The field of the invention relates generally to transmissions, and more particularly to methods, assemblies, and components for continuously variable transmissions (CVTs).
There are well-known ways to achieve continuously variable ratios of input speed to output speed. Typically, a mechanism for adjusting the speed ratio of an output speed to an input speed in a CVT is known as a variator. In a belt-type CVT, the variator consists of two adjustable pulleys coupled by a belt. The variator in a single cavity toroidal-type CVT usually has two partially toroidal transmission discs rotating about a shaft and two or more disc-shaped power rollers rotating on respective axes that are perpendicular to the shaft and clamped between the input and output transmission discs. Usually, a control system is used for the variator so that the desired speed ratio can be achieved in operation.
Embodiments of the variator disclosed here are of the spherical-type variator utilizing spherical speed adjusters (also known as power adjusters, balls, planets, sphere gears, or rollers) that each has a tiltable axis of rotation adapted to be adjusted to achieve a desired ratio of output speed to input speed during operation. The speed adjusters are angularly distributed in a plane perpendicular to a longitudinal axis of a CVT. The speed adjusters are contacted on one side by an input disc and on the other side by an output disc, one or both of which apply a clamping contact force to the rollers for transmission of torque. The input disc applies input torque at an input rotational speed to the speed adjusters. As the speed adjusters rotate about their own axes, the speed adjusters transmit the torque to the output disc. The output speed to input speed ratio is a function of the radii of the contact points of the input and output discs to the axes of the speed adjusters. Tilting the axes of the speed adjusters with respect to the axis of the variator adjusts the speed ratio.
There is a continuing need in the industry for variators and control systems therefor that provide improved performance and operational control. Embodiments of the systems and methods disclosed here address said need.
The systems and methods herein described have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Inventive Embodiments” one will understand how the features of the system and methods provide several advantages over traditional systems and methods.
One aspect of the invention relates to a method of adjusting a speed ratio of a continuously variable transmission (CVT) having a group of traction planets. Each traction planet has a tiltable axis of rotation. The method includes the step of configuring a stator of the CVT to apply a skew condition to each tiltable axis of rotation independently. In one embodiment, the skew condition is based at least in part on an angular displacement of the stator plate. In another embodiment, the skew condition is based at least in part on a tilt angle of the tiltable axis of rotation.
Another aspect of the invention concerns a method of adjusting a speed ratio of a continuously variable transmission (CVT) that has a group of traction planets. Each traction planet has a tiltable axis of rotation. In one embodiment, the method includes the step of rotating a stator to which each traction planet is operably coupled. The stator can be configured to independently apply a skew condition to each tiltable axis of rotation. The method can also include the step of guiding each tiltable axis of rotation to an equilibrium condition. The equilibrium condition can be based at least in part on the rotation of the stator plate. In some embodiments, the equilibrium condition substantially has a zero-skew angle condition.
Yet another aspect of the invention concerns a method of supporting a group of traction planets of a continuously variable transmission (CVT). Each traction planet has a tiltable axis of rotation. In one embodiment, the method includes the step of providing a first stator plate having a number of radially offset slots. The radially offset slots are arranged angularly about a center of the first stator plate. The method can include the step of operably coupling each of the traction planets to the first stator plate. In one embodiment, the method includes the step of providing a second stator plate having a number of radial slots. The radial slots can be arranged angularly about the center of the second stator plate. The method can also include the step of operably coupling the traction planets to the second stator plate.
One aspect of the invention concerns a method of adjusting a speed ratio of a continuously variable transmission (CVT) that has a group of traction planets. Each traction planet has a tiltable axis of rotation. The method includes the step of providing a stator plate operably coupled to each of the traction planets. In one embodiment, the method includes the step of receiving a set point for a speed ratio of the CVT. The method can include the step of determining a set point for an angular displacement of the stator plate. The set point can be based at least in part on the set point for the speed ratio. The method can also include the step of rotating the stator plate to the set point for the angular displacement of the stator plate. Rotating the stator plate can induce a skew condition on each tiltable axis of rotation. The stator plate can be configured to adjust the skew condition as each tiltable axis of rotation tilts.
Another aspect of the invention concerns a method of adjusting a speed ratio of a continuously variable transmission (CVT) that has a group of traction planets. Each traction planet can be configured to have a tiltable axis of rotation. The method can include the step of determining a set point for a speed ratio of the CVT. In one embodiment, the method can include the step of measuring an actual speed ratio of the CVT. The method includes the step of comparing the actual speed ratio to the set point for the speed ratio to thereby generate a comparison value. The method also includes the step of rotating a stator plate to an angular displacement based at least in part on the comparison value. Rotating the stator plate applies a skew condition to each of the traction planets. The skew condition changes as each tiltable axis of rotation tilts and the angular displacement remains constant.
Yet one more aspect of the invention addresses a continuously variable transmission (CVT) that has a group of traction planets arranged angularly about a main drive axis. Each traction planet has a tiltable axis of rotation. The CVT has a first stator plate that is coaxial with the main drive axis. The first stator plate can have a number of radially offset slots. The radially offset slots can be configured such that each tiltable axis is guided independently from the others. The CVT can have a second stator plate coaxial with the main drive axis. The second stator plate can have a number of radial slots. The radial slots can be configured to independently guide the tiltable axes of rotation. The first stator plate is configured to rotate relative to the second stator plate.
In another aspect, the invention concerns a stator plate for a continuously variable transmission (CVT) that has a number of traction planets. The stator plate can have a substantially disc shaped body having a center. In one embodiment, the stator plate can have a number of radially offset guides arranged angularly about the center. Each of the radially offset guides can have a linear offset from a centerline of the disc shaped body.
Another aspect of the invention relates to a continuously variable transmission (CVT) that has a group of traction planets. Each traction planet has a tiltable axis of rotation. In one embodiment, the CVT has a first stator plate arranged coaxial about a main drive axis of the CVT. The first stator plate can be operably coupled to each traction planet. The first stator plate can have a number of radially offset slots arranged angularly about a center of the first stator plate. Each of the radially offset slots can have a linear offset from a centerline of the first stator plate. The CVT can also have a second stator plate arranged coaxial about a main drive axis of the CVT. The second stator plate has a number of radial slots. The radial slots can be arranged angularly about a center of the second stator plate. Each of the radial slots is substantially radially aligned with the center of the second stator plate. The CVT can have an actuator operably coupled to at least one of the first and second stator plates. The actuator can be configured to impart a relative rotation between the first and second stator plates.
One aspect of the invention relates to a ball planetary continuously variable transmission (CVT) that includes a group of traction planets. Each traction planet has a tiltable axis of rotation. The CVT can also include a first guide aligned with a line perpendicular to a main drive axis of the CVT. The first guide can be configured to act upon the tiltable axis of rotation. The CVT can also include a second guide aligned with a line that is parallel to the line perpendicular to the main drive axis of the CVT. The second guide can be configured to act upon the tiltable axis of rotation.
Another aspect of the invention concerns a method of manufacturing a continuously variable transmission (CVT). In one embodiment, the method includes the step of providing a first guide radially aligned with a line perpendicular to a main drive axis of the CVT. The method includes the step of providing a second guide offset. On a projection plane, respective projection lines of the first and second guides intersect thereby forming an intersection location. The method can include the step of operably coupling a group of traction planets to the first and second guides. The method can also include the step of configuring the first and second guides such that they are capable of rotation relative to one another about the main drive axis.
The preferred embodiments will be described now with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the descriptions below is not to be interpreted in any limited or restrictive manner simply because it is used in conjunction with detailed descriptions of certain specific embodiments of the invention. Furthermore, embodiments of the invention can include several inventive features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions described. Certain CVT embodiments described here are generally related to the type disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; 7,011,600; 7,166,052; U.S. patent application Ser. Nos. 11/243,484 and 11/543,311; and Patent Cooperation Treaty patent applications PCT/IB2006/054911 and PCT/US2007/023315. The entire disclosure of each of these patents and patent applications is hereby incorporated herein by reference.
As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be readily apparent to a person of ordinary skill in the relevant technology.
For description purposes, the term “radial” is used here to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term “axial” as used here refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled similarly (for example, bearing 1011A and bearing 1011B) will be referred to collectively by a single label (for example, bearing 1011).
It should be noted that reference herein to “traction” does not exclude applications where the dominant or exclusive mode of power transfer is through “friction.” Without attempting to establish a categorical difference between traction and friction drives here, generally these may be understood as different regimes of power transfer. Traction drives usually involve the transfer of power between two elements by shear forces in a thin fluid layer trapped between the elements. The fluids used in these applications usually exhibit traction coefficients greater than conventional mineral oils. The traction coefficient (μ) represents the maximum available traction forces which would be available at the interfaces of the contacting components and is a measure of the maximum available drive torque. Typically, friction drives generally relate to transferring power between two elements by frictional forces between the elements. For the purposes of this disclosure, it should be understood that the CVTs described here may operate in both tractive and frictional applications. For example, in the embodiment where a CVT is used for a bicycle application, the CVT can operate at times as a friction drive and at other times as a traction drive, depending on the torque and speed conditions present during operation.
