carrier assembly.
  • 9. The variable transmission of claim 1, wherein the first ring assembly is selectively drivingly engaged with the input shaft using the first grounding clutch.
  • 10. The variable transmission of claim 1, wherein the first ring assembly comprises a second grounding clutch engagement portion.
  • 11. The variable transmission of claim 10, wherein the second grounding clutch engagement portion extends outwardly from an outer surface of the first ring assembly.
  • 12. The variable transmission of claim 1, wherein the second grounding clutch is at least partially disposed on an inner surface of the housing.
  • 13. The variable transmission of claim 1, wherein the second grounding clutch is a plate clutch.
  • 14. The variable transmission of claim 1, wherein the first variator carrier assembly may be selectively drivingly engaged with the input shaft using the second grounding clutch.
  • 15. The variable transmission of claim 1, wherein the second ring assembly comprises an output gear formed in an outer surface of the second ring assembly.
  • 16. The variable transmission of claim 15, wherein the output gear is in driving engagement with the vehicle output.
  • 17. The variable transmission of claim 1, wherein an operating mode of the variable transmission is dependent on an engagement status of the first grounding clutch and the second grounding clutch.
  • 18. The variable transmission of claim 1, wherein the continuously variable operating mode is achieved when the first grounding clutch is engaged and the second grounding clutch is disengaged.
  • 19. The variable transmission of claim 1, wherein the infinitely variable operating mode is achieved when the first grounding clutch is disengaged and the second grounding clutch is engaged.
  • 20. The variable transmission of claim 1, comprising a traction fluid.
RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 14/769,296 filed on Aug. 20, 2015 and granted as U.S. Pat. No. 9,551,404. U.S. patent application Ser. No. 14/796,296 claims priority to and benefit from Provisional U.S. Patent Application Ser. No. 61/785,793 filed on Mar. 14, 2013. The content of the above-noted patent applications are hereby expressly incorporated by reference into the detailed description of the present application.

US Referenced Citations (267)
Number Name Date Kind
1063244 Dieterich Jun 1913 A
1215969 Murray Feb 1917 A
1526140 Gruver Feb 1925 A
2019006 Ferrari Oct 1935 A
2060884 Madle Nov 1936 A
2148759 Grand Feb 1939 A
2405201 Franck Aug 1946 A
2660897 Neidhart et al. Dec 1953 A
2729118 Emslie Jan 1956 A
2931235 Hayward Apr 1960 A
3203278 General Aug 1965 A
3376633 Wesley Apr 1968 A
3407687 Hayashi Oct 1968 A
3470720 Eklund et al. Oct 1969 A
3505718 Carlstrom Apr 1970 A
3583060 Sigmans Jun 1971 A
3688600 Leonard Sep 1972 A
3765270 Lemieux Oct 1973 A
3774280 Eklund et al. Nov 1973 A
3831245 Amos Aug 1974 A
3894559 DePuy Jul 1975 A
4046988 Okuda et al. Sep 1977 A
4056988 Kubo et al. Nov 1977 A
4187709 Legate et al. Feb 1980 A
4226140 Gaasenbeek Oct 1980 A
4333358 Grattapaglia Jun 1982 A
4344336 Carriere Aug 1982 A
4368572 Kanazawa et al. Jan 1983 A
4464952 Stubbs Aug 1984 A
4693134 Kraus Sep 1987 A
4731044 Mott Mar 1988 A
4756211 Fellows Jul 1988 A
4784017 Johnshoy Nov 1988 A
4856371 Kemper Aug 1989 A
4856374 Kreuzer Aug 1989 A
4950208 Tomlinson Aug 1990 A
