Continuously variable transmission

Abstract
A continuously variable transmission for a vehicle includes a drive clutch, a driven clutch operably coupled to the drive clutch, and a belt extending between the drive and driven clutches. The continuously variable transmission also includes an inner cover and an outer cover removably coupled to the inner cover. At least one of the inner and outer covers includes an air inlet for providing cooling air to the drive and driven clutches and the belt.
Description
FIELD OF THE DISCLOSURE

The present invention relates generally to a transmission for a vehicle and, in particular, to ducting for a continuously variable transmission on a utility vehicle.


BACKGROUND OF THE DISCLOSURE

Some vehicles such as utility vehicles, all-terrain vehicles, tractors, and others include a continuously variable transmission (“CVT”). The CVT includes a drive clutch, a driven clutch, and a belt configured to rotate between the drive and driven clutches. The position of the drive and driven clutches may be moved between a plurality of positions when the vehicle is operating.


Available space is often limited around the CVT which may make it difficult to service various component of the CVT, for example the belt. Additionally, the intake duct and the exhaust duct of the CVT must be positioned to receive appropriate air flow to cool the components within a housing of the CVT. Therefore, it is necessary to appropriately configure a CVT for sufficient air flow within the housing and for ease of serviceability and maintenance.


SUMMARY OF THE DISCLOSURE

In one embodiment of the present disclosure, a continuously variable transmission (“CVT”) for a vehicle comprises a drive clutch, a driven clutch operably coupled to the drive clutch, and a housing generally surrounding the drive and driven clutches. The housing includes an inner cover having a first air inlet and an outer cover removably coupled to the inner cover and having a second air inlet.


In another embodiment of the present disclosure, a powertrain assembly for a vehicle comprises a prime mover, a shiftable transmission operably coupled to the prime mover, and a continuously variable transmission (“CVT”) operably coupled to the prime mover and the shiftable transmission. The CVT comprises a drive clutch, a driven clutch operably coupled to the drive clutch, a belt extending between the drive and driven clutches, and a housing generally surrounding the drive and driven clutches. The housing includes an inner cover and an outer cover removably coupled to the inner cover. The powertrain assembly further comprises a bearing housing positioned intermediate a portion of the prime mover and the CVT and which is removably coupled to the CVT and removably coupled to at least one of the prime mover and the shiftable transmission.


In a further embodiment of the present disclosure, a continuously variable transmission (“CVT”) for a vehicle comprises a drive clutch, a driven clutch operably coupled to the drive clutch, and a housing generally surrounding the drive and driven clutches. The housing includes an inner cover and an outer cover removably coupled to the inner cover. A radial distance between a peripheral surface of the inner cover and a radially-outermost surface of the driven clutch increases in a direction of air flow.


A continuously variable transmission (“CVT”) for a vehicle comprises drive clutch including a moveable sheave and a stationary sheave, a driven clutch operably coupled to the drive clutch and including a moveable sheave and a stationary sheave, and a housing generally surrounding the drive and driven clutches. The housing includes a single air inlet and a single air outlet. The housing is configured to flow air from a position adjacent the stationary sheave of the driven clutch to a position adjacent the stationary sheave of the drive clutch.


A continuously variable transmission (“CVT”) for a vehicle comprises a drive clutch and a driven clutch operably coupled to the drive clutch. The driven clutch includes a moveable sheave and a stationary sheave, and the stationary sheave includes a plurality of fins extending axially outward and an angular distance between adjacent fins of the plurality of fins is less than 15 degrees.


A continuously variable transmission (“CVT”) for a vehicle comprises a drive clutch including a moveable sheave and a stationary sheave and a driven clutch operably coupled to the drive clutch and including a moveable sheave and a stationary sheave. The CVT further comprises a housing generally surrounding the drive and driven clutches and including an inner cover and an outer cover. The inner cover includes at least one volute and a channel configured to cooperate with the at least one volute to direct air within the housing toward the driven clutch.


A continuously variable transmission (“CVT”) for a vehicle comprises a drive clutch including a moveable sheave and a stationary sheave and a driven clutch operably coupled to the drive clutch and including a moveable sheave and a stationary sheave. The CVT further comprises a housing generally surrounding the drive and driven clutches and including an inner cover and an outer cover. The outer cover includes a channel configured to direct air toward the drive clutch.


A continuously variable transmission (“CVT”) for a vehicle comprises a drive clutch including a moveable sheave and a stationary sheave and a driven clutch operably coupled to the drive clutch and including a moveable sheave and a stationary sheave. The CVT further comprises a housing generally surrounding the drive and driven clutches and including an inner cover and an outer cover. A distance between an outermost surface of the stationary sheave of the driven clutch and an innermost surface of the outer cover is approximately constant along a portion of the outer cover.





BRIEF DESCRIPTION OF THE DRAWINGS

The above mentioned and other features of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, where:



FIG. 1 is a front left perspective view of a utility vehicle of the present disclosure;



FIG. 2 is a front perspective view of a powertrain assembly of the vehicle of FIG. 1;



FIG. 3A is a front perspective view of a continuously variable transmission (“CVT”) of the powertrain assembly of FIG. 2;



FIG. 3B is a front perspective view of the CVT of FIG. 3A with an alternative outer cover or housing and an alternative intake duct;



FIG. 4A is a rear perspective view of the CVT of FIG. 3A;



FIG. 4B is a rear perspective view of the CVT of FIG. 3B with a debris shield configured to be coupled to the outer housing of the CVT;



FIG. 5 is an exploded view of the CVT of FIG. 3A;



FIG. 6A is a front right perspective view of a drive clutch, a driven clutch, and a belt of the CVT of FIG. 5;



FIG. 6B is a cross-sectional view of a plurality of fins of the drive clutch, taken through line 6B-6B of FIG. 6A;



FIG. 6C is another cross-sectional view of another plurality of fins of the drive clutch, taken through line 6C-6C of FIG. 6A;



FIG. 7 is a cross-sectional view of the CVT of FIG. 3A, taken along line 7-7 of FIG. 3A;



FIG. 8 is an exploded view of an inner cover and an internal diverter plate of a housing of the CVT of FIG. 3A;



FIG. 9 is an exploded view of the inner cover and an outer cover of the housing of the CVT of FIG. 3A and including an illustrative air flow path through the housing;



FIG. 10 is a cross-sectional view of the CVT of FIG. 3A, taken along line 10-10 of FIG. 3A;