Embodiments of the invention disclosed here are related to the control of a variator and/or a CVT using generally spherical planets each having a tiltable axis of rotation (hereinafter “planet axis of rotation”) that can be adjusted to achieve a desired ratio of input speed to output speed during operation. In some embodiments, adjustment of said axis of rotation involves angular misalignment of the planet axis in one plane in order to achieve an angular adjustment of the planet axis of rotation in a second plane, thereby adjusting the speed ratio of the variator. The angular misalignment in the first plane is referred to here as “skew” or “skew angle”. In one embodiment, a control system coordinates the use of a skew angle to generate forces between certain contacting components in the variator that will tilt the planet axis of rotation. The tilting of the planet axis of rotation adjusts the speed ratio of the variator. In the description that follows, a coordinate system is established with respect to a spherical traction planet, followed by a discussion of certain kinematic relationships between contacting components that generate forces which tend to cause the planet axis of rotation to tilt in the presence of a skew angle. Embodiments of skew control systems for attaining a desired speed ratio of a variator will be discussed.
Turning now to
Turning now to
Referring now to
Referring now to contact area 1 in
The kinematic relationships discussed above tend to generate forces at the contacting components.
Turning now to
Passing now to
Referring now to
In one embodiment, a global coordinate system 550 (that is, xg, yg, zg) is defined with reference to
Referencing
Turning to
Referring to
A non-zero skew angle 120 (ζ) can be induced on the planet axis 506 by two events, occurring separately or in combination. One event is a change in the angular displacement 520 (β), and the other event is a change in the tilt angle 511 (γ). In one embodiment, the relationship between the angular displacement 520 (β) and the skew angle 120 (ζ) for a constant tilt angle 511 (γ) depends on the geometry of the CVT 500, such as the length of the planet axis 506, and/or the radius of the stators 516, 518, among other factors. In one embodiment, the relationship between the angular displacement 520 (β) and the skew angle 120 (ζ) for a constant tilt angle 511 (γ) is approximately expressed by the equation β=ζ, for small angles. The relationship between the angular displacement 520 (β) and the angular position 526 (Ψ) can depend on the geometry of the CVT 500 and the base angular reference position 523 (Ψo), for example. In one embodiment, the angular position 526 (Ψ) can be proportional to the angular displacement 520 (β), so that the relationship can be approximated by the relationship Ψ=β+Ψo, for small angles. For a constant angular displacement 520 (β), the skew angle 120 (ζ) can also be related to the tilt angle 511 (γ). For example, the skew angle 120 (ζ) can be related to the angular position 526 (Ψ) and a change in the tilt angle 511 (delta γ) by the relationship tan(ζ)=(½*sin (delta γ)*tan(Ψ)). Applying the well known small angle approximation to said expression yields the equation ζ=½*(delta γ)*Ψ.
During operation of the CVT 500, the first and/or second stator plates 516, 518 can be rotated to the angular displacement 520 via a suitable control input (not shown in
Upon reaching the equilibrium condition, each of the planet axes 506 is substantially at a zero-skew angle condition. Since the planet axes 506, and consequently the traction planets 508, of the CVT 500 are independently coupled to the stators 516, 518, each of the traction planets 508 and the planet axes 506 can independently self stabilize at the equilibrium speed ratio condition. To elucidate further, when the tilt angle 511 (γ) of one of the planet axes 506 moves away from the equilibrium condition (for example, due to an outside influence or a perturbation in the operating condition), the ends of the planet axis 506 follow the guides 512, 514. As previously discussed, a skew condition is induced on the planet axis 506, and therefore, the planet axis 506 tends to tilt toward the tilt angle 511 (γ) that generally corresponds to the equilibrium condition for a given angular displacement 520 (β). The guides 512, 514 independently guide the movement or tilting of the planet axes 506. Therefore, the movement or tilting of one of the planet axes 506 can occur substantially independently from the other planet axles of the CVT 500.
The configuration of the guides 512, 514 affects the ability of the CVT 500 to stabilize at an equilibrium condition. For a given direction of rotation of the first traction ring 504, the arrangement of the guides 512, 514 depicted in
Referencing
Referring now to
Referring to
Referring to
Passing now to
In one embodiment, each traction planet 1008 is provided with a set of planet axles 1009A and 1009B that are configured to provide a tiltable axis of rotation for their respective traction planet 1008. The planet axles 1009A and 1009B can be configured to rotate with the traction planet 1008. The planet axles 1009A and 1009B are substantially aligned with a central axis the traction planet 1008. In other embodiments, the traction planet 1008 can be configured to have a central bore, and the traction planet 1008 can be operably coupled to a planet axle (not shown) via bearings, so that the planet axle is configured to be substantially non-rotatable. Each of the traction planets 1008 are operably coupled to a first stator 1014 and a second stator 1016. The first and second stators 1014, 1016 can be arranged coaxial with the main axle 1010.
In one embodiment of the CVT 1000, an input driver 1018 can be arranged coaxial with the main axle 1010. The input driver 1018 can be configured to receive an input power from, for example, a sprocket, a pulley, or other suitable coupling. In one embodiment, the input driver 1018 is coupled to a torsion plate 1019 that is coupled to a first axial force generator assembly 1020. The axial force generator assembly 1020 is operably coupled to a first traction ring 1022 that can be substantially similar in function to the traction ring 102 (
During operation of CVT 1000, an input power can be transferred to the input driver 1018 via, for example, a sprocket. The input driver 1018 can transfer power to the first axial force generator 1020 via the torsion plate 1019. The first axial force generator 1020 can transfer power to the traction planets 1008 via a traction or friction interface between the first traction ring 1022 and the each of the traction planets 1008. The traction planets 1008 deliver the power to a hub shell 1028 via the second traction ring 1024 and the second axial force generator 1026. A shift in the ratio of input speed to output speed, and consequently, a shift in the ratio of input torque to output torque, is accomplished by tilting the rotational axis of the traction planets 1008. In one embodiment, the tilting of the rotational axis of the traction planets 1008 is accomplished by rotating the first stator 1014, which can be substantially similar to the first stator 516 (
Turning now to
Referring to
In one embodiment, the first stator plate 1014 can be configured to rotate with respect to the main axle 1010. For example, a bushing 1033 can couple to the first stator plate 1014 and to the stator driver 1032. The bushing 1033 can be arranged coaxial about the main axle 1010. In one embodiment, a nut 1034 can be configured to cooperate with the main axle 1010 to axially retain the bushing 1033. In some embodiments, the second stator plate 1016 can be coupled to the main axle 1010 via a spline 1035, or other suitable torque transferring coupling, so that the second stator plate 1016 is substantially non-rotatable with respect to the main axle 1010.
During operation of the CVT 1000, the lever arm 1030 can be rotated about the main axle 1010 to thereby generate an angular rotation of the stator driver 1032 about the main axle 1010. The lever arm 1030 can be rotated manually via a linkage or a cable (not shown). In some embodiments, the lever arm 1030 can be operably coupled to an electronic actuator (not shown) such as a DC motor or a servo actuator. In some embodiments, the lever arm 1030 can be operably coupled to a hydraulic actuator (not shown). In other embodiments, the stator driver 1032 can be coupled directly to an actuator such as any of those aforementioned. The angular rotation of the stator driver 1032 imparts an angular displacement (β) to the first stator plate 1014 with respect to the second stator plate 1016. As described earlier in reference to the CVT 500, the angular rotation of the first stator plate 1014 with respect to the second stator plate 1016 can facilitate the tilting of the rotational axis of the traction planets 1008.
Turning now to
Referencing
Referring now to
Turning now to
Turning now to
Referring still to
It should be noted that the description above has provided dimensions for certain components or subassemblies. The mentioned dimensions, or ranges of dimensions, are provided in order to comply as best as possible with certain legal requirements, such as best mode. However, the scope of the inventions described herein are to be determined solely by the language of the claims, and consequently, none of the mentioned dimensions is to be considered limiting on the inventive embodiments, except in so far as any one claim makes a specified dimension, or range of thereof, a feature of the claim.
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.