4963122 Ryan Oct 1990 A
4963124 Takahashi et al. Oct 1990 A
5109962 Sato May 1992 A
5217412 Indlekofer et al. Jun 1993 A
5230670 Hibi Jul 1993 A
5238460 Esaki et al. Aug 1993 A
5318486 Lutz Jun 1994 A
5390759 Gollner Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5520588 Hall, III May 1996 A
5527231 Seidel et al. Jun 1996 A
5577423 Mimura Nov 1996 A
5599251 Beim et al. Feb 1997 A
5659956 Braginsky et al. Aug 1997 A
5683322 Meyerle Nov 1997 A
5726353 Matsuda et al. Mar 1998 A
5730678 Larkin Mar 1998 A
5766105 Fellows et al. Jun 1998 A
5776028 Matsuda et al. Jul 1998 A
5800303 Benford Sep 1998 A
5860888 Lee Jan 1999 A
5915801 Taga et al. Jun 1999 A
5961415 Justice et al. Oct 1999 A
5971883 Klemen Oct 1999 A
5996226 Gibbs Dec 1999 A
6009365 Takahara et al. Dec 1999 A
6036616 McCarrick et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6053839 Baldwin et al. Apr 2000 A
6059685 Hoge et al. May 2000 A
6071208 Koivunen Jun 2000 A
6080080 Bolz et al. Jun 2000 A
6083135 Baldwin et al. Jul 2000 A
6086504 Illerhaus Jul 2000 A
6089287 Welsh et al. Jul 2000 A
6095942 Yamaguchi et al. Aug 2000 A
6155951 Kuhn et al. Dec 2000 A
6217474 Ross et al. Apr 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6273838 Park Aug 2001 B1
6342026 Takagi et al. Jan 2002 B1
6358178 Wittkopp Mar 2002 B1
6371880 Kam Apr 2002 B1
6405117 Walenty et al. Jun 2002 B1
6481258 Belinky Nov 2002 B1
6554735 Kanazawa Apr 2003 B2
6558285 Sieber May 2003 B1
6585619 Henzler Jul 2003 B2
6609994 Muramoto Aug 2003 B2
6632157 Gierling et al. Oct 2003 B1
6641497 Deschamps et al. Nov 2003 B2
6645106 Goo Nov 2003 B2
6689012 Miller et al. Feb 2004 B2
6705964 Nagai et al. Mar 2004 B2
6719659 Geiberger et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6726590 Henzler et al. Apr 2004 B2
6733412 Kumagai et al. May 2004 B2
6752696 Murai et al. Jun 2004 B2
6793603 Teraoka et al. Sep 2004 B2
6849020 Sumi Feb 2005 B2
6866606 Ooyama Mar 2005 B2
6949045 Wafzig et al. Sep 2005 B2
6979275 Hiraku et al. Dec 2005 B2
6986725 Morscheck Jan 2006 B2
7033298 Usoro et al. Apr 2006 B2
7074154 Miller Jul 2006 B2
7086981 Ali et al. Aug 2006 B2
7104917 Klemen et al. Sep 2006 B2
7128681 Sugino et al. Oct 2006 B2
7160220 Shinojima et al. Jan 2007 B2
7186199 Baxter et al. Mar 2007 B1
7217214 Morscheck May 2007 B2
7234543 Schaaf Jun 2007 B2
7288044 Gumpoltsberger Oct 2007 B2
7335126 Tsuchiya et al. Feb 2008 B2
7347801 Guenter et al. Mar 2008 B2
7396309 Heitz et al. Jul 2008 B2
7431677 Miller et al. Oct 2008 B2
7470210 Miller et al. Dec 2008 B2
7473202 Morscheck et al. Jan 2009 B2
7485069 Jang et al. Feb 2009 B2
7497798 Kim Mar 2009 B2
7588514 McKenzie et al. Sep 2009 B2
7637838 Gumpoltsberger Dec 2009 B2
7672770 Inoue et al. Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7717815 Tenberge May 2010 B2
7727107 Miller Jun 2010 B2
7780566 Sea Aug 2010 B2
7874153 Bhem Jan 2011 B2
7878935 Lahr Feb 2011 B2
7951035 Platt May 2011 B2
7980972 Starkey et al. Jun 2011 B1
8029401 Johnson Oct 2011 B2
8052569 Tabata et al. Nov 2011 B2
8062175 Krueger et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8142323 Tsuchiya et al. Mar 2012 B2
8226518 Parraga Gimeno Jul 2012 B2
8257216 Hoffman Sep 2012 B2
8257217 Hoffman Sep 2012 B2
8287414 Weber et al. Oct 2012 B2
8313404 Carter et al. Nov 2012 B2
8376903 Pohl et al. Feb 2013 B2
8382636 Shiina et al. Feb 2013 B2
8447480 Usukura May 2013 B2
8469856 Thomassy Jun 2013 B2