FIG. 11A is a front perspective view of a further powertrain assembly of the vehicle of FIG. 1;



FIG. 11B is an exploded view of a CVT and bearing housing of the powertrain assembly of FIG. 11A;



FIG. 11C is a rear perspective view of the CVT and bearing housing of FIG. 11B;



FIG. 11D is a rear perspective view of the CVT housing and an alternative bearing housing;



FIG. 11E is an exploded view of a carrier bearing assembly of the bearing housing of FIG. 11D;



FIG. 11F is a cross-sectional view of the transmission and carrier bearing assembly of FIG. 11D;



FIG. 11G is a detailed cross-sectional view of the carrier bearing assembly of FIG. 11F;



FIG. 12 is a front perspective view of a CVT of the powertrain assembly of FIG. 11A;



FIG. 13 is a rear perspective view of the CVT of FIG. 12;



FIG. 14A is an exploded view of the CVT of FIG. 12;



FIG. 14B is an exploded view of the CVT of FIG. 12 with an alternative outer cover or housing;



FIG. 15 is a front perspective view of a drive clutch, a driven clutch, and a belt of the CVT of FIG. 14A;



FIG. 16 is a cross-sectional view of the CVT of FIG. 12, taken along line 16-16 of FIG. 12;



FIG. 17 is an exploded view of an inner cover and an internal diverter plate of a housing of the CVT of FIG. 12;



FIG. 18A is an exploded view of the inner cover and an outer cover of the housing of FIG. 14A and including an illustrative air flow path through the housing;



FIG. 18B is an exploded view of the inner cover and outer cover of the housing of FIG. 14B and including an illustrative air flow path through the housing;



FIG. 19 is a cross-sectional view of the CVT of FIG. 12, taken along line 19-19 of FIG. 12; and



FIG. 20 is a cross-sectional view of the CVT of FIG. 12, taken along line 20-20 of FIG. 12.





Corresponding reference characters indicate corresponding parts throughout the several views. Unless stated otherwise the drawings are proportional.


DETAILED DESCRIPTION OF THE DRAWINGS

The embodiments disclosed below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. While the present disclosure is primarily directed to a utility vehicle, it should be understood that the features disclosed herein may have application to any vehicle with one or more ground-engaging members and a continuously variable transmission, including, but not limited to, all-terrain vehicles, motorcycles, snowmobiles, scooters, three-wheeled vehicles, and golf carts.


Referring to FIG. 1, an illustrative embodiment of a utility vehicle 2 is shown. Vehicle 2 is configured for off-road operation. Vehicle 2 includes a plurality of ground-engaging members 4, illustratively front wheels 6 and rear wheels 8. In one embodiment, one or more of ground-engaging members 4 may be replaced with tracks, such as the Prospector II Tracks available from Polaris Industries, Inc., located at 2100 Highway 55 in Medina, MN 55340 or non-pneumatic tires, such as those shown in U.S. Pat. Nos. 8,176,957 and 8,104,524, the complete disclosures of which are expressly incorporated herein by reference.


Vehicle 2 further includes a lower frame assembly supported by ground-engaging members 4, which extends along a longitudinal axis L of vehicle 2. Additionally, in one embodiment, vehicle 2 may include an upper frame assembly 10 extending vertically above the lower frame assembly, however, alternative embodiments of vehicle 2 may not include upper frame assembly 10. The lower frame assembly supports a rear cargo area 12 and a vehicle body 14, which includes a plurality of body panels.


Vehicle 2 also includes an open-air operator area 20 which, illustratively, includes seating 22 for one or more passengers. As such, operator area 20 is exposed to ambient air and is not fully enclosed. Alternatively, vehicle 2 may include a cab assembly (not shown), such as a roof, front windshield, rear windshield, and doors, to enclose operator area 20. Upper frame assembly 10 may be positioned generally around operator area 20 such that seating 22 is at least partially surrounded by upper frame assembly 10. Illustratively, seating 22 includes an operator seat and a passenger seat, however, seating 22 may also include rear seats for additional passengers or may include only a single seat for carrying the operator. Seating 22 may include a seat back 24 and a seat bottom 26.


Operator area 20 further includes a plurality of operator controls 28, such as a steering wheel 16, by which an operator may provide inputs for operating vehicle 2. Various operator controls, including the steering assembly, may be further described in International Patent Application No. PCT/US13/64516, filed on Oct. 11, 2013, the complete disclosure of which is expressly incorporated by reference herein.


Referring still to FIG. 1, vehicle 2 includes a rear suspension assembly 18 and a front suspension assembly 19, both supported by the lower frame assembly. Additional details of rear and front suspension assemblies 18, 19 may be disclosed in U.S. Pat. No. 9,566,858, issued on Feb. 14, 2017 and U.S. Patent Application Ser. No. 62/608,952, filed Dec. 21, 2017, the complete disclosures of which are expressly incorporated by reference herein.


Referring to FIG. 2, vehicle 2 further includes a powertrain assembly 30 which is supported by the lower frame assembly and includes at least a prime mover, illustratively an engine 32, a geartrain (not explicitly shown) which may be configured as a shiftable transmission, and a continuously variable transmission (“CVT”) 34. Engine 32 is positioned rearward of operator area 20. While the prime mover is disclosed as engine 32, the prime mover may be any type of device configured to provide power to vehicle 2, such as an electric motor, a fuel-based engine, a hybrid engine, a generator, etc. In one embodiment, CVT 34 also is positioned at least partially rearward of operator area 20. As shown in FIG. 2, CVT 34 is positioned laterally outward from or to the side of engine 32 in a direction generally perpendicular to a longitudinal axis L of vehicle 2 (FIG. 1) and extends generally parallel to longitudinal axis L. More particularly, CVT 34 is positioned along the left side of vehicle 2. In alternative embodiments, CVT 34 may extend in a generally perpendicular direction relative to longitudinal axis L or may be configured in any orientation relative to longitudinal axis L, engine 32, and the geartrain. For example, in one embodiment, CVT 34 may be positioned longitudinally forward of engine 32 and configured to extend laterally in a direction generally perpendicular to longitudinal axis L.


As shown in FIG. 4A, CVT 34 is coupled to both engine 32 and the geartrain with mounting posts or fasteners 36 which are received within mounting bosses (not shown) on a crankcase 33 (FIG. 2) of engine 32 and the housing or transmission case of the geartrain. More particularly, and as shown in FIG. 4A, fasteners 36a are received within the mounting bosses on engine 32 and fasteners 36b couple CVT 34 to the geartrain.