This application is a continuation of U.S. patent application Ser. No. 14/501,894, filed Sep. 30, 2014 and scheduled to issue on Feb. 27, 2018 as U.S. Pat. No. 9,903,450, which is a divisional of U.S. patent application Ser. No. 13/924,304, filed Jun. 21, 2013 and issued as U.S. Pat. No. 8,852,050 on Oct. 7, 2014, which is a continuation of U.S. patent application Ser. No. 12/198,402, filed Aug. 26, 2008 and issued as U.S. Pat. No. 8,469,856 on Jun. 25, 2013. The disclosures of all of the above-referenced prior applications, publication, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
719595 | Huss | Feb 1903 | A |
1121210 | Techel | Dec 1914 | A |
1175677 | Barnes | Mar 1916 | A |
1207985 | Null et al. | Dec 1916 | A |
1380006 | Nielsen | May 1921 | A |
1390971 | Samain | Sep 1921 | A |
1558222 | Beetow | Oct 1925 | A |
1686446 | Gilman | Oct 1928 | A |
1774254 | Daukus | Aug 1930 | A |
1793571 | Vaughn | Feb 1931 | A |
1847027 | Thomsen et al. | Feb 1932 | A |
1850189 | Weiss | Mar 1932 | A |
1858696 | Weiss | May 1932 | A |
1865102 | Hayes | Jun 1932 | A |
1978439 | Sharpe | Oct 1934 | A |
2030203 | Gove et al. | Feb 1936 | A |
2060884 | Madle | Nov 1936 | A |
2086491 | Dodge | Jul 1937 | A |
2100629 | Chilton | Nov 1937 | A |
2109845 | Madle | Mar 1938 | A |
2112763 | Cloudsley | Mar 1938 | A |
2131158 | Almen et al. | Sep 1938 | A |
2134225 | Christiansen | Oct 1938 | A |
2152796 | Erban | Apr 1939 | A |
2196064 | Erban | Apr 1940 | A |
2209254 | Ahnger | Jul 1940 | A |
2259933 | Holloway | Oct 1941 | A |
2269434 | Brooks | Jan 1942 | A |
2325502 | Auguste | Jul 1943 | A |
RE22761 | Wemp | May 1946 | E |
2461258 | Brooks | Feb 1949 | A |
2469653 | Kopp | May 1949 | A |
2480968 | Ronai | Sep 1949 | A |
2553465 | Monge | May 1951 | A |
2586725 | Henry | Feb 1952 | A |
2595367 | Picanol | May 1952 | A |
2596538 | Dicke | May 1952 | A |
2597849 | Alfredeen | May 1952 | A |
2675713 | Acker | Apr 1954 | A |
2696888 | Chillson et al. | Dec 1954 | A |
2868038 | Billeter | May 1955 | A |
2716357 | Rennerfelt | Aug 1955 | A |
2730904 | Rennerfelt | Jan 1956 | A |
2748614 | Weisel | Jun 1956 | A |
2959070 | Flinn | Jan 1959 | A |
2873911 | Perrine | Feb 1959 | A |
2874592 | Oehrli | Feb 1959 | A |
2883883 | Chillson | Apr 1959 | A |
2891213 | Kern | Jun 1959 | A |
2901924 | Banker | Sep 1959 | A |
2913932 | Oehrli | Nov 1959 | A |
2931234 | Hayward | Apr 1960 | A |
2931235 | Hayward | Apr 1960 | A |
2949800 | Neuschotz | Aug 1960 | A |
2959063 | Perry | Nov 1960 | A |
2959972 | Madson | Nov 1960 | A |
2964959 | Beck | Dec 1960 | A |
3008061 | Mims et al. | Nov 1961 | A |
3035460 | Guichard | May 1962 | A |
3048056 | Wolfram | Aug 1962 | A |
3051020 | Hartupee | Aug 1962 | A |
3086704 | Hurtt | Apr 1963 | A |
3087348 | Kraus | Apr 1963 | A |
3154957 | Kashihara | Nov 1964 | A |
3163050 | Kraus | Dec 1964 | A |
3176542 | Monch | Apr 1965 | A |
3184983 | Kraus | May 1965 | A |
3204476 | Rouverol | Sep 1965 | A |
3209606 | Yamamoto | Oct 1965 | A |
3211364 | Wentling et al. | Oct 1965 | A |
3216283 | General | Nov 1965 | A |
3229538 | Schlottler | Jan 1966 | A |
3237468 | Schlottler | Mar 1966 | A |
3246531 | Kashihara | Apr 1966 | A |
3248960 | Schottler | May 1966 | A |
3273468 | Allen | Sep 1966 | A |
3280646 | Lemieux | Oct 1966 | A |
3283614 | Hewko | Nov 1966 | A |
3292443 | Felix | Dec 1966 | A |
3340895 | Osgood, Jr. et al. | Sep 1967 | A |
3407687 | Hayashi | Oct 1968 | A |
3430504 | Dickenbrock | Mar 1969 | A |
3439563 | Petty | Apr 1969 | A |
3440895 | Fellows | Apr 1969 | A |
3464281 | Azuma | Sep 1969 | A |
3477315 | Macks | Nov 1969 | A |
3487726 | Burnett | Jan 1970 | A |
3487727 | Gustafsson | Jan 1970 | A |
3574289 | Scheiter | Apr 1971 | A |
3581587 | Dickenbrock | Jun 1971 | A |
3661404 | Bossaer | May 1972 | A |
3695120 | Titt | Oct 1972 | A |
3707888 | Schottler | Jan 1973 | A |
3727473 | Bayer | Apr 1973 | A |
3727474 | Fullerton | Apr 1973 | A |
3736803 | Horowitz et al. | Jun 1973 | A |
3745844 | Schottler | Jul 1973 | A |
3768715 | Tout | Oct 1973 | A |
3800607 | Zurcher | Apr 1974 | A |
3802284 | Sharpe et al. | Apr 1974 | A |
3810398 | Kraus | May 1974 | A |
3820416 | Kraus | Jun 1974 | A |
3866985 | Whitehurst | Feb 1975 | A |
3891235 | Shelly | Jun 1975 | A |
3934493 | Hillyer | Jan 1976 | A |
3954282 | Hege | May 1976 | A |
3987681 | Keithley et al. | Oct 1976 | A |
3996807 | Adams | Dec 1976 | A |
4023442 | Woods et al. | May 1977 | A |
4098146 | McLarty | Jul 1978 | A |
4103514 | Grosse-Entrup | Aug 1978 | A |
4159653 | Koivunen | Jul 1979 | A |
4169609 | Zampedro | Oct 1979 | A |
4177683 | Moses | Dec 1979 | A |
4227712 | Dick | Oct 1980 | A |
4314485 | Adams | Feb 1982 | A |
4345486 | Olesen | Aug 1982 | A |
4369667 | Kemper | Jan 1983 | A |
4391156 | Tibbals | Jul 1983 | A |
4459873 | Black | Jul 1984 | A |
4464952 | Stubbs | Aug 1984 | A |
4468984 | Castelli et al. | Sep 1984 | A |
4494524 | Wagner | Jan 1985 | A |
4496051 | Ortner | Jan 1985 | A |
4501172 | Kraus | Feb 1985 | A |
4515040 | Takeuchi et al. | May 1985 | A |
4526255 | Hennessey et al. | Jul 1985 | A |
4546673 | Shigematsu et al. | Oct 1985 | A |
4560369 | Hattori | Dec 1985 | A |
4567781 | Russ | Feb 1986 | A |
4569670 | McIntosh | Feb 1986 | A |
4574649 | Seol | Mar 1986 | A |
4585429 | Marier | Apr 1986 | A |
4617838 | Anderson | Oct 1986 | A |
4630839 | Seol | Dec 1986 | A |
4631469 | Tsuboi et al. | Dec 1986 | A |
4651082 | Kaneyuki | Mar 1987 | A |
4663990 | Itoh et al. | May 1987 | A |
4700581 | Tibbals, Jr. | Oct 1987 | A |
4713976 | Wilkes | Dec 1987 | A |
4717368 | Yamaguchi et al. | Jan 1988 | A |
4735430 | Tomkinson | Apr 1988 | A |
4738164 | Kaneyuki | Apr 1988 | A |
4744261 | Jacobson | May 1988 | A |
4756211 | Fellows | Jul 1988 | A |
4781663 | Reswick | Nov 1988 | A |
4838122 | Takamiya et al. | Jun 1989 | A |
4856374 | Kreuzer | Aug 1989 | A |
4869130 | Wiecko | Sep 1989 | A |
4881925 | Hattori | Nov 1989 | A |
4900046 | Aranceta-Angoitia | Feb 1990 | A |
4909101 | Terry | Mar 1990 | A |
4918344 | Chikamori et al. | Apr 1990 | A |
4964312 | Kraus | Oct 1990 | A |
5006093 | Itoh et al. | Apr 1991 | A |
5020384 | Kraus | Jun 1991 | A |
5025685 | Kobayashi et al. | Jun 1991 | A |
5033322 | Nakano | Jul 1991 | A |
5033571 | Morimoto | Jul 1991 | A |
5037361 | Takahashi | Aug 1991 | A |