8545368 Davis et al. Oct 2013 B1
8594867 Heap et al. Nov 2013 B2
8622871 Hoff Jan 2014 B2
8639419 Roli et al. Jan 2014 B2
8668614 Sherrill et al. Mar 2014 B2
8678975 Koike Mar 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lahr et al. Nov 2014 B2
8926468 Versteyhe et al. Jan 2015 B2
8986150 Versteyhe et al. Mar 2015 B2
9052000 Cooper Jun 2015 B2
9114799 Tsukamoto et al. Aug 2015 B2
9156463 Legner Oct 2015 B2
9551404 Ziech Jan 2017 B2
20020004438 Toukura et al. Jan 2002 A1
20020094911 Haka Jul 2002 A1
20020169048 Henzler et al. Nov 2002 A1
20030060318 Sumi Mar 2003 A1
20030181280 Elser et al. Sep 2003 A1
20030200783 Shai Oct 2003 A1
20030213125 Chiuchang Nov 2003 A1
20030216121 Yarkosky Nov 2003 A1
20030228952 Joe et al. Dec 2003 A1
20040058769 Larkin Mar 2004 A1
20040061639 Voigtlaender et al. Apr 2004 A1
20040166984 Inoue Aug 2004 A1
20040167391 Solar et al. Aug 2004 A1
20040171452 Miller et al. Sep 2004 A1
20050102082 Joe et al. May 2005 A1
20050137046 Miller et al. Jun 2005 A1
20050153810 Miller et al. Jul 2005 A1
20060094515 Szuba et al. May 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060276294 Coffey et al. Dec 2006 A1
20070021259 Tenberge Jan 2007 A1
20070032327 Raghavan et al. Feb 2007 A1
20070042856 Greenwood Feb 2007 A1
20070072732 Klemen Mar 2007 A1
20070096556 Kokubo et al. May 2007 A1
20070270270 Miller et al. Nov 2007 A1
20070275808 Iwanaka et al. Nov 2007 A1
20080039273 Smithson et al. Feb 2008 A1
20080103002 Holmes May 2008 A1
20080121487 Miller et al. May 2008 A1
20080185201 Bishop Aug 2008 A1
20090017959 Triller Jan 2009 A1
20090048054 Tsuchiya et al. Feb 2009 A1
20090062064 Kamada et al. Mar 2009 A1
20090112424 Dahl et al. Apr 2009 A1
20090132135 Quinn, Jr. et al. May 2009 A1
20090221391 Bazyn et al. Sep 2009 A1
20090221393 Kassler Sep 2009 A1
20090286651 Tanaka et al. Nov 2009 A1
20090312137 Rohs et al. Dec 2009 A1
20100056322 Thomassy Mar 2010 A1
20100093476 Carter et al. Apr 2010 A1
20100093479 Carter et al. Apr 2010 A1
20100106386 Krasznai et al. Apr 2010 A1
20100113211 Schneider et al. May 2010 A1
20100137094 Pohl Jun 2010 A1
20100141193 Rotondo et al. Jun 2010 A1
20100244755 Kinugasa et al. Sep 2010 A1
20100267510 Nichols et al. Oct 2010 A1
20100282020 Greenwood et al. Nov 2010 A1
20100304915 Lahr Dec 2010 A1
20100310815 Mendonca Alves et al. Dec 2010 A1
20110015021 Maguire et al. Jan 2011 A1
20110034284 Pohl et al. Feb 2011 A1
20110152031 Schoolcraft Jun 2011 A1
20110165982 Hoffman et al. Jul 2011 A1
20110165985 Hoffman et al. Jul 2011 A1
20110165986 Hoffman et al. Jul 2011 A1
20110165987 Hoffman et al. Jul 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110300954 Szuba et al. Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120024991 Pilch et al. Feb 2012 A1
20120035016 Miller et al. Feb 2012 A1
20120040794 Schoolcraft Feb 2012 A1
20120122624 Hawkins, Jr. et al. May 2012 A1
20120142477 Winter Jun 2012 A1
20120165154 Wittkopp et al. Jun 2012 A1
20120231925 Shiina et al. Sep 2012 A1
20120244990 Ogawa et al. Sep 2012 A1
20120309579 Miller et al. Dec 2012 A1
20130096797 Whitney et al. Apr 2013 A1
20130130859 Lundberg et al. May 2013 A1
20130133965 Books May 2013 A1
20130184115 Urabe et al. Jul 2013 A1
20130190131 Versteyhe et al. Jul 2013 A1
20130226416 Seipold et al. Aug 2013 A1
20130303325 Carey et al. Nov 2013 A1
20130304344 Abe Nov 2013 A1
20130338888 Long et al. Dec 2013 A1
