Also, in the case of this embodiment, by switching the engagement and disengagement of the respective low-speed and high-speed clutches 7, 8 based on control signals from a control unit 16, a low-speed mode in which the reduction ratio is increased (including the geared neutral state) and a high-speed mode in which the reduction ratio is decreased are realized. Because of this, the engagement and disengagement of the respective low-speed and high-speed clutches 7, 8 are made to be freely switched by low-speed clutch and high-speed clutch solenoid switch valves 33, 34 whose energized states are controlled based on control signals from the control unit 16. Namely, these respective low-speed clutch and high-speed clutch solenoid switch valves 33, 34 are such that respective spools thereof are displaced with energization to the solenoids, and the engagement and disengagement of the respective low-speed and high-speed clutches 7, 8 are switched by switching introduction states of pressure oils into interiors of hydraulic chambers of the low-speed and high-speed clutches 7, 8 based on the displacement of the spools.
For example, in a case where the low-speed clutch 7 is engaged, while the high-speed clutch 8 is disengaged (in a case where the low-speed mode is realized), the low-speed clutch and high-speed clutch solenoid switch valves 33, 34 are de-energized, so that the respective spools of the solenoid switch valves 33, 34 are displaced rightwards in
On the other hand, in a case where the low-speed clutch 7 is disengaged, while the high-speed clutch 8 is engaged (in a case where the high-speed mode is realized), the low-speed clutch and high-speed clutch solenoid switch valves 33, 34 are energized, so that the respective spools of the solenoid switch valves 33, 34 are displaced leftwards in
In addition, in the case of this embodiment, a mode switch between the low-speed mode and the high-speed mode is performed in a way as shown in, for example,
Firstly, as a first function, the control unit 16 is imparted a function in which when the mode switch is performed between the low-speed mode and the high-speed mode, after one of the low-speed clutch 7 and the high-speed clutch 8 which had been in disengaged until then has been engaged, the other clutch which had been in engagement until then is disengaged. Namely, when the mode switch is performed from the low-speed mode to the high-speed mode, as is shown in
Furthermore, in the case of this embodiment, as a second function, the control unit 16 is imparted a function in which one of the clutches which had been in disengagement until then (the high-speed clutch 8 in
In the case of the mode switch shown in
On the contrary to this, in the case of the embodiment, as is shown in
In the case of this embodiment that is configured as has been described above, a time (timing) to start the engagement of the high-speed clutch S which had been in disengagement until then is obtained in the following manner. Namely, while the vehicle is being driven (at least while the vehicle is being driven with the transmission ratio of the toroidal continuously variable transmission 4 lying in the vicinity of the optimal value for switching the mode (for example, the mode switching point)), an estimated reaching time which is considered necessary for the transmission ratio of the toroidal continuously variable transmission 4 to reach the optimal value for switching the mode from a value at a current point in time is obtained at all times from the current transmission ratio and change-speed of the toroidal continuously variable transmission 4. Note that the transmission ratio can be obtained from a ratio of rotational speeds of input and output disks 10, 11 that are detected by input and output disk rotation sensors 37, 38 or a correlation between a step position of a stepping motor 17 which is obtained in advance and a transmission ratio. In addition, the change-speed is obtained as a variation of the transmission ratio per unit time by monitoring a change in the transmission ratio. Then, the engagement of the high-speed clutch 8 is designed to be started (or the high-speed clutch solenoid switch valve 34 is put to ON) on condition that the reaching time which is obtained from the current transmission ratio and change-speed in the way described above is determined to become equal to or less than the delay time in response of the high-speed clutch 8 (the reaching time≦the delay time in response) (or, for example, immediately such a determination is made) by comparing the reaching time with the delay time in response.