5044214 | Barber | Sep 1991 | A |
5059158 | Bellio et al. | Oct 1991 | A |
5069655 | Schivelbusch | Dec 1991 | A |
5083982 | Sato | Jan 1992 | A |
5099710 | Nakano | Mar 1992 | A |
5121654 | Fasce | Jun 1992 | A |
5125677 | Ogilvie et al. | Jun 1992 | A |
5138894 | Kraus | Aug 1992 | A |
5156412 | Meguerditchian | Oct 1992 | A |
5230258 | Nakano | Jul 1993 | A |
5236211 | Meguerditchian | Aug 1993 | A |
5236403 | Schievelbusch | Aug 1993 | A |
5267920 | Hibi | Dec 1993 | A |
5273501 | Schievelbusch | Dec 1993 | A |
5318486 | Lutz | Jun 1994 | A |
5319486 | Vogel et al. | Jun 1994 | A |
5330396 | Lohr et al. | Jul 1994 | A |
5355749 | Obara et al. | Oct 1994 | A |
5375865 | Terry, Sr. | Dec 1994 | A |
5379661 | Nakano | Jan 1995 | A |
5383677 | Thomas | Jan 1995 | A |
5387000 | Sato | Feb 1995 | A |
5401221 | Fellows et al. | Mar 1995 | A |
5451070 | Lindsay et al. | Sep 1995 | A |
5489003 | Ohyama et al. | Feb 1996 | A |
5508574 | Vlock | Apr 1996 | A |
5562564 | Folino | Oct 1996 | A |
5564998 | Fellows | Oct 1996 | A |
5577423 | Mimura | Nov 1996 | A |
5601301 | Liu | Feb 1997 | A |
5607373 | Ochiai et al. | Mar 1997 | A |
5645507 | Hathaway | Jul 1997 | A |
5651750 | Imanishi et al. | Jul 1997 | A |
5664636 | Ikuma et al. | Sep 1997 | A |
5669845 | Muramoto et al. | Sep 1997 | A |
5690346 | Keskitalo | Nov 1997 | A |
5722502 | Kubo | Mar 1998 | A |
5746676 | Kawase et al. | May 1998 | A |
5755303 | Yamamoto et al. | May 1998 | A |
5799541 | Arbeiter | Sep 1998 | A |
5823052 | Nobumoto | Oct 1998 | A |
5846155 | Taniguchi et al. | Dec 1998 | A |
5888160 | Miyata et al. | Mar 1999 | A |
5895337 | Fellows et al. | Apr 1999 | A |
5899827 | Nakano et al. | May 1999 | A |
5902207 | Sugihara | May 1999 | A |
5967933 | Valdenaire | Oct 1999 | A |
5976054 | Yasuoka | Nov 1999 | A |
5984826 | Nakano | Nov 1999 | A |
5995895 | Watt et al. | Nov 1999 | A |
6000707 | Miller | Dec 1999 | A |
6003649 | Fischer | Dec 1999 | A |
6004239 | Makino | Dec 1999 | A |
6006151 | Graf | Dec 1999 | A |
6012538 | Sonobe et al. | Jan 2000 | A |
6015359 | Kunii | Jan 2000 | A |
6019701 | Mori et al. | Feb 2000 | A |
6029990 | Busby | Feb 2000 | A |
6042132 | Suenaga et al. | Mar 2000 | A |
6045477 | Schmidt | Apr 2000 | A |
6045481 | Kumagai | Apr 2000 | A |
6053833 | Masaki | Apr 2000 | A |
6053841 | Kolde et al. | Apr 2000 | A |
6054844 | Frank | Apr 2000 | A |
6066067 | Greenwood | May 2000 | A |
6071210 | Kato | Jun 2000 | A |
6074320 | Miyata et al. | Jun 2000 | A |
6076846 | Clardy | Jun 2000 | A |
6079726 | Busby | Jun 2000 | A |
6083139 | Deguchi | Jul 2000 | A |
6086506 | Petersmann et al. | Jul 2000 | A |
6095940 | Ai et al. | Aug 2000 | A |
6099431 | Hoge et al. | Aug 2000 | A |
6101895 | Yamane | Aug 2000 | A |
6113513 | Itoh et al. | Sep 2000 | A |
6119539 | Papanicolaou | Sep 2000 | A |
6119800 | McComber | Sep 2000 | A |
6159126 | Oshidari | Dec 2000 | A |
6171210 | Miyata et al. | Jan 2001 | B1 |
6174260 | Tsukada et al. | Jan 2001 | B1 |
6186922 | Bursal et al. | Feb 2001 | B1 |
6210297 | Knight | Apr 2001 | B1 |
6217473 | Ueda et al. | Apr 2001 | B1 |
6217478 | Vohmann et al. | Apr 2001 | B1 |
6241636 | Miller | Jun 2001 | B1 |
6243638 | Abo et al. | Jun 2001 | B1 |
6251038 | Ishikawa et al. | Jun 2001 | B1 |
6258003 | Hirano et al. | Jul 2001 | B1 |
6261200 | Miyata et al. | Jul 2001 | B1 |
6296593 | Gotou | Oct 2001 | B1 |
6311113 | Danz et al. | Oct 2001 | B1 |
6312358 | Goi et al. | Nov 2001 | B1 |
6322475 | Miller | Nov 2001 | B2 |
6325386 | Shoge | Dec 2001 | B1 |
6358174 | Folsom et al. | Mar 2002 | B1 |
6358178 | Wittkopp | Mar 2002 | B1 |
6367833 | Horiuchi | Apr 2002 | B1 |
6371878 | Bowen | Apr 2002 | B1 |
6375412 | Dial | Apr 2002 | B1 |
6390945 | Young | May 2002 | B1 |
6390946 | Hibi et al. | May 2002 | B1 |
6406399 | Ai | Jun 2002 | B1 |
6414401 | Kuroda et al. | Jul 2002 | B1 |
6419608 | Miller | Jul 2002 | B1 |
6425838 | Matsubara et al. | Jul 2002 | B1 |
6434960 | Rousseau | Aug 2002 | B1 |
6440035 | Tsukada et al. | Aug 2002 | B2 |
6440037 | Takagi et al. | Aug 2002 | B2 |
6459978 | Tamiguchi et al. | Oct 2002 | B2 |
6461268 | Milner | Oct 2002 | B1 |
6482094 | Kefes | Nov 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494805 | Ooyama et al. | Dec 2002 | B2 |
6499373 | Van Cor | Dec 2002 | B2 |
6514175 | Taniguchi et al. | Feb 2003 | B2 |
6532890 | Chen | Mar 2003 | B2 |
6551210 | Miller | Apr 2003 | B2 |
6558285 | Sieber | May 2003 | B1 |
6575047 | Reik et al. | Jun 2003 | B2 |
6659901 | Sakai et al. | Dec 2003 | B2 |
6672418 | Makino | Jan 2004 | B1 |
6676559 | Miller | Jan 2004 | B2 |
6679109 | Gierling et al. | Jan 2004 | B2 |
6682432 | Shinozuka | Jan 2004 | B1 |
6689012 | Miller | Feb 2004 | B2 |
6721637 | Abe et al. | Apr 2004 | B2 |
6723014 | Shinso et al. | Apr 2004 | B2 |
6723016 | Sumi | Apr 2004 | B2 |
6805654 | Nishii | Oct 2004 | B2 |
6808053 | Kirkwood et al. | Oct 2004 | B2 |
6839617 | Mensler et al. | Jan 2005 | B2 |
6849020 | Sumi | Feb 2005 | B2 |
6859709 | Joe et al. | Feb 2005 | B2 |
6868949 | Braford | Mar 2005 | B2 |
6931316 | Joe et al. | Aug 2005 | B2 |
6932739 | Miyata et al. | Aug 2005 | B2 |
6942593 | Nishii et al. | Sep 2005 | B2 |
6945903 | Miller | Sep 2005 | B2 |
6949049 | Miller | Sep 2005 | B2 |
6958029 | Inoue | Oct 2005 | B2 |
6991575 | Inoue | Jan 2006 | B2 |
6991579 | Kobayashi et al. | Jan 2006 | B2 |
7011600 | Miller et al. | Mar 2006 | B2 |
7011601 | Miller | Mar 2006 | B2 |
7014591 | Miller | Mar 2006 | B2 |
7029418 | Taketsuna et al. | Apr 2006 | B2 |
7032914 | Miller | Apr 2006 | B2 |
7036620 | Miller et al. | May 2006 | B2 |
7044884 | Miller | May 2006 | B2 |
7063195 | Berhan | Jun 2006 | B2 |
7063640 | Miller | Jun 2006 | B2 |
7074007 | Miller | Jul 2006 | B2 |
7074154 | Miller | Jul 2006 | B2 |
7074155 | Miller | Jul 2006 | B2 |
7077777 | Miyata et al. | Jul 2006 | B2 |
7086979 | Frenken | Aug 2006 | B2 |
7086981 | Ali et al. | Aug 2006 | B2 |
7094171 | Inoue | Aug 2006 | B2 |
7111860 | Grimaldos | Sep 2006 | B1 |
7112158 | Miller | Sep 2006 | B2 |
7112159 | Miller et al. | Sep 2006 | B2 |
7125297 | Miller et al. | Oct 2006 | B2 |
7131930 | Miller et al. | Nov 2006 | B2 |
7140999 | Miller | Nov 2006 | B2 |
7147586 | Miller et al. | Dec 2006 | B2 |
7153233 | Miller et al. | Dec 2006 | B2 |
7156770 | Miller | Jan 2007 | B2 |
7160220 | Shinojima et al. | Jan 2007 | B2 |