20140194242 Cooper Jul 2014 A1
20140194243 Versteyhe et al. Jul 2014 A1
20140223901 Versteyhe et al. Aug 2014 A1
20140274536 Versteyhe et al. Sep 2014 A1
20140274540 Schoolcraft Sep 2014 A1
20140274552 Frink et al. Sep 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20150024899 Phillips Jan 2015 A1
20150111683 Versteyhe et al. Apr 2015 A1
20150111693 Wang et al. Apr 2015 A1
20150142281 Versteyhe et al. May 2015 A1
20150159741 Versteyhe et al. Jun 2015 A1
20150198246 Callaway et al. Jul 2015 A1
20150204429 Versteyhe et al. Jul 2015 A1
20150204430 Versteyhe et al. Jul 2015 A1
20150226294 Ziech et al. Aug 2015 A1
20150226298 Versteyhe et al. Aug 2015 A1
20150226299 Cooper et al. Aug 2015 A1
20150252881 Versteyhe Sep 2015 A1
20150354676 Versteyhe et al. Dec 2015 A1
20160033021 Cooper et al. Feb 2016 A1
20160047448 Versteyhe et al. Feb 2016 A1
20160069442 Versteyhe et al. Mar 2016 A1
20160109001 Schoolcraft Apr 2016 A1
20160131235 Phillips May 2016 A1
20160195173 Versteyhe et al. Jul 2016 A1
20160195177 Versteyhe et al. Jul 2016 A1
20160319731 Versteyhe et al. Nov 2016 A1
20160356366 Versteyhe et al. Dec 2016 A1
Foreign Referenced Citations (69)
Number Date Country
2011224083 Oct 2011 AU
101479503 Jul 2009 CN
101617146 Dec 2009 CN
102297255 Dec 2011 CN
102338208 Feb 2012 CN
202392067 Aug 2012 CN
1237380 Mar 1967 DE
3245045 Jun 1984 DE
102005010751 Sep 2006 DE
0156936 Oct 1985 EP
0210053 Jan 1987 EP
1061288 Dec 2000 EP
1174645 Jan 2002 EP
2113056 Jul 2012 EP
796188 Mar 1936 FR
1030702 Jun 1953 FR
1472282 Mar 1967 FR
2185076 Dec 1973 FR
2280451 Feb 1976 FR
2918433 Jan 2009 FR
1127825 Sep 1968 GB
2196892 May 1988 GB
2248895 Apr 1992 GB
H09119506 May 1997 JP
2008180214 Aug 2008 JP
2011153583 Aug 2011 JP
2006002457 Jan 2006 WO
2006041718 Apr 2006 WO
2006109158 Oct 2006 WO
2007046722 Apr 2007 WO
2007051827 May 2007 WO
2008101070 Aug 2008 WO
2008103543 Aug 2008 WO
2011011991 Feb 2011 WO
2012008884 Jan 2012 WO
2012177187 Dec 2012 WO
2013109723 Jul 2013 WO
2013123117 Aug 2013 WO
2014039438 Mar 2014 WO
2014039439 Mar 2014 WO
2014039440 Mar 2014 WO
2014039447 Mar 2014 WO
2014039448 Mar 2014 WO
2014039708 Mar 2014 WO
2014039713 Mar 2014 WO
2014039846 Mar 2014 WO
2014039900 Mar 2014 WO
2014039901 Mar 2014 WO
2014078583 May 2014 WO
2014124291 Aug 2014 WO
2014151889 Sep 2014 WO
2014159755 Oct 2014 WO
2014159756 Oct 2014 WO
2014165259 Oct 2014 WO
2014179717 Nov 2014 WO
2014179719 Nov 2014 WO
2014186732 Nov 2014 WO
2014197711 Dec 2014 WO
2015059601 Apr 2015 WO
2015073883 May 2015 WO
2015073887 May 2015 WO
2015073948 May 2015 WO
2015195759 Dec 2015 WO
2015200769 Dec 2015 WO
2016094254 Jun 2016 WO
2016168439 Oct 2016 WO
2016178913 Nov 2016 WO
2016205639 Dec 2016 WO
2017027404 Feb 2017 WO
Non-Patent Literature Citations (3)
Entry
Fallbrook Technologies Inc. NuVinci® Technology, Feb. 26, 2013; [Retrieved from internet on Jun. 5, 2014].: URL: https://web.archive.org/web/20130226233109/http://www.fallbrooktech.com/nuvinci-technology.
Moore, C. A. et al. A Three Revolute Cobot Using CVTs in Parallel, Proceedings of IMECE, 1999, 6 pgs.
Wong. The Temple of VTEC Asia Special Focus on the Multimatic Transmission. Temple of VTEC Asia. Oct. 2000.
Related Publications (1)
Number Date Country
20170097069 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
61785793 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14769296 Aug 2015 US
Child 15380043 US