With respect to FIGS. 2-10, CVT 34 includes a housing 40 having an inner portion or cover 42 and an outer portion or cover 44 removably coupled together. In one embodiment, inner cover 42 is comprised of a metallic material, such as aluminum, and/or a polymeric material. Inner cover 42 includes a peripheral surface 54 extending outwardly from a rear surface 56. Peripheral surface 54 includes a sealing surface 60, illustratively a lip, configured to couple with outer cover 44 using mechanical fasteners 62. As shown in FIG. 8, inner cover 42 also may include a diverter plate or member 58 configured to direct air flow through housing 40, as disclosed herein. Diverter plate 58 may be removably coupled to inner cover 42 with mechanical fasteners. Diverter plate 58 may include a first portion 58a positioned generally adjacent a drive clutch and a second portion 58b positioned generally adjacent a portion of a driven clutch, as disclosed further herein.


In embodiments, as shown in FIG. 4B, CVT 34 may include a routing tray 200 configured to be coupled to inner cover 42. More particularly, routing tray 200 is coupled to a forward extent of inner cover 42 with a plurality of fasteners 202 which are received within a plurality of apertures 204 on inner cover 42. Routing tray 200 includes a forward portion 206 positioned along the forward surface of inner cover 42 and an upper portion 208 positioned along the upper surface of inner cover 42. In this way, routing tray 200 protects other components of vehicle 2 in the event that a portion of CVT 34 fails. For example, if a component of CVT 34 moves outward of housing 40 during a failure of CVT 34, then routing tray 200 prevents such components from contacting other components and portions of vehicle 2.


Additionally, routing tray 200 includes at least one channel 207 configured to receive a wire, tubing, pipe, or other conduit. In this way, various conduits of vehicle 2 may be routed around a portion of CVT 34 but not contact various portions of housing 40 of CVT 34.


Additionally, outer cover 44 may be comprised of a metallic material and/or a polymeric material, such as an injection-moldable plastic. As shown best in FIG. 7, and disclosed further herein, outer cover 44 generally follows the shape and contour of the drive and driven clutches which may increase air shear and improve heat transfer because the outer surface of outer cover 44 is closely positioned to the sheaves of the drive and driven clutches.


Referring to FIGS. 2-5, CVT housing 40 includes a single air intake or inlet port 46 for receiving air to cool CVT 34 and a single air outlet port 48 to exhaust warm or hot air from CVT 34. Illustratively, outer cover 44 includes air inlet port 46 and inner cover 42 includes air outlet port 48. Inlet port 46 is sealingly coupled to an intake duct 50 to provide cooling, pre-filtered ambient air to CVT 34. As shown in FIG. 3B, intake duct 50 may include a flexible coupler 51 at both ends thereof which allow for coupling and sealing the ends of intake duct 50 to CVT 34 and a CVT intake port 53 of vehicle body 14 (FIG. 14). Intake duct 50 itself is comprised of a rigid material which inhibits duct 50 collapsing, folding, or otherwise deforming. Therefore, intake duct 50 allow the openings at both ends of intake duct 50 to remain fully expanded and allow the maximum amount of air to enter CVT 34. Additionally, outlet port 48 is sealingly coupled to an outlet duct 52 to expel hot air from CVT 34.


Referring now to FIGS. 5-7, CVT 34 includes a primary or drive clutch or pulley 70, a secondary or driven clutch or pulley 72, and a belt 74 extending therebetween. Drive clutch 70 is rotatably coupled to a crankshaft (not shown) of engine 32. Driven clutch 72 is rotatably coupled to an input shaft (not shown) of the geartrain and is rotatably coupled to drive clutch 70 through belt 74. Belt 74 may be comprised of a polymeric material, for example rubber, and may also include reinforcing members, such as metal cords or other reinforcing material. In one embodiment, belt 74 may be comprised of a metallic material, for example, belt 74 may be a chain. In cross-section, belt 74 may generally define a “V” shape. Belt 74 is configured to contact drive clutch 70 and, in one embodiment, expand in diameter in order to contact driven clutch 72.


As shown in FIGS. 5-7, drive clutch 70 includes a moveable sheave 76 positioned adjacent outer cover 44 of CVT 34 and a stationary sheave 78 positioned adjacent diverter plate 58 of CVT 34. During operation of CVT 34, stationary sheave 78 maintains a fixed position and does not move relative to moveable sheave 76. Conversely, moveable sheave 76 of drive clutch 70 is configured for axial movement relative to stationary sheave 78 in order to engage belt 74 and effect various drive ratios. The axial movement of moveable sheave 76 occurs generally along an axis of rotation thereof and in a direction perpendicular to longitudinal axis L (FIG. 1). Additional details of drive clutch 70 may be disclosed in U.S. Pat. No. 9,566,858, issued on Feb. 14, 2017 and U.S. patent application Ser. No. 15/388,106, filed Dec. 22, 2016, the complete disclosures of which are expressly incorporated by reference herein.


Referring still to FIGS. 5-7, the rotation of belt 74 caused by drive clutch 70 drives driven clutch 72. Driven clutch 72 includes a stationary sheave 80 positioned adjacent outer cover 44 and a moveable sheave 82 positioned adjacent inner cover 42. Stationary sheave 80 is coupled to a shaft of the geartrain and maintains a fixed position relative to moveable sheave 82. Moveable sheave 82 may be configured for axial translational movement along an axis of rotation thereof between a closed position when adjacent stationary sheave 80 and an open position in which moveable sheave 82 slides or otherwise moves axially apart from stationary sheave 80. The movement of moveable sheave 82 engages belt 74 in various configurations in order to effect various driving ratios for vehicle 2. Additional details of driven clutch 72 may be disclosed in U.S. Pat. No. 9,566,858, issued on Feb. 14, 2017 and U.S. patent application Ser. No. 15/388,106, filed Dec. 22, 2016, the complete disclosures of which are expressly incorporated by reference herein.


During operation of CVT 34, drive clutch 70 engages belt 74 and when belt 74 engages driven clutch 72, driven clutch 72 rotates, which causes the shaft of the geartrain to rotate. More particularly, drive clutch 70 rotates with the crankshaft of engine 32 and the rotation thereof drives rotation of driven clutch 72 through rotation of belt 74. Depending on the operating conditions of vehicle 2, moveable sheaves 76, 82 of drive clutch 70 and driven clutch 72, respectively, may be moved relative to stationary sheaves 78, 80 to adjust driving ratios for vehicle 2. During movement of moveable sheaves 76, 82, belt 74 is configured to move between a starting position and a high-ratio position. Movement of moveable sheaves 76, 82 may be electronically, mechanically, or fluidly controlled.