7160222 | Miller | Jan 2007 | B2 |
7163485 | Miller | Jan 2007 | B2 |
7163486 | Miller et al. | Jan 2007 | B2 |
7166052 | Miller et al. | Jan 2007 | B2 |
7166056 | Miller et al. | Jan 2007 | B2 |
7166057 | Miller et al. | Jan 2007 | B2 |
7166058 | Miller et al. | Jan 2007 | B2 |
7169076 | Miller et al. | Jan 2007 | B2 |
7172529 | Miller et al. | Feb 2007 | B2 |
7175564 | Miller | Feb 2007 | B2 |
7175565 | Miller et al. | Feb 2007 | B2 |
7175566 | Miller et al. | Feb 2007 | B2 |
7192381 | Miller et al. | Mar 2007 | B2 |
7197915 | Luh et al. | Apr 2007 | B2 |
7198582 | Miller et al. | Apr 2007 | B2 |
7198583 | Miller et al. | Apr 2007 | B2 |
7198584 | Miller et al. | Apr 2007 | B2 |
7198585 | Miller et al. | Apr 2007 | B2 |
7201693 | Miller et al. | Apr 2007 | B2 |
7201694 | Miller et al. | Apr 2007 | B2 |
7201695 | Miller et al. | Apr 2007 | B2 |
7204777 | Miller et al. | Apr 2007 | B2 |
7207918 | Shimazu | Apr 2007 | B2 |
7214159 | Miller et al. | May 2007 | B2 |
7217215 | Miller et al. | May 2007 | B2 |
7217216 | Inoue | May 2007 | B2 |
7217219 | Miller | May 2007 | B2 |
7217220 | Careau et al. | May 2007 | B2 |
7232395 | Miller et al. | Jun 2007 | B2 |
7234873 | Kato et al. | Jun 2007 | B2 |
7235031 | Miller et al. | Jun 2007 | B2 |
7238136 | Miller et al. | Jul 2007 | B2 |
7238137 | Miller et al. | Jul 2007 | B2 |
7238138 | Miller et al. | Jul 2007 | B2 |
7238139 | Roethler et al. | Jul 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7250018 | Miller et al. | Jul 2007 | B2 |
7261663 | Miller et al. | Aug 2007 | B2 |
7275610 | Kuang et al. | Oct 2007 | B2 |
7285068 | Hosoi | Oct 2007 | B2 |
7288042 | Miller et al. | Oct 2007 | B2 |
7288043 | Shioiri et al. | Oct 2007 | B2 |
7320660 | Miller | Jan 2008 | B2 |
7322901 | Miller et al. | Jan 2008 | B2 |
7343236 | Wilson | Mar 2008 | B2 |
7347801 | Guenter et al. | Mar 2008 | B2 |
7383748 | Rankin | Jun 2008 | B2 |
7384370 | Miller | Jun 2008 | B2 |
7393300 | Miller et al. | Jul 2008 | B2 |
7393302 | Miller | Jul 2008 | B2 |
7393303 | Miller | Jul 2008 | B2 |
7395731 | Miller et al. | Jul 2008 | B2 |
7396209 | Miller et al. | Jul 2008 | B2 |
7402122 | Miller | Jul 2008 | B2 |
7410443 | Miller | Aug 2008 | B2 |
7419451 | Miller | Sep 2008 | B2 |
7422541 | Miller | Sep 2008 | B2 |
7422546 | Miller et al. | Sep 2008 | B2 |
7427253 | Miller | Sep 2008 | B2 |
7431677 | Miller et al. | Oct 2008 | B2 |
7452297 | Miller et al. | Nov 2008 | B2 |
7455611 | Miller et al. | Nov 2008 | B2 |
7455617 | Miller et al. | Nov 2008 | B2 |
7462123 | Miller et al. | Dec 2008 | B2 |
7462127 | Miller et al. | Dec 2008 | B2 |
7470210 | Miller et al. | Dec 2008 | B2 |
7478885 | Urabe | Jan 2009 | B2 |
7481736 | Miller et al. | Jan 2009 | B2 |
7510499 | Miller et al. | Mar 2009 | B2 |
7540818 | Miller et al. | Jun 2009 | B2 |
7547264 | Usoro | Jun 2009 | B2 |
7574935 | Rohs et al. | Aug 2009 | B2 |
7591755 | Petrzik et al. | Sep 2009 | B2 |
7632203 | Miller | Dec 2009 | B2 |
7651437 | Miller et al. | Jan 2010 | B2 |
7654928 | Miller et al. | Feb 2010 | B2 |
7670243 | Miller | Mar 2010 | B2 |
7686729 | Miller et al. | Mar 2010 | B2 |
7727101 | Miller | Jun 2010 | B2 |
7727106 | Maheu et al. | Jun 2010 | B2 |
7727107 | Miller | Jun 2010 | B2 |
7727108 | Miller et al. | Jun 2010 | B2 |
7727110 | Miller et al. | Jun 2010 | B2 |
7727115 | Serkh | Jun 2010 | B2 |
7731615 | Miller et al. | Jun 2010 | B2 |
7762919 | Smithson et al. | Jul 2010 | B2 |
7762920 | Smithson et al. | Jul 2010 | B2 |
7785228 | Smithson et al. | Aug 2010 | B2 |
7828685 | Miller | Nov 2010 | B2 |
7837592 | Miller | Nov 2010 | B2 |
7871353 | Nichols et al. | Jan 2011 | B2 |
7882762 | Armstrong et al. | Feb 2011 | B2 |
7883442 | Miller et al. | Feb 2011 | B2 |
7885747 | Miller et al. | Feb 2011 | B2 |
7887032 | Malone | Feb 2011 | B2 |
7909723 | Triller et al. | Mar 2011 | B2 |
7909727 | Smithson et al. | Mar 2011 | B2 |
7914029 | Miller et al. | Mar 2011 | B2 |
7959533 | Nichols et al. | Jun 2011 | B2 |
7963880 | Smithson et al. | Jun 2011 | B2 |
7967719 | Smithson et al. | Jun 2011 | B2 |
7976426 | Smithson et al. | Jul 2011 | B2 |
8066613 | Smithson et al. | Nov 2011 | B2 |
8066614 | Miller et al. | Nov 2011 | B2 |
8070635 | Miller | Dec 2011 | B2 |
8087482 | Miles et al. | Jan 2012 | B2 |
8123653 | Smithson et al. | Feb 2012 | B2 |
8133149 | Smithson et al. | Mar 2012 | B2 |
8142323 | Tsuchiya et al. | Mar 2012 | B2 |
8167759 | Pohl et al. | May 2012 | B2 |
8171636 | Smithson et al. | May 2012 | B2 |
8230961 | Schneidewind | Jul 2012 | B2 |
8262536 | Nichols et al. | Sep 2012 | B2 |
8267829 | Miller et al. | Sep 2012 | B2 |
8313404 | Carter | Nov 2012 | B2 |
8313405 | Bazyn et al. | Nov 2012 | B2 |
8317650 | Nichols et al. | Nov 2012 | B2 |
8317651 | Lohr | Nov 2012 | B2 |
8321097 | Vasiliotis et al. | Nov 2012 | B2 |
8342999 | Miller | Jan 2013 | B2 |
8360917 | Nichols et al. | Jan 2013 | B2 |
8376889 | Hoffman et al. | Feb 2013 | B2 |
8376903 | Pohl et al. | Feb 2013 | B2 |
8382631 | Hoffman et al. | Feb 2013 | B2 |
8382637 | Tange | Feb 2013 | B2 |
8393989 | Pohl | Mar 2013 | B2 |
8398518 | Nichols et al. | Mar 2013 | B2 |
8469853 | Miller et al. | Jun 2013 | B2 |
8469856 | Thomassy | Jun 2013 | B2 |
8480529 | Pohl et al. | Jul 2013 | B2 |
8496554 | Pohl et al. | Jul 2013 | B2 |
8506452 | Pohl et al. | Aug 2013 | B2 |
8512195 | Lohr et al. | Aug 2013 | B2 |
8517888 | Brookins | Aug 2013 | B1 |
8535199 | Lohr et al. | Sep 2013 | B2 |
8550949 | Miller | Oct 2013 | B2 |
8585528 | Carter et al. | Nov 2013 | B2 |
8608609 | Sherrill | Dec 2013 | B2 |
8622866 | Bazyn et al. | Jan 2014 | B2 |
8626409 | Vasiliotis et al. | Jan 2014 | B2 |
8628443 | Miller et al. | Jan 2014 | B2 |
8641572 | Nichols et al. | Feb 2014 | B2 |
8641577 | Nichols et al. | Feb 2014 | B2 |
8663050 | Nichols et al. | Mar 2014 | B2 |
8678974 | Lohr | Mar 2014 | B2 |
8708360 | Miller et al. | Apr 2014 | B2 |
8721485 | Lohr et al. | May 2014 | B2 |
8738255 | Carter et al. | May 2014 | B2 |
8776633 | Armstrong et al. | Jul 2014 | B2 |
8784248 | Murakami et al. | Jul 2014 | B2 |
8790214 | Lohr et al. | Jul 2014 | B2 |
8814739 | Hamrin et al. | Aug 2014 | B1 |
8818661 | Keilers et al. | Aug 2014 | B2 |
8827856 | Younggren et al. | Sep 2014 | B1 |
8827864 | Durack | Sep 2014 | B2 |
8845485 | Smithson et al. | Sep 2014 | B2 |
8852050 | Thomassy | Oct 2014 | B2 |