In addition, in the case of this embodiment, the delay time in response is made to be an estimated time period considered necessary for an oil pressure that is introduced into the high-speed clutch 8 to rise to a sufficient value to perform a power transmission from a point in time at which the high-speed clutch solenoid switch valve 34 is actuated (the energization thereof is ON) in order to engage the high-speed clutch 8. In addition, this time delay in response is designed to be regulated to an (appropriate) value which corresponds to an oil temperature (quantity of state) then based on a quantity of state which affects the length of the delay time in response, that is, the temperature of pressure oil that is introduced into the hydraulic chambers of the low-speed and high-speed clutches 7, 8. Namely, as has been described above, the higher the oil temperature becomes, the shorter the delay time in response from the start and the end of the engagement of the low-speed and high-speed clutches 7, 8 becomes, and on the contrary, the lower the oil temperature becomes, the longer the delay time in response becomes. Then, in the case of this embodiment, a relationship between oil temperatures and appropriate time delays in response to the oil temperatures is obtained in advance through experiments, simulations and the like for storage in a memory of the control unit 16 in the form of maps as shown in Tables 1, 2. In addition, the oil temperature and the delay time in response are measured at all times while the vehicle is being driven, so that the control unit 16 may be made to learn the relationship between the oil temperature and the delay time in response as required
In addition, of these tables, Table 1 shows a relationship (a map) between oil temperatures and time delays in response which are used when the mode switch is performed from the low-speed mode to the high-speed mode (when the high-speed clutch 8 is engaged), while Table 2 shows a relationship (a map) between oil temperatures and time delays in response which are used when the mode switch is performed from the high-speed mode to the low-speed mode (when the low-speed clutch 7 is engaged).
In the case of this embodiment, an appropriate time delay in response corresponding to an oil temperature then is obtained based on the map described above and an oil temperature detected by an oil temperature sensor 39, so as to regulate the time (timing) to start the engagement of the high-speed clutch 8 according to the delay time in response so obtained. Namely, the engagement of the high-speed clutch 8 is started (or the energization of the high-speed clutch solenoid switch valve 34 is on) on condition that the reaching time which is obtained from the current transmission ratio and change-speed is determined to become equal to or less than the delay time in response which corresponds to the oil temperature then (the reaching time≦the delay time in response) (or, for example, immediately such a determination is made) by comparing the delay time in response with the reaching time. In addition, by correcting the delay time in response or the reaching time according to a throttle position then, the time (timing) to start the engagement of the high-speed clutch 8 which is obtained from a relationship between the reaching time and the delay time in response can also be regulated (corrected) to an optimal value according to the throttle position.
Furthermore, in the case of the embodiment, as a third function, the control unit 16 is imparted a function in which the concurrent engagement of the high-speed clutch 8 and the low-speed clutch 7 which occurs after the engagement of the high-speed clutch 8 in the way described above is determined based on a change in a torque which passes the toroidal continuously variable transmission 4 (a passage torque). Namely, when a state results where the low-speed and high-speed clutches 7, 8 are engaged concurrently, the passage torque changes in value towards 0 from a value which resulted in a state where only the other clutch had been in engagement. Because of this, whether or not the low-speed and high-speed clutches 7, 8 are engaged concurrently can be determined by detecting a change in the passage torque like one described above. Then, in the case of this embodiment, the passage torque is obtained from a differential pressure, which is a value corresponding to the passage torque, between a pair of hydraulic chambers 35a, 35b which are provided in a hydraulic actuator 13 for displacing support members (trunnions) which support power rollers 12 in axial directions of pivot shafts. Because of this, oil pressure sensors 36 (36a, 36b in
Then, the occurrence of a concurrent engagement of both the low-speed and high-speed clutches 7, 8 is determined according to the differential pressure between the pair of hydraulic chambers 35a, 35b, and the low-speed clutch 7, which had been in engagement until then, is disengaged on condition that such a determination is dully made. Namely, as has been described previously, when the estimated reaching time which is considered necessary for the transmission ratio of the toroidal continuously variable transmission 4 to reach the mode switching point is determined to become equal to or less than the delay time in response which is considered necessary from the point in time at which the high-speed clutch 8 is started to be engaged until the point in time at which the high-speed clutch 8 is completely engaged (the reaching time≦the delay time in response), the high-speed clutch solenoid switch valve 34 is switched (or the energization state thereof becomes ON). In addition, the oil pressure inside the hydraulic chamber of the high-speed clutch 8 is increased based on the switching of the relevant switch valve 34, and when there occurs a concurrent engagement of both the low-speed and high-speed clutches 7, 8, the differential pressure, which is the value corresponding to the passage torque, changes towards 0 from a value then (for example, −500 kPa).