With respect to FIGS. 6A-10, as CVT 34 is operating, heat is generated and the temperature within housing 40 increases. As such, it is necessary to cool CVT 34 during operation thereof. In general, CVT 34 is cooled by providing ambient air within housing 40. Housing 40 and any of sheaves 76, 78, 80, 82 may be specifically configured for increased cooling. For example, as disclosed herein, the configuration of outer cover 44 generally follows the contour of sheaves 76, 80 such that air shear and heat transfer are increased due to close positioning of outer cover 44 relative to sheaves 76, 80. Illustratively, a distance 140 is defined between the outermost surface of stationary sheave 80 of driven clutch 72 and an innermost surface of outer cover 44 and distance 140 is equal at all portions of outer cover 44 adjacent stationary sheave 80 of driven clutch 72. In one embodiment, distance 140 may be approximately 4-10 mm and, illustratively, is approximately 6 mm. Distance 140 may be optimized to be the smallest distance between the outermost surface of stationary sheave 80 of driven clutch 72 and the innermost surface of outer cover 44 without allowing for any interference therebetween, thereby facilitating air flow through housing 40 and around stationary sheave 80.


As shown in FIG. 6A, with respect to the configuration of sheaves 76, 78, 80, 82, at least some of sheaves 76, 78, 80, 82 have an increased surface area due to the inclusion of fins. Illustratively, at least stationary sheave 78 of drive clutch 70 includes a plurality of fins 84 extending radially outward from an axis of rotation R1 of drive clutch 70. More particularly, fins 84 extend outward from a body portion or outer sheave face 86 of sheave 78 in the direction of axis of rotation R1 and extend radially therefrom. A first portion 88 of fins 84 has a length less than a length of a second portion 90 of fins 84. As shown in FIG. 6B, first portion 88 of fins 84 extends radially outwardly from a lip 87 of outer sheave face 86 along a distance D1, which is measured from lip 87 to an apex 88A defining the radially-outermost surface of fins 88. Similarly, as shown in FIG. 6C, second portion 90 of fins 84 extends radially outwardly from lip 87 of outer sheave face 86 along a distance D2, which is measured from lip 87 to an apex 90A defining the radially-outermost surface of fins 90. Distances D1 and D2 may be approximately equal to each other or may be different such that distance D1 may be greater or less than distance D2. In one embodiment, D1 and D2 are 3-6 mm and, more particularly, are approximately 4-5 mm. Illustratively, both D1 and D2 may be approximately 4.9 mm. It may be appreciated that distances D1 and D2 do not extend radially outwardly to a position which would interfere with or contact inner cover 42 of housing 40.


In one embodiment, first portion 88 includes 18 fins 84 and second portion 90 includes 18 fins 84. As such, stationary sheave 78 of drive clutch 70 may include a total of 36 fins 84. However, in other embodiments, first and second portions 88, 90 may include different and/or unequal numbers of fins 84 and stationary sheave 78 may include a total number of fins 84 less than or greater than 36. In one embodiment, an angular distance between fins 84 may be approximately equal to or less than 15 degrees and, other embodiments, the angular distance between fins 84 may be approximately 6-10 degrees if the number of fins 84 is increased. By including fins 84 on stationary sheave 78, the surface area of sheave 78 is increased. In this way, the surface of sheave 78 which may be exposed to ambient air entering housing 40 is increased, thereby allowing for increased efficiencies when cooling stationary sheave 78 and when removing heat from belt 74.


Referring still to FIG. 6A, moveable sheave 82 of driven clutch 72 also may include a plurality of fins 92 extending radially outward in a direction perpendicular to an axis of rotation R2 of driven clutch 72 and extending laterally outward from a body portion or outer sheave face 94 in the direction of axis of rotation R2. It may be appreciated that at least a portion of fins 92 extends laterally outward of a balance ring 83 defining the outer diameter of moveable sheave 82 such that at least a portion of fins 92 are proud of balance ring 83, as shown in at least FIG. 15. Illustrative moveable sheave 82 may include a total of 12 fins 92, however, moveable sheave 82 may include any number of fins 92. Fins 92 may be coupled together with a circumferentially-extending fin 96. The combination of radially-extending fins 92 and circumferentially-extending fin 96 increases the surface area of moveable sheave 82, thereby allowing for increased cooling thereof when ambient air enters housing 40 and removal of heat from belt 74.


As shown best in FIG. 5, stationary sheave 80 of driven clutch 72 also includes a plurality of fins 98 extending radially outward in a direction generally perpendicular to axis of rotation R2 (FIG. 6A) of driven clutch 72 and extending laterally outward from a body portion or outer sheave face 100 in the direction of axis of rotation R2. Illustrative stationary sheave 80 may include a total of 12 fins 98, however, stationary sheave 80 may include any number of fins 98. Each of fins 98 may extend continuously between a nose or bell portion 102 and a planar portion 104 of outer sheave face 100. Fins 98 increases the surface area of stationary sheave 80, thereby allowing for increased cooling thereof when ambient air enters housing 40 and removal of heat from belt 74.


In addition to the increased surface area of at least sheaves 78, 80, 82 through respective fins 84, 92, 98, the configuration of housing 40 increases cooling efficiencies of CVT 34. More particularly, and referring to FIGS. 7-10, outer cover 44 receives ambient air through intake duct 50 and inlet port 46. Outer cover 44 includes a first channel 110 which directs air A toward a center portion of stationary sheave 80 of driven clutch 72. More particularly, first channel 110 is defined as the area between fins 98 through which air A is propelled away from the center of stationary sheave 80 such that fins 98 may fill with air A in first channel 110 and evacuate air A about driven clutch 72 in a radial direction once fins 98 rotate past air inlet port 46. Illustratively, as air A enters first channel 110 adjacent the center of stationary sheave 80, air A flows radially outward through first channel 110 and towards an upper portion of housing 40, as disclosed further herein. In this way, air A is configured to flow through first channel 110 to cool at least stationary sheave 80 of driven clutch 72. Air A then flows into a second channel 112 defined between a surface 142 of outer cover 44 and inner cover 42 and between diverter plate 58 and inner cover 42. Additionally, driven clutch 72 may have a larger diameter than drive clutch 70 such that driven clutch 72 may be able to pump or otherwise drive or direct air A through housing 40 and towards drive clutch 70 for increased cooling at drive clutch 70.