8870711 | Pohl et al. | Oct 2014 | B2 |
8888643 | Lohr et al. | Nov 2014 | B2 |
8900085 | Pohl et al. | Dec 2014 | B2 |
8920285 | Smithson et al. | Dec 2014 | B2 |
8924111 | Fuller | Dec 2014 | B2 |
8956262 | Tomomatsu et al. | Feb 2015 | B2 |
8961363 | Shiina et al. | Feb 2015 | B2 |
8992376 | Ogawa et al. | Mar 2015 | B2 |
8996263 | Quinn et al. | Mar 2015 | B2 |
9017207 | Pohl et al. | Apr 2015 | B2 |
9022889 | Miller | May 2015 | B2 |
9046158 | Miller et al. | Jun 2015 | B2 |
9074674 | Nichols et al. | Jul 2015 | B2 |
9086145 | Pohl et al. | Jul 2015 | B2 |
9121464 | Nichols et al. | Sep 2015 | B2 |
9182018 | Bazyn et al. | Nov 2015 | B2 |
9239099 | Carter et al. | Jan 2016 | B2 |
9249880 | Vasiliotis et al. | Feb 2016 | B2 |
9273760 | Pohl et al. | Mar 2016 | B2 |
9279482 | Nichols et al. | Mar 2016 | B2 |
9291251 | Lohr et al. | Mar 2016 | B2 |
9328807 | Carter et al. | May 2016 | B2 |
9341246 | Miller et al. | May 2016 | B2 |
9360089 | Lohr et al. | Jun 2016 | B2 |
9365203 | Keilers et al. | Jun 2016 | B2 |
9371894 | Carter et al. | Jun 2016 | B2 |
9388896 | Hibino et al. | Jul 2016 | B2 |
9506562 | Miller et al. | Nov 2016 | B2 |
9528561 | Nichols et al. | Dec 2016 | B2 |
9574642 | Pohl et al. | Feb 2017 | B2 |
9574643 | Pohl | Feb 2017 | B2 |
9611921 | Thomassy et al. | Apr 2017 | B2 |
9618100 | Lohr | Apr 2017 | B2 |
9656672 | Schieffelin | May 2017 | B2 |
9676391 | Carter et al. | Jun 2017 | B2 |
9677650 | Nichols et al. | Jun 2017 | B2 |
9683638 | Kostrup | Jun 2017 | B2 |
9683640 | Lohr et al. | Jun 2017 | B2 |
9709138 | Miller et al. | Jul 2017 | B2 |
9726282 | Pohl et al. | Aug 2017 | B2 |
9732848 | Miller et al. | Aug 2017 | B2 |
9739375 | Vasiliotis et al. | Aug 2017 | B2 |
9850993 | Bazyn et al. | Dec 2017 | B2 |
9869388 | Pohl et al. | Jan 2018 | B2 |
9878717 | Keilers et al. | Jan 2018 | B2 |
9878719 | Carter et al. | Jan 2018 | B2 |
9903450 | Thomassy | Feb 2018 | B2 |
9920823 | Nichols et al. | Mar 2018 | B2 |
9963199 | Hancock et al. | May 2018 | B2 |
10023266 | Contello et al. | Jul 2018 | B2 |
20010008192 | Morisawa | Jul 2001 | A1 |
20010023217 | Miyagawa et al. | Sep 2001 | A1 |
20010041644 | Yasuoka et al. | Nov 2001 | A1 |
20010044358 | Taniguchi | Nov 2001 | A1 |
20010044361 | Taniguchi et al. | Nov 2001 | A1 |
20020019285 | Henzler | Feb 2002 | A1 |
20020028722 | Sakai et al. | Mar 2002 | A1 |
20020037786 | Hirano et al. | Mar 2002 | A1 |
20020045511 | Geiberger et al. | Apr 2002 | A1 |
20020049113 | Watanabe et al. | Apr 2002 | A1 |
20020117860 | Man et al. | Aug 2002 | A1 |
20020128107 | Wakayama | Sep 2002 | A1 |
20020161503 | Joe et al. | Oct 2002 | A1 |
20020169051 | Oshidari | Nov 2002 | A1 |
20020179348 | Tamai et al. | Dec 2002 | A1 |
20030015358 | Abe et al. | Jan 2003 | A1 |
20030015874 | Abe et al. | Jan 2003 | A1 |
20030022753 | Mizuno et al. | Jan 2003 | A1 |
20030036456 | Skrabs | Feb 2003 | A1 |
20030132051 | Nishii et al. | Jul 2003 | A1 |
20030135316 | Kawamura et al. | Jul 2003 | A1 |
20030144105 | O'Hora | Jul 2003 | A1 |
20030160420 | Fukuda | Aug 2003 | A1 |
20030216216 | Inoue et al. | Nov 2003 | A1 |
20030221892 | Matsumoto et al. | Dec 2003 | A1 |
20040038772 | McIndoe et al. | Feb 2004 | A1 |
20040058772 | Inoue et al. | Mar 2004 | A1 |
20040067816 | Taketsuna et al. | Apr 2004 | A1 |
20040082421 | Wafzig | Apr 2004 | A1 |
20040087412 | Mori | May 2004 | A1 |
20040092359 | Imanishi et al. | May 2004 | A1 |
20040119345 | Takano | Jun 2004 | A1 |
20040171457 | Fuller | Sep 2004 | A1 |
20040204283 | Inoue | Oct 2004 | A1 |
20040231331 | Iwanami et al. | Nov 2004 | A1 |
20040254047 | Frank et al. | Dec 2004 | A1 |
20050037876 | Unno et al. | Feb 2005 | A1 |
20050064986 | Ginglas | Mar 2005 | A1 |
20050085979 | Carlson et al. | Apr 2005 | A1 |
20050137051 | Miller | Jun 2005 | A1 |
20050181905 | Ali et al. | Aug 2005 | A1 |
20050184580 | Kuan et al. | Aug 2005 | A1 |
20050227809 | Bitzer et al. | Oct 2005 | A1 |
20050229731 | Parks et al. | Oct 2005 | A1 |
20050233846 | Green et al. | Oct 2005 | A1 |
20060000684 | Agner | Jan 2006 | A1 |
20060006008 | Brunemann et al. | Jan 2006 | A1 |
20060052204 | Eckert et al. | Mar 2006 | A1 |
20060054422 | Dimsey et al. | Mar 2006 | A1 |
20060108956 | Clark | May 2006 | A1 |
20060111212 | Ai et al. | May 2006 | A9 |
20060154775 | Ali et al. | Jul 2006 | A1 |
20060172829 | Ishio | Aug 2006 | A1 |
20060180363 | Uchisasai | Aug 2006 | A1 |
20060223667 | Nakazeki | Oct 2006 | A1 |
20060234822 | Morscheck et al. | Oct 2006 | A1 |
20060234826 | Moehlmann et al. | Oct 2006 | A1 |
20060276299 | Imanishi | Dec 2006 | A1 |
20070004552 | Matsudaira et al. | Jan 2007 | A1 |
20070004556 | Rohs et al. | Jan 2007 | A1 |
20070049450 | Miller | Mar 2007 | A1 |
20070099753 | Matsui et al. | May 2007 | A1 |
20070149342 | Guenter et al. | Jun 2007 | A1 |
20070155552 | De Cloe | Jul 2007 | A1 |
20070155567 | Miller et al. | Jul 2007 | A1 |
20070193391 | Armstrong et al. | Aug 2007 | A1 |
20070228687 | Parker | Oct 2007 | A1 |
20070232423 | Katou et al. | Oct 2007 | A1 |
20080009389 | Jacobs | Jan 2008 | A1 |
20080032852 | Smithson et al. | Feb 2008 | A1 |
20080032854 | Smithson et al. | Feb 2008 | A1 |
20080039269 | Smithson et al. | Feb 2008 | A1 |
20080039273 | Smithson et al. | Feb 2008 | A1 |
20080039276 | Smithson et al. | Feb 2008 | A1 |
20080081728 | Faulring et al. | Apr 2008 | A1 |
20080139363 | Williams | Jun 2008 | A1 |
20080149407 | Shibata et al. | Jun 2008 | A1 |
20080183358 | Thomson et al. | Jul 2008 | A1 |
20080200300 | Smithson et al. | Aug 2008 | A1 |
20080228362 | Muller et al. | Sep 2008 | A1 |
20080284170 | Cory | Nov 2008 | A1 |
20080305920 | Nishii et al. | Dec 2008 | A1 |
20090023545 | Beaudoin | Jan 2009 | A1 |
20090082169 | Kolstrup | Mar 2009 | A1 |
20090107454 | Hiyoshi et al. | Apr 2009 | A1 |
20090251013 | Vollmer et al. | Oct 2009 | A1 |
20100093479 | Carter et al. | Apr 2010 | A1 |
20100145573 | Vasilescu | Jun 2010 | A1 |
20100173743 | Nichols | Jul 2010 | A1 |
20100181130 | Chou | Jul 2010 | A1 |
20110127096 | Schneidewind | Jun 2011 | A1 |
20110190093 | Bishop | Aug 2011 | A1 |
20110230297 | Shiina et al. | Sep 2011 | A1 |
20110237385 | Parise | Sep 2011 | A1 |
20110291507 | Post | Dec 2011 | A1 |
20110319222 | Ogawa et al. | Dec 2011 | A1 |
20120035011 | Menachem et al. | Feb 2012 | A1 |