Then, the concurrent engagement of both the clutches 7, 8 is determined based on the change in the differential pressure by the control unit 16. For example, whether or not there occurs the concurrent engagement of both the clutches 7, 8 is determined by, for example, whether or not the differential pressure (the passage torque) becomes 0. Alternatively, the concurrent engagement of the clutches can also be determined by whether or not the differential pressure (the passage torque) has changed towards 0 by a predetermined amount or whether or not the differential pressure (the passage torque) has changed towards 0 at a predetermined speed (or faster). In any case, the low-speed clutch solenoid switch valve 33 is switched (the energization state thereof is put to OFF) in order to disconnect the low-speed clutch 7, which had been in engagement until then, on condition that both the clutches 7, 8 are determined to have been engaged concurrently based on the change in differential pressure.
The functions imparted to the control unit 16 to control the engagement and disengagement of each of the low-speed and high-speed clutches 7, 8 in the ways described heretofore will be described by reference to a flowchart shown in
Firstly, in step 1, the control unit 16 obtains an estimated reaching time T_MODE_CEG which is considered necessary for the transmission ratio of the toroidal continuously variable transmission 4 to reach an optimal value for performance of the mode switch (for example, the mode switching point (a rotation synchronizing point), 0.46 in the speed increasing ratio) from a value at the current point in time. This reaching time T_MODE_CHS is obtained from, for example, the following equation (1).
T_MODE—CHG=(ecvu
where ecvu
Note that the current transmission ratio ecvu
If the reaching time T_MODE_CHG is obtained in this way in step 1, then proceed to step 2. In this step 2, if one of the clutches (the low-speed clutch 7 or the high-speed clutch 8) which had been in disengagement until then is started to be engaged, an estimated time delay in response T_MODE_OIL according to a quantity of state (an oil temperature) then which is considered necessary from the start to the end of the engagement so started is obtained. This time delay in response T_MODE_OIL is obtained in the following manner. Firstly, a current oil temperature that is detected based on the oil temperature sensor 39, a current running mode which is determined from the current operating states (energized states) of the low-speed clutch and high-speed clutch solenoid switch valves 33, 34, and an oil temperature then and a time delay in response T_OKURE which are available from Table 1 or Table 2 are obtained. Then, by correcting the delay time in response T_OKURE so obtained according to a throttle position then, the delay time in response T_MODE_OIL is obtained. To be specific, this time delay in response T_MODE_OIL is obtained (or the delay time in response T_OKURE is corrected) using, for example, the following equation (2).
T_MODE_OIL=T_OKURE+(throttle position [%]/100) (2)
If the delay time in response T_MODE_OIL is obtained in the way described above in step 2, then proceed to step 3, where whether or not a mode switch is started is determined. Namely, whether or not the engagement of the one clutch (the low-speed clutch 7 or the high-speed clutch 8) which has been in disengagement currently is started is determined. This determination is made by comparing the reaching time T_MODE_CHG with the delay time in response T_MODE_OIL to see whether or not the reaching time T_MODE_CHG becomes equal to or less than the delay time in response T_MODE_OIL (T_MODE_CHG≦T_MODE_OIL). In step 3 like this, if the reaching time T_MODE_CHG is determined to become equal to or less than the delay time in response T_MODE_OIL (T_MODE_CHG≦T_MODE_OIL), the mode switch is started. Namely, if the aforesaid determination is made from the current time delay in response T_MODE_OIL and reaching time T_MODE_CHG, it can be determined that the transmission ratio of the toroidal continuously variable transmission 4 has reached a value which corresponds to the point B in
The mode switch operation in step 4 is performed along a flowchart shown in
Namely, as is shown in the following step 4, whether or not the differential pressure becomes 0 (the differential pressure=0) is determined. To be more specific, whether or not the differential pressure falls within a range of a hysteresis α that is determined through tuning or the like (the differential pressure≦|0±α|) is determined. Note that this hysteresis α is set in advance to an optimal value obtained through experiments or the like. In step 4 like this, if the differential pressure does not become 0 (or does not fall within a range of 0±α), (since both the clutches 7, 8 have not yet been engaged concurrently,) the process is then brought to end and thereafter returns to step 4 in
In step 5 like this, if the transmission ratio is not determined to have reached the mode switching point, (since a speed change control according to the high-speed mode has not yet been able to be started,) the process is then brought to end and thereafter returns to step 5 in
On the other hand, in step I in