As shown in FIGS. 8-10, second channel 112 is positioned generally adjacent a portion of drive clutch 70 and, illustratively, is positioned generally adjacent stationary sheave 78 thereof. As shown in FIG. 10, air A flows in an inward direction normal to the page, as indicated by the circled “X”, when flowing through second channel 112 towards drive clutch 70. It may be appreciated that inner cover 42 includes an extension member 64, as shown in FIGS. 8 and 9, which prevents incoming air A at a position adjacent outlet port 48 from flowing directly out of housing 40 through outlet port 48. Rather, extension member 64 directs incoming air A towards second channel 112. Second channel 112 promotes air flow from driven clutch 72 and towards drive clutch 70 by drawing air A from first channel 110 towards drive clutch 70 and directing air A radially thereto. In this way, housing 40 is configured to allow air to flow between inner and outer covers 42, 44 and between drive clutch 70 and driven clutch 72.


Air A then flows in a generally counterclockwise direction about stationary sheave 78 and is distributed about a center portion thereof to provide cooling air thereto, as indicated by the circled “dot” in FIG. 9, denoting air A flowing outwardly in a direction normal to the page and towards the location of moveable sheave 76. Air A then flows toward driven clutch 72 through a third channel 113 defined by diverter plate 58 such that air flow occurs between clutches 70, 72 and between inner and outer covers 42, 44. In this way, air A flowing into second channel 112 is distributed about stationary sheave 78 of drive clutch 70 and then flows into third channel 113 which facilitates air flow towards driven clutch 72.


Air A at driven clutch 72 also may flow in a generally counterclockwise direction and, in some embodiments, may join with air A initially entering housing 40 through channel 110. Additionally, air A may flow outwardly towards moveable sheave 82 of driven clutch 72, as indicated by the circled “dot” to join with other flow streams or paths of air A. When air A at driven clutch 72 circulates about stationary and moveable sheaves 80, 82 of driven clutch 72 and flows towards an upper portion of inner cover 42, air A may exit housing 40 at portion or channel 114 and flow outwardly from housing 40 through outlet port 48 and outlet duct 52.


To promote air A to flow counterclockwise about driven clutch 72, peripheral surface 54 of inner cover 42 is configured to increase in distance from driven clutch 72 in the direction of the flow of air A. More particularly, where air A flows from third channel 113 towards driven clutch 72, a distance D3 between the radially-outermost surface of driven clutch 72 and the inner portion of peripheral surface 54 is less than a distance D4, defined as the distance between the radially-outermost surface of driven clutch 72 and the inner portion of peripheral surface 54 generally adjacent outlet port 48. By configuring peripheral surface 54 of inner cover 42 to increase in distance from driven clutch 72 in the counterclockwise direction, air A is guided or encouraged to flow in the counterclockwise direction to cool the entirety of driven clutch 72 and any hot air generally surrounding driven clutch 72 is guided toward outlet port 48 to be expelled from housing 40. Therefore, the configuration of housing 40 and, in particular, inner cover 42, promotes air flow about driven clutch 72 and guides hot air towards outlet port 48, thereby increasing cooling efficiency for CVT 34.


Referring to FIGS. 11A-20, vehicle 2 (FIG. 1) may include a powertrain assembly 30′ having an engine 32′ and a CVT 34. CVT 34′ may be positioned laterally outward of engine 32′ and operably coupled to engine 32′ and a shiftable transmission 35 through a bell housing 160. Alternatively, CVT 34′ may be positioned longitudinally forward of engine 32′ and extend laterally across a width of vehicle 2. In such a configuration, the drive clutch of CVT 34′ is positioned generally along a front passenger or right side of vehicle 2 and the driven clutch of CVT 34′ is positioned generally along a driver or left side of vehicle 2. In one embodiment, the driven and drive clutches may be positioned on opposing sides of longitudinal axis L. However, in other embodiments where the majority or an entirety of CVT 34′ is positioned along one side of longitudinal axis L, the driven and the drive clutches may be positioned on the same side of longitudinal axis L.


As shown best in FIGS. 11A-11C, a bell housing 160 is integral with transmission 35 and includes an opening 162 configured to allow coupling between the crankshaft (not shown) of engine 32′ and a drive clutch 70 of CVT 34′. More particularly, a carrier bearing 164 is positioned intermediate bell housing 160 and the drive clutch and facilitates appropriate coupling, alignment, and spacing between engine 32′ and CVT 34′. Bell housing 160 may be utilized where, due to the configuration of engine 32′ and/or transmission 35, CVT 34′ is spaced from engine 32′ by more than a predetermined distance. As such, bell housing 160 is configured to support CVT 34′ at a location greater than the predetermined distance from engine 32′ and provide the necessary space for a drive inlet or other component of powertrain assembly 30′. Additionally, the space between engine 32′ and CVT 34′ which is created by bell housing 160 allows for air flow along an inner side of CVT 34′ such that air can flow adjacent a drive clutch of CVT 34′, as disclosed further herein, to facilitate cooling of the drive clutch.


As disclosed herein, bell housing 160 is integral with transmission 35 such that bell housing 160 is integrally formed with a housing of transmission 35. Transmission 35 is configured to be operably coupled with the driven clutch of CVT 34′ through an input shaft 166 of transmission 35. In this way, rotational movement of the driven clutch is transferred to transmission 35 through input shaft 166. Transmission 35 includes an internal gear set (not shown) which transfers movement to an output shaft 168 configured to be operably coupled to a rear drive member (not shown) for providing motive power to rear wheels 8. Referring to FIGS. 11D and 11E, in embodiments, an alternative bell housing 160′ is integral with transmission 35 which is coupled to driven clutch 72′ of CVT 34′ through input shaft 166′ and is coupled to the rear drive member through output shaft 168′. Transmission 35 also is coupled to drive clutch 70′ of CVT 34′ through bell housing 160′. More particularly, a carrier bearing assembly 164′ is partially received within an opening 162′ of bell housing 160′ and is coupled with drive clutch 70′.