20120035015 | Ogawa et al. | Feb 2012 | A1 |
20120258839 | Smithson et al. | Oct 2012 | A1 |
20130035200 | Noji et al. | Feb 2013 | A1 |
20130053211 | Fukuda et al. | Feb 2013 | A1 |
20140094339 | Ogawa | Apr 2014 | A1 |
20140148303 | Nichols et al. | May 2014 | A1 |
20140274536 | Versteyhe | Sep 2014 | A1 |
20140329637 | Thomassy | Nov 2014 | A1 |
20150038285 | Aratsu et al. | Feb 2015 | A1 |
20150051801 | Quinn et al. | Feb 2015 | A1 |
20150337928 | Smithson | Nov 2015 | A1 |
20150345599 | Ogawa | Dec 2015 | A1 |
20150369348 | Nichols et al. | Dec 2015 | A1 |
20160003349 | Kimura et al. | Jan 2016 | A1 |
20160031526 | Watarai | Feb 2016 | A1 |
20160131231 | Carter et al. | May 2016 | A1 |
20160201772 | Lohr et al. | Jul 2016 | A1 |
20160281825 | Lohr et al. | Sep 2016 | A1 |
20160290451 | Lohr | Oct 2016 | A1 |
20160298740 | Carter et al. | Oct 2016 | A1 |
20160347411 | Yamamoto et al. | Dec 2016 | A1 |
20170072782 | Miller et al. | Mar 2017 | A1 |
20170082049 | David et al. | Mar 2017 | A1 |
20170103053 | Nichols et al. | Apr 2017 | A1 |
20170159812 | Pohl et al. | Jun 2017 | A1 |
20170163138 | Pohl | Jun 2017 | A1 |
20170204948 | Thomassy et al. | Jul 2017 | A1 |
20170204969 | Thomassy et al. | Jul 2017 | A1 |
20170211698 | Lohr | Jul 2017 | A1 |
20170225742 | Hancock et al. | Aug 2017 | A1 |
20170268638 | Nichols et al. | Sep 2017 | A1 |
20170276217 | Nichols et al. | Sep 2017 | A1 |
20170284519 | Kolstrup | Oct 2017 | A1 |
20170284520 | Lohr et al. | Oct 2017 | A1 |
20170314655 | Miller et al. | Nov 2017 | A1 |
20170328470 | Pohl | Nov 2017 | A1 |
20170335961 | Hamrin | Nov 2017 | A1 |
20180066754 | Miller et al. | Mar 2018 | A1 |
20180106359 | Bazyn et al. | Apr 2018 | A1 |
20180134750 | Pohl et al. | May 2018 | A1 |
20180148055 | Carter et al. | May 2018 | A1 |
20180148056 | Keilers et al. | May 2018 | A1 |
20180202527 | Nichols et al. | Jul 2018 | A1 |
20180236867 | Miller et al. | Aug 2018 | A1 |
20180251190 | Hancock et al. | Sep 2018 | A1 |
20180306283 | Engesather et al. | Oct 2018 | A1 |
20180327060 | Contello et al. | Nov 2018 | A1 |
20180343105 | Wang et al. | Nov 2018 | A1 |
20180347693 | Thomassy et al. | Dec 2018 | A1 |
20180372192 | Lohr | Dec 2018 | A1 |
20190049004 | Quinn et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
118064 | Dec 1926 | CH |
1054340 | Sep 1991 | CN |
2245830 | Jan 1997 | CN |
1157379 | Aug 1997 | CN |
1167221 | Dec 1997 | CN |
1178573 | Apr 1998 | CN |
1178751 | Apr 1998 | CN |
1204991 | Jan 1999 | CN |
2320843 | May 1999 | CN |
1283258 | Feb 2001 | CN |
1300355 | Jun 2001 | CN |
1412033 | Apr 2003 | CN |
1434229 | Aug 2003 | CN |
1474917 | Feb 2004 | CN |
1483235 | Mar 2004 | CN |
1568407 | Jan 2005 | CN |
1654858 | Aug 2005 | CN |
2714896 | Aug 2005 | CN |
1736791 | Feb 2006 | CN |
1847702 | Oct 2006 | CN |
1860315 | Nov 2006 | CN |
1940348 | Apr 2007 | CN |
101016076 | Aug 2007 | CN |
101312867 | Nov 2008 | CN |
498 701 | May 1930 | DE |
1165372 | Mar 1964 | DE |
1171692 | Jun 1964 | DE |
2021027 | Dec 1970 | DE |
2 310880 | Sep 1974 | DE |
2 136 243 | Jan 1975 | DE |
2436496 | Feb 1975 | DE |
19851738 | May 2000 | DE |
10155372 | May 2003 | DE |
102011016672 | Oct 2012 | DE |
102012023551 | Jun 2014 | DE |
102014007271 | Dec 2014 | DE |
0 432 742 | Dec 1990 | EP |
0 528 381 | Feb 1993 | EP |
0 528 382 | Feb 1993 | EP |
0 635 639 | Jan 1995 | EP |
0 638 741 | Feb 1995 | EP |
0 831 249 | Mar 1998 | EP |
0 832 816 | Apr 1998 | EP |
0 976 956 | Feb 2000 | EP |
1 136 724 | Sep 2001 | EP |
1 251 294 | Oct 2002 | EP |
1 366 978 | Mar 2003 | EP |
1 433 641 | Jun 2004 | EP |
1 624 230 | Feb 2006 | EP |
1 925 545 | May 2008 | EP |
2 893 219 | Jul 2015 | EP |
620375 | Apr 1927 | FR |
2460427 | Jan 1981 | FR |
2590638 | May 1987 | FR |
391448 | Apr 1933 | GB |
592320 | Sep 1947 | GB |
858710 | Jan 1961 | GB |
906002 | Sep 1962 | GB |
919430 | Feb 1963 | GB |
1132473 | Nov 1968 | GB |
1165545 | Oct 1969 | GB |
1376057 | Dec 1974 | GB |
2031822 | Apr 1980 | GB |
2035481 | Jun 1980 | GB |
2035482 | Jun 1980 | GB |
2080452 | Aug 1982 | GB |
38-025315 | Nov 1963 | JP |
41-3126 | Feb 1966 | JP |
42-2843 | Feb 1967 | JP |
42-2844 | Feb 1967 | JP |
44-1098 | Jan 1969 | JP |
46-029087 | Aug 1971 | JP |
47-000448 | Jan 1972 | JP |
47-207 | Jun 1972 | JP |
47-20535 | Jun 1972 | JP |
47-00962 | Nov 1972 | JP |
47-29762 | Nov 1972 | JP |
48-54371 | Jul 1973 | JP |
49-012742 | Mar 1974 | JP |
49-013823 | Apr 1974 | JP |
49-041536 | Nov 1974 | JP |
50-114581 | Sep 1975 | JP |
51-25903 | Aug 1976 | JP |
51-150380 | Dec 1976 | JP |
52-35481 | Mar 1977 | JP |
53-048166 | Jan 1978 | JP |
53-50395 | Apr 1978 | JP |
55-135259 | Oct 1980 | JP |
56-24251 | Mar 1981 | JP |
56-047231 | Apr 1981 | JP |
56-101448 | Aug 1981 | JP |
56-127852 | Oct 1981 | JP |
58-065361 | Apr 1983 | JP |
59-069565 | Apr 1984 | JP |
59-144826 | Aug 1984 | JP |
59-190557 | Oct 1984 | JP |
60-247011 | Dec 1985 | JP |
61-031754 | Feb 1986 | JP |
61-053423 | Mar 1986 | JP |
61-144466 | Jul 1986 | JP |
61-173722 | Oct 1986 | JP |
61-270552 | Nov 1986 | JP |
62-075170 | Apr 1987 | JP |
63-125854 | May 1988 | JP |
63-219953 | Sep 1988 | JP |
63-160465 | Oct 1988 | JP |
01-039865 | Nov 1989 | JP |
01-286750 | Nov 1989 | JP |
01-308142 | Dec 1989 | JP |
02-130224 | May 1990 | JP |
02-157483 | Jun 1990 | JP |
02-271142 | Jun 1990 | JP |
02-182593 | Jul 1990 | JP |
03-149442 | Jun 1991 | JP |
03-223555 | Oct 1991 | JP |
04-166619 | Jun 1992 | JP |
04-272553 | Sep 1992 | JP |
04-327055 | Nov 1992 | JP |
04-351361 | Dec 1992 | JP |
05-087154 | Apr 1993 | JP |
06-050169 | Feb 1994 | JP |
06-050358 | Feb 1994 | JP |
07-42799 | Feb 1995 | JP |
07-133857 | May 1995 | JP |
07-139600 | May 1995 | JP |
07-259950 | Oct 1995 | JP |
08-135748 | May 1996 | JP |
08-170706 | Jul 1996 | JP |
08-247245 | Sep 1996 | JP |
08-270772 | Oct 1996 | JP |
09-024743 | Jan 1997 | JP |
09-089064 | Mar 1997 | JP |
10-061739 | Mar 1998 | JP |
10-078094 | Mar 1998 | JP |
10-089435 | Apr 1998 | JP |
10-115355 | May 1998 | JP |
10-115356 | May 1998 | JP |
10-194186 | Jul 1998 | JP |
10-225053 | Aug 1998 | JP |
10-231910 | Sep 1998 | JP |
10-511621 | Nov 1998 | JP |
11-063130 | Mar 1999 | JP |
11-091411 | Apr 1999 | JP |
11-210850 | Aug 1999 | JP |
11-240481 | Sep 1999 | JP |
11-257479 | Sep 1999 | JP |
2000-6877 | Jan 2000 | JP |
2000-46135 | Feb 2000 | JP |