On the other hand, in step 3 in
On the other hand, if it is determined in step 1 in
As has been described above, in the case of this embodiment, one of the clutches (for example, the high-speed clutch 8) which had been in disengagement until then is started according to the delay time in response of the one clutch before the transmission ratio of the toroidal continuously variable transmission 4 has reached the optimal value for switching the mode (for example, 0.46 in the speed increasing ratio). Because of this, the transmission ratio of the toroidal continuously variable transmission 4 can be regulated to the optimal value for switching the mode immediately before the one clutch has been engaged completely. As a result of this, a time period from the point in time at which the transmission ratio of the toroidal continuously variable transmission 4 has reached the optimal value for switching the mode in the way described above to the point in time at which a transmission ratio control according to the mode resulting after the mode switch (for example, the high-speed mode) is started can be made short, and a time period taken to complete the mode switch (a time period during which no speed change takes place in the toroidal continuously variable transmission 4, a time period taken to move from the point A to the point C in
In addition, in the case of this embodiment, the time (the timing) to start the engagement of the one clutch (for example, the high-speed clutch 8) is determined from the relationship between the delay time in response T_MODE_OIL and the reaching time T_MODE_CHG. On the other hand, although not shown, the engagement of the one clutch (for example, the high-speed clutch 8) can also be started according to the transmission ratio of the toroidal continuously variable transmission 4 then. Namely, the clutch switch valves with which oil pressure that is introduced into the respective low-speed and high-speed clutches 7, 8 can freely be regulated are used, and the oil pressure of the one clutch that is to be engaged in response to a change in the transmission ratio is increased, so that the oil pressure that is introduced into the hydraulic chambers of the clutch can be made to be a sufficient value to transmit power in such a state that the transmission ratio of the toroidal continuously variable transmission 4 has reached the optimal value for switching the mode (for example, the mode switching point). In this case, too, since the one clutch is allowed to be engaged completely at the point in time at which the transmission ratio of the toroidal continuously variable transmission 4 has the optical value for performance of the mode switch, the time period taken for the mode switch (the time period during which no seed change takes place in the toroidal continuously variable transmission 4) can be made short (or the transmission ratio control according to the mode resulting after the mode switch can be started quickly). In addition, when the configuration that has been described above is adopted, a determining operation of the engagement of the low-speed and high-speed clutches 7, 8 can also be omitted.
In addition, in the case of this embodiment, the concurrent engagement of the low-speed and high-speed clutches 7, 8 is determined based on the change in the torque (or the differential pressure corresponding thereto) which passes through the toroidal continuously variable transmission 4. Because of this, the disengagement of the other clutch 8 (or 7) which had been in engagement until then can be prevented irrespective of the fact that both the clutches 7, 8 are not engaged (or before the one clutch 7 (or 8) has not yet been engaged completely). In other words, the occurrence of a condition in which neither of the clutches 7, 8 is engaged completely (or no transmission of power is performed) is prevented so as to be able to prevent, for example, an abrupt increase in engine speed of an engine 1. In addition, on the contrary to this, a risk can also be prevented that a time period when both the clutches 7, 8 are kept engaged without disengagement of the other clutch 8 (or 7) irrespective of both the clutches 7, 8 being engaged is extended longer than necessary.
Note that the change in the torque which passes through the toroidal continuously variable transmission 4 (the passage torque) is obtained by the oil pressure sensors 36a, 36b which are conventionally placed for detecting the passage torque. Namely, the passage torque can be obtained as a change in the differential pressure between the pair of hydraulic chambers 35a, 35b of the hydraulic actuator 13 for displacing the support members (the trunnions) which support the power rollers 12 in the axial directions of the pivot shafts by the oil pressure sensors 36a, 36b which are provided in the pair of hydraulic chambers 35a, 35b, respectively. Because of this, there is no need to provide separately, for example, additional oil pressure sensors for detecting oil pressures in the hydraulic chambers of both the clutches 7, 8 in order to determine whether or not both the clutches 7, 8 are engaged concurrently, thereby making it possible to prevent the complexity in construction and increase in cost of the continuously variable transmission.