Carrier bearing assembly 164′, as shown in FIG. 11E, includes a bearing housing 210 having a nose 212 and a central aperture 214. A lip seal 216 is received within nose 212 and includes a central aperture 218 which is coaxial with central aperture 214. Carrier bearing assembly 164′ includes a rolling element bearing 220 also with a central aperture 222 coaxial with apertures 214, 218. A retention member 224, such as a “C” clip, is positioned within nose 212 and proximate rolling element bearing 220 therein. Central apertures 214, 218, 222 are configured to receive a portion of an axial shaft 226 which is configured to rotate about an axis A to transmit rotational force between transmission 35 and drive clutch 70′. Shaft 226 is received within a central aperture 230 of a bearing 228, illustratively a roller bearing. Bearing 228 is retained on shaft 226 with retention member 224 and a plurality of other retention members, such as retention member 232 and retention member 234. In embodiments, both retention members 232, 234 are spring members and retention member 234 is a C clip. Additionally, a plate 236 may abut bearing 228 and further retain bearing 228 and retention members 232, 234. A spring member 238 may be positioned proximate plate 236 and abut a portion of bearing housing 210.


It may be appreciated that portions of carrier bearing assembly 164′ are positioned within the inlet of drive clutch 70′. For example, at least nose 212 of bearing housing 210, rolling element bearing 220, and portions of axial shaft 226 are received within the inlet of drive clutch 70′ such that carrier bearing assembly 164′ positions bell housing 160′ and transmission 35 as close to CVT 34′ as possible. More particularly, at least portions of carrier bearing assembly 164′ are positioned within housing 40′ of CVT 34′, thereby allowing CVT 34′ to be packaged in close proximity to transmission 35 given that this area of vehicle 2 tends to be crowded with additional components.


Because carrier bearing assembly 164′ positions CVT 34′ in close proximity to bell housing 160′ and transmission 35, seal 216 is configured to prevent oil transfer to/from CVT 34′. More particularly, seal 216 includes a body portion 217a and a flange or wiper 217b coupled to body portion 217a and positioned at an axial end of body portion 217a. At least wiper 217b is comprised of a rigid material, for example a metallic material. Body portion 217a has a serpentine configuration and is positioned with central aperture 214 of nose 212 of bearing housing 210 while wiper 217b is a generally linear member and is positioned axially outward of nose 212 such that wiper 217b is in sealing contact with shaft 226 and the axial end of nose 212. Body portion 217a also includes at least one spring 219, illustratively comprised of a rigid material such as metal, as shown best in FIG. 11G, which is configured to apply pressure to the sealing lip of seal 216. More particularly, spring 219 maintains near constant and sufficient compression of the lip seal interface of seal 216 to ensure proper sealing as seal 216 and the shaft wears due to relative rotational motion over the life of the assembly. It may be appreciated that a seal 240, having the same configuration as seal 216, may be positioned at the interface of input shaft 166′ and bell housing 160′, as shown in FIG. 11F.


Wiper 217b of seal 216 (which is the same configuration for seal 240) is configured to prevent debris contact the sealing lip(s) of seal 216. For example, in the event of a failure of belt 74′, cord and debris may become entangled around shafts 166′ and/or 226 between sheave 84′ and/or sheave 94′ and adjacent seal 216, 240. During subsequent operation, relative motion between belt cord material and seal(s) 216, 240 generate enough heat and abrasion to potentially damage seal 216, 240. The continued operation of sheaves 84′, 94′ create a vacuum which then could allow oil transfer between CVT 34′ and transmission 35. However, the position and configuration wiper 217b relative to nose 212 and shaft 226 prevents seal 216 from contacting cord and debris from failed belt 74′ even if belt 74′ applies a pressure thereto.


During operation of transmission 35 and CVT 34′, as belt 74′ and moveable sheave 76′ of drive clutch 70′ move relative to each other, belt 74′ may exert a force on stationary sheave 78′. This force could be transmitted to seal 216 and potentially push seal 216 such that seal 216 moves out of position and creates a vacuum which allows oil transfer between CVT 34′ and transmission 35. However, the position and configuration of wiper 217b relative to nose 212 and shaft 226 prevents seal 216 from moving even if belt 74′ applies a pressure thereto. As such, wiper 217b maintains the position of seal 216 on shaft 226. More particularly, because wiper 217b is positioned outwardly of nose 212 and bearing housing 210 extends into housing 40′ of CVT 34′, wiper 217b is exposed to the inside of housing 40′ and cannot be pushed into bearing housing 210 even if belt 74′ applies a pressure thereto.


Additionally, the diameter of nose 212 of carrier bearing assembly 164′ is minimized by selecting a non-spherical rolling element bearing 220 to provide an annular space for cooling air to enter through inlet port 46a to get to the center of stationary sheave 78′ of drive clutch 70′. In this way, the configuration of carrier bearing assembly 164′ allows for increased cooling air to facilitate cooling of at least drive clutch 70′ while also maintaining close proximity of CVT 34′ to transmission 35.


Referring now to FIGS. 12-14B, CVT 34′ includes a housing 40′ having an inner cover 42′ and an outer cover 44′ which are removably coupled together with mechanical fasteners. Housing 40′ may be configured as shown in FIG. 14A or as in FIG. 14B. In one embodiment, inner cover 42′ is comprised of a metallic material, such as aluminum, and/or a polymeric material. Inner cover 42′ includes a peripheral surface 54′ extending from a rear surface 56′. Peripheral surface 54′ includes a sealing surface 60′, illustratively a lip, configured to couple with outer cover 44′ using mechanical fasteners 62′ (FIG. 13). As shown in FIG. 17, inner cover 42′ also may include a diverter plate or member 58′ configured to direct air flow through housing 40′. Diverter plate 58′ may be removably coupled to inner cover 42′ with mechanical fasteners. Diverter plate 58′ is generally positioned adjacent the drive clutch, as disclosed further herein.


Additionally, outer cover 44′ may be comprised of a metallic material and/or a polymeric material, such as an injection-moldable plastic. As shown best in FIG. 16, and disclosed further herein, outer cover 44′ generally follows the shape and contour of the drive and driven clutches which may increase air shear and improve heat transfer because the outer surface of outer cover 44′ is closely positioned to the sheaves of the drive and driven clutches.


Referring to FIGS. 12-14B, CVT housing 40′ includes a plurality of air intakes or inlet ports 46′ for receiving air to cool CVT 34′ and a single air outlet port 48′ to exhaust warm or hot air from CVT 34′. Illustratively, housing 40′ includes two air inlet ports 46a′ and 46b′, where a first air inlet port 46a′ is positioned on inner cover 42′ and a second air intlet port 46b′ is positioned on outer cover 44′. In one embodiment, first air inlet port 46a′ (FIG. 13) is positioned adjacent the drive clutch and second air inlet port 46b′ is positioned adjacent the driven clutch, thereby balancing the distribution of cooler ambient air on both sides of the CVT belt. First inlet port 46a′ is sealingly coupled to a first intake duct 50a′ positioned along inner cover 42′ and second inlet port 46b′ is sealingly coupled to a second intake duct 50b′ positioned along a portion of outer cover 44′.


Additionally, outlet port 48′ is sealingly coupled to an outlet duct 52′ to expel hot air from CVT 34′. As shown in FIGS. 12-14B, outlet port 48′ is positioned on inner cover 42′ at a position generally adjacent the driven clutch and, in this way, inner cover 42′ of CVT 34′ includes first air inlet port 46a′ positioned generally adjacent the drive clutch and outlet port 48′ positioned generally adjacent the driven clutch. Illustratively, outlet port 48′ is not centered on the CVT belt, but rather, is biased or otherwise positioned inboard of at least a portion of the CVT belt towards rear surface 56′ of inner cover 42′.


Referring now to FIGS. 15 and 16, CVT 34′ includes a primary or drive clutch or pulley 70′, a secondary or driven clutch or pulley 72′, and a belt 74′ extending therebetween. Drive clutch 70′ is rotatably coupled to a crankshaft (not shown) of engine 32′ (FIG. 11A). Driven clutch 72′ is rotatably coupled to an input shaft (not shown) of transmission 35 and is rotatably coupled to drive clutch 70′ through belt 74′. Belt 74′ may be comprised of a polymeric material, for example rubber, and may also include reinforcing members, such as metal cords or other reinforcing material. In one embodiment, belt 74′ may be comprised of a metallic material, for example, belt 74′ may be a chain. In cross-section, belt 74′ may generally define a “V” shape. Belt 74′ is configured to contact drive clutch 70′ and, in one embodiment, expand in diameter in order to contact driven clutch 72′.


As shown in FIGS. 15 and 16, drive clutch 70′ includes a moveable sheave 76′ positioned adjacent outer cover 44′ of CVT 34′ and a stationary sheave 78′ positioned adjacent inner cover 42′ of CVT 34′. During operation of CVT 34′, stationary sheave 78′ maintains a fixed position and does not move relative to moveable sheave 76′. Conversely, moveable sheave 76′ of drive clutch 70′ is configured for axial movement relative to stationary sheave 78′ in order to engage belt 74′ and effect various drive ratios. The axial movement of moveable sheave 76′ may occur generally in a direction perpendicular or parallel to longitudinal axis L (FIG. 1). Additional details of drive clutch 70′ may be disclosed in U.S. Pat. No. 9,566,858, issued on Feb. 14, 2017 and U.S. patent application Ser. No. 15/388,106, filed Dec. 22, 2016, the complete disclosures of which are expressly incorporated by reference herein.


Referring still to FIGS. 15 and 16, the rotation of belt 74′ caused by drive clutch 70′ drives driven clutch 72′. Driven clutch 72′ includes a stationary sheave 80′ positioned adjacent outer cover 44′ and a moveable sheave 82′ positioned adjacent inner cover 42′. Stationary sheave 80′ is coupled to a shaft of transmission 35 (FIG. 11A) and maintains a fixed position relative to moveable sheave 82′. Moveable sheave 82′ may be configured for axial translational movement between a closed position when adjacent stationary sheave 80′ and an open position in which moveable sheave 82′ slides or otherwise moves axially apart from stationary sheave 80′. The movement of moveable sheave 82′ engages belt 74′ in various configurations in order to effect various driving ratios for vehicle 2. Additional details of driven clutch 72′ may be disclosed in U.S. Pat. No. 9,566,858, issued on Feb. 14, 2017 and U.S. patent application Ser. No. 15/388,106, filed Dec. 22, 2016, the complete disclosures of which are expressly incorporated by reference herein.


During operation of CVT 34′, drive clutch 70′ engages belt 74′ and when belt 74′ engages driven clutch 72′, driven clutch 72′ rotates, which causes the shaft of transmission 35 to rotate. More particularly, drive clutch 70′ rotates with the crankshaft of engine 32′ and the rotation thereof drives rotation of driven clutch 72′ through rotation of belt 74′. Depending on the operating conditions of vehicle 2, moveable sheaves 76′, 82′ of drive clutch 70′ and driven clutch 72′, respectively, may be moved relative to stationary sheaves 78′, 80′ to adjust driving ratios for vehicle 2. During movement of moveable sheaves 76′, 82′, belt 74′ is configured to move between a starting position and a high-ratio position. Movement of moveable sheaves 76′, 82′ may be electronically, mechanically, or fluidly controlled.


With respect still to FIGS. 15 and 16, as CVT 34′ is operating, heat is generated and the temperature within housing 40′ increases. As such, it is necessary to cool CVT 34′ during operation thereof. In general, CVT 34′ is cooled by providing ambient air within housing 40′. Housing 40′ and any of sheaves 76′, 78′, 80′, 82′ may be specifically configured for increased cooling. For example, as disclosed herein, the configuration of outer cover 44′ generally follows the contour of sheaves 76′, 80′ such that air shear and heat transfer are increased due to close positioning of outer cover 44′ relative to sheaves 76′, 80′. Illustratively, a distance 140′ is defined between the outermost surface of stationary sheave 80′ of driven clutch 72′ and an innermost surface of outer cover 44′ and distance 140′ is not equal at all portions of outer cover 44′ adjacent stationary sheave 80′ of driven clutch 72′. Rather, in one embodiment, distance 140′ may be approximately 6 mm at a position adjacent bell portion 102′ of stationary sheave 80′ and distance 140′ may be approximately 10 mm at a position adjacent planar portion 104′ of outer sheave face 100′ of stationary sheave 80′. As shown best in FIG. 20, distance 140′ remains generally constant between the outermost surface of stationary sheave 80′ of driven clutch 72′ and the innermost surface of outer cover 44′ until a tapered region 180 of outer cover 44′. At tapered region 180 of outer cover 44′, a distance between the innermost surface of outer cover 44′ and the outermost surface of stationary sheave 80′ may increase.


As shown in FIG. 15, with respect to the configuration of sheaves 76′, 78′, 80′, 82′, at least some of sheaves 76′, 78′, 80′, 82′ have an increased surface area due to the inclusion of fins. Illustratively, at least stationary sheave 78′ of drive clutch 70′ includes fins 84 extending radially outward from an axis of rotation R1 of drive clutch 70′, as is similarly disclosed herein with respect to stationary sheave 78 of FIGS. 6A-6C. By including fins 84 on stationary sheave 78′, the surface area of sheave 78′ is increased. In this way, the surface of sheave 78′ which may be exposed to ambient air entering housing 40′ is increased, thereby allowing for increased efficiencies when cooling stationary sheave 78′ and removing heat from belt 74′.


Referring still to FIG. 15, moveable sheave 82′ of driven clutch 72′ also may include a plurality of fins 92′ extending radially outward in a direction perpendicular to an axis of rotation R2 of driven clutch 72′ and extending outward from a body portion or outer sheave face 94′ in the direction of axis of rotation R2. Illustrative moveable sheave 82′ may include a total of 36 fins 92′, however, moveable sheave 82′ may include any number of fins 92′. In one embodiment, an angular distance between fins 92′ may be approximately equal to or less than 15 degrees and, other embodiments, the angular distance between fins 92′ may be approximately 6-10 degrees if the number of fins 92′ is increased. A first portion 92a′ of fins 92′ has a length less than a length of a second portion 92b′ of fins 92′. It may be appreciated that fins 92′ do not extend radially outwardly to a position which would interfere with or contact inner cover 42′ of housing 40′.


In one embodiment, first portion 92a′ includes 18 fins 92′ and second portion 92b′ includes 18 fins 92′. As such, moveable sheave 82′ of driven clutch 72′ may include a total of 36 fins 92′. However, in other embodiments, first and second portions 92a′, 92b′ may include different and/or unequal numbers of fins 92′ and sheave 82′ may include a total number of fins 92′ less than or greater than 36. In one embodiment, an angular distance between fins 92′ may be approximately equal to or less than 15 degrees and, other embodiments, the angular distance between fins 92′ may be approximately 6-10 degrees if the number of fins 92′ is increased. By including fins 92′ on moveable sheave 82′, the surface area of sheave 82′ is increased. In this way, the surface of sheave 82′ which may be exposed to ambient air entering housing 40′ is increased, thereby allowing for increased efficiencies when cooling moveable sheave 82′ and removing heat from belt 74′.


As shown best in FIGS. 14A and 14B, stationary sheave 80′ of driven clutch 72′ also includes a plurality of fins 98′ extending radially outward in a direction perpendicular to axis of rotation R2 (FIG. 15) of driven clutch 72′ and extending outward from a body portion or outer sheave face 100′ in the direction of axis of rotation R2. Illustrative stationary sheave 80′ may include a total of 36 fins 98′, however, stationary sheave 80′ may include any number of fins 98′. In one embodiment, an angular distance between fins 98′ may be approximately equal to or less than 15 degrees and, other embodiments, the angular distance between fins 98′ may be approximately 6-10 degrees if the number of fins 98′ is increased. Each of fins 98′ may extend continuously between a nose or bell portion 102′ and a planar portion 104′ of outer sheave face 100′. However, illustratively, fins 98′ include a first plurality of fins 98a′ which extend continuously from bell portion 102′ to planar portion 104′ and a second plurality of fins 98b′ which have a radial distance less than that of first plurality of fins 98a′. Fins 98′ increase the surface area of stationary sheave 80′, thereby allowing for increased cooling thereof when ambient air enters housing 40′ and removing heat from belt 74′.


In addition to the increased surface area of at least sheaves 78′, 80′, 82′ through respective fins 84′, 92′, 98′, the configuration of housing 40′ increases cooling efficiencies of CVT 34′ and allows for increased heat removal from belt 74′. More particularly, and referring to FIG. 16, inner cover 42′ receives ambient air through intake duct 50a′ and inlet port 46a′ and outer cover 44′ receives ambient air through intake duct 50b′ and inlet port 46b′. In this way, ambient air is provided to housing 40′ at two locations through both inlet ports 46a′, 46b′ to increase cooling to drive clutch 70′ and driven clutch 72′, respectively.



FIGS. 18A and 18B illustrate air flow through housing 40′, where FIG. 18A illustrates air flow through housing 40′ of FIG. 14A and FIG. 18B illustrates air flow through housing 40′ of FIG. 14B. As shown in FIGS. 18A-20, with respect to outer cover 44′, a first channel 110′ directs air A toward stationary sheave 80′ of driven clutch 72′. Air A is configured to flow through first channel 110′ to cool at least stationary sheave 80′ of driven clutch 72′ and into a second channel 112′ extending around the perimeter of outer cover 44′ to direct air A towards drive clutch 70′. More particularly, second channel 112′ defines a continuously recessed portion of outer cover 44′ and may be configured as a relief channel to relieve pressure that builds within outer cover 44′ at a position adjacent drive clutch 70′. For example, if pressure increases at a cover portion 45 (FIGS. 18A and 18B) of outer cover 44′ at a position adjacent drive clutch 70′, second channel 112′ may facilitate relief of such pressure to allow for more efficient pumping of air A through housing 40′. It may be appreciated that second channel 112′ of FIG. 18B is deeper (i.e., has more lateral width) than second channel 112′ of FIG. 18A. Additionally, first channel 110′ of FIG. 18B has a more rounded configuration than first channel 110′ of FIG. 18A. In this way, first channel 110′ of FIG. 18B has less stepped surfaces than that of FIG. 18A which may increase air transfer closer to drive clutch 72′.


During operation of CVT 34′, as air A enters housing 40′ through inlet port 46b′, fins 98′ on stationary sheave 80′ may fill with air A flowing into first channel 110′ and then evacuate air in a radial direction once fins 98′ rotate past first channel 110′, thereby moving air A about driven clutch 72′ and towards second channel 112′. It may be appreciated that inner cover 42′ includes a wall or extension member 126 (FIGS. 18A and 18B), which short circuits incoming air A at a position adjacent outlet port 48′ to prevent incoming air A from flowing directly out of housing 40′ through outlet port 48′. Rather, extension member 126 of FIGS. 18A and 18B directs incoming air A about driven clutch 72′.


As air A flows from first channel 110′ and within second channel 112′ of outer cover 44′, air A flows from driven clutch 72′ to drive clutch 70′ along an upper surface of outer cover 44