2000-177673 | Jun 2000 | JP |
2001-027298 | Jan 2001 | JP |
2001-071986 | Mar 2001 | JP |
2001-107827 | Apr 2001 | JP |
2001-165296 | Jun 2001 | JP |
2001-234999 | Aug 2001 | JP |
2001-328466 | Nov 2001 | JP |
2002-147558 | May 2002 | JP |
2002-250421 | Jun 2002 | JP |
2002-307956 | Oct 2002 | JP |
2002-533626 | Oct 2002 | JP |
2002-372114 | Dec 2002 | JP |
2003-028257 | Jan 2003 | JP |
2003-56662 | Feb 2003 | JP |
2003-161357 | Jun 2003 | JP |
2003-194206 | Jul 2003 | JP |
2003-194207 | Jul 2003 | JP |
2003-320987 | Nov 2003 | JP |
2003-336732 | Nov 2003 | JP |
2004-011834 | Jan 2004 | JP |
2004-38722 | Feb 2004 | JP |
2004-162652 | Jun 2004 | JP |
2004-189222 | Jul 2004 | JP |
2004-232776 | Aug 2004 | JP |
2004-526917 | Sep 2004 | JP |
2004-301251 | Oct 2004 | JP |
2005-003063 | Jan 2005 | JP |
2005-096537 | Apr 2005 | JP |
2005-188694 | Jul 2005 | JP |
2005-240928 | Sep 2005 | JP |
2005-312121 | Nov 2005 | JP |
2006-015025 | Jan 2006 | JP |
2006-283900 | Oct 2006 | JP |
2006-300241 | Nov 2006 | JP |
2007-085404 | Apr 2007 | JP |
2007-321931 | Dec 2007 | JP |
2008-002687 | Jan 2008 | JP |
2008-14412 | Jan 2008 | JP |
2008-133896 | Jun 2008 | JP |
2010-069005 | Apr 2010 | JP |
2012-107725 | Jun 2012 | JP |
2012-122568 | Jun 2012 | JP |
2012-211610 | Nov 2012 | JP |
2012-225390 | Nov 2012 | JP |
2015-227690 | Dec 2015 | JP |
2015-227691 | Dec 2015 | JP |
2002 0054126 | Jul 2002 | KR |
10-2002-0071699 | Sep 2002 | KR |
98467 | Jul 1961 | NE |
74007 | Jan 1984 | TW |
175100 | Dec 1991 | TW |
218909 | Jan 1994 | TW |
227206 | Jul 1994 | TW |
275872 | May 1996 | TW |
360184 | Jun 1999 | TW |
366396 | Aug 1999 | TW |
401496 | Aug 2000 | TW |
510867 | Nov 2002 | TW |
512211 | Dec 2002 | TW |
582363 | Apr 2004 | TW |
590955 | Jun 2004 | TW |
I225129 | Dec 2004 | TW |
I225912 | Jan 2005 | TW |
I235214 | Jan 2005 | TW |
M294598 | Jul 2006 | TW |
200637745 | Nov 2006 | TW |
200821218 | May 2008 | TW |
WO 9908024 | Feb 1999 | WO |
WO 9920918 | Apr 1999 | WO |
WO 0173319 | Oct 2001 | WO |
WO 03100294 | Dec 2003 | WO |
WO 05083305 | Sep 2005 | WO |
WO 05108825 | Nov 2005 | WO |
WO 05111472 | Nov 2005 | WO |
WO 06091503 | Aug 2006 | WO |
WO 08078047 | Jul 2008 | WO |
WO 10073036 | Jul 2010 | WO |
WO 10135407 | Nov 2010 | WO |
WO 11064572 | Jun 2011 | WO |
WO 11101991 | Aug 2011 | WO |
WO 12030213 | Mar 2012 | WO |
WO 13042226 | Mar 2013 | WO |
WO 14186732 | Nov 2014 | WO |
WO 16062461 | Apr 2016 | WO |
Entry |
---|
Office Action dated Feb. 24, 2010 from Japanese Patent Application No. 2006-508892. |
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2009-294086. |
International Search Report and Written Opinion dated Feb. 2, 2010 from International Patent Application No. PCT/US2008/068929, filed on Jan. 7, 2008. |
Office Action dated Feb. 6, 2012 for U.S. Appl. No. 12/198,402. |
Office Action dated Jul. 27, 2012 for U.S. Appl. No. 12/198,402. |
Office Action dated Nov. 16, 2012 for U.S. Appl. No. 12/198,402. |
Office Action dated Oct. 12, 2012 for U.S. Appl. No. 12/198,402. |
Office Action dated Jan. 17, 2013 in U.S. Appl. No. 13/924,304. |
Office Action dated Feb. 12, 2015 in Canadian Patent Application No. 2,734,982. |
Office Action dated Nov. 24, 2015 in Canadian Patent Application No. 2,734,982. |
Chinese Office Action dated Mar. 25, 2013 for Chinese Patent Application No. 200880131268.1. |
Chinese Office Action dated Nov. 18, 2013 for Chinese Patent Application No. 200880131268.1. |
Chinese Office Action dated Apr. 22, 2014 in Chinese Patent Application No. 200880131268.1. |
Chinese Office Action dated Jan. 9, 2015 in Chinese Patent Application No. 200880131268.1. |
Office Action dated May 4, 2017 in Chinese Patent Application No. 201510611152.X. |
European Search Report dated Sep. 7, 2012 for European Patent Application No. 12176385.8. |
Extended European Search Report dated Sep. 7, 2015 in European Patent Application No. 14182576.0. |
Japanese Office Action dated Feb. 12, 2013 for Japanese Patent Application No. 2011-524950. |
Japanese Office Action dated Aug. 6, 2013 for Japanese Patent Application No. 2011-524950. |
Decision to Grant a Patent dated Feb. 4, 2014 in Japanese Patent Application No. 2011-524950. |
Notification of Reasons for Rejection dated Feb. 24, 2015 in Japanese Patent Application No. 2014-040692. |
Decision to Grant a Patent dated Nov. 4, 2015 in Japanese Patent Application No. 2014-040692. |
Notification of Reasons for Rejection dated Nov. 15, 2016 in Japanese Patent Application No. 2015-236532. |
Office Action dated Aug. 25, 2014 in Korean Patent Application No. 10-2011-7007171. |
Notification of Allowance dated Jan. 14, 2015 in Korean Patent Application No. 10-2011-7007171. |
Office Action dated Aug. 5, 2015 in Mexican Patent Application No. MX/a/2014/006183. |
Office Action dated Oct. 17, 2012 for Russian Patent Application No. 2011106348. |
Office Action dated Jul. 15, 2015 in Taiwan Patent Application No. 98106160. |
Rejection Decision dated Jun. 28, 2016 in Taiwan Patent Application No. 98106160. |
Office Action dated Jan. 11, 2017 in Taiwan Patent Application No. 98106160. |
International Preliminary Report on Patentability dated Mar. 1, 2011 for PCT Application No. PCT/US2008/074496. |
International Search Report and Written Opinion dated May 8, 2009 for PCT Application No. PCT/US2008/074496. |
Thomassy: An Engineering Approach to Simulating Traction EHL. CVT-Hybrid International Conference MECC/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97. |
Office Action dated Apr. 21, 2017 in U.S. Appl. No. 14/501,894. |
Second Office Action dated Oct. 23, 2017 in Chinese Patent Application No. 201510611152.X. |
Office Action dated Jun. 27, 2017 in Taiwan Patent Application No. 104134150. |
Office Action dated Jun. 13, 2018 in Canadian Patent Application No. 2,962,699. |
First Examination Report dated Mar. 16, 2018 in Indian Patent Application No. 906/KOLNP/2011. |
Notification of Reasons for Rejection dated Aug. 7, 2018 in Japanese Patent Application No. 2017-192347. |
Number | Date | Country | |
---|---|---|---|
20180195586 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13924304 | Jun 2013 | US |
Child | 14501894 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14501894 | Sep 2014 | US |
Child | 15904831 | US | |
Parent | 12198402 | Aug 2008 | US |
Child | 13924304 | US |