In addition, in the case of this embodiment, the engagement and disengagement of the respective low-speed clutch 7 and the high-speed clutch 8 are freely switched in an independent fashion based on the switch of the respective low-speed clutch and high-speed clutch solenoid switch valves 33, 34 which are controlled by the control unit 16. As a construction which switches independently the engagement and disengagement of the low-speed and high-speed clutches 7, 8 in the way described above, the oil pressure sent into the respective hydraulic chambers of the low-speed and high-speed clutches 7, 8 can be controlled by the low-speed clutch and high-speed clutch solenoid switch valves 33, 34, and in addition to this, the oil pressure can also be controlled by a solenoid proportioning valve or an actuator such as a motor. In addition, the engagement and disengagement of the low-speed and high-speed clutches can also be controlled directly by the actuator such as the motor or a switch valve. In short, either of the constructions can be adopted, provided that the engagement and disengagement of the low-speed and high-speed clutches 7, 8 can be switched independently. In addition, as has been described before, in the case of this embodiment, the low-speed clutch and high-speed clutch solenoid switch valves 33, 34 are brought into the de-energized state in realizing the low-speed mode. Because of this, even though there occurs a case where the energization of the respective solenoid switch valves 33, 34 cannot be implemented due to some failure, the running in the low-speed mode can be secured, a fail-safe system (an improvement in safety performance at the time of failure) being thereby realized.
In addition, in the case of this embodiment, the concurrent engagement of both the low-speed and high-speed clutches 7, 8 is determined based on the change in the torque which passes through the toroidal continuously variable transmission 4 (the passage torque). Then, this passage torque is detected as the differential pressure between the pair of hydraulic chambers 35a, 35b making up the actuator 13 by the conventionally placed oil pressure sensors 36a, 36b, that is, the oil pressure sensors 36a, 36b which are provided in the pair of hydraulic pressure chambers 35a, 35b, respectively. Although not shown, however, in the event that a loading cam type device is used as the loader, the change in the passage torque can also be detected based on a phase difference between cam surface formed members (for example, a cam plate and the input disk) which make up the loader. In addition, the change in the passage torque can also be detected by detecting a variation of a piston or the like which makes up the actuator 13 (for example, a variation of the piston in such a state that no speed change command is issued). As this occurs, however, there is a need to provide separately a displacement sensor. Because of this, from the viewpoint of cost reduction, it is preferable that an inexpensive sensor is used or the passage torque is detected from the differential pressure in the way described above.
In addition, the concurrent engagement of both the low-speed and high-speed clutches 7, 8 can also be detected from the displacement of respective pistons which make up these clutches. Additionally, the concurrent engagement of both the low-speed and high-speed clutches 7, 8 can also be detected from the displacement of a spool of a switch valve which switches the feeding state of pressure oil to the respective clutches 7, 8. In this case, too, however, there is a need to provide separately a displacement sensor. Because of this, from the viewpoint of cost reduction, it is preferable that the change in the passage torque is detected based on the change in the differential pressure in the way described above, so as to detect the concurrent engagement of both the clutches.
Thus, the invention has been described as being applied to the continuously variable transmission made up of the toroidal continuously variable transmission and the planetary gear transmission unit which are combined together and having the mode (the low-speed motor) which can realize the so-called geared neutral state in which the rotational state of the output shaft is switched between the forward rotation and the backward rotation across the stopped state interposed therebetween with the input shaft kept rotating in one direction. In addition, the invention can also be applied to a continuously variable transmission made up of a toroidal continuously variable transmission and a planetary gear transmission unit which are combined together and having a mode (a low-speed mode) in which power is transmitted only by the toroidal continuously variable transmission and a mode (a high-speed mode) which realizes a so-called power split state in which main power is transmitted only by the planetary gear transmission unit which is a differential unit, while the transmission ratio of the continuously variable transmission is regulated by the toroidal continuously variable transmission. In addition, the invention can also be applied not only as an automatic transmission for a motor vehicle but also as a transmission for various types of industrial machines. Additionally, as to the construction of the toroidal continuously variable transmission, either of a half toroidal type and a full toroidal type may be adopted.
While the invention has been described in connection with the exemplary embodiments, it will be obvious to those skilled in the art that various changes and modification may be made therein without departing from the present invention, and it is aimed, therefore, to cover in the appended claim all such changes and modifications as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2006-146155 | May 2006 | JP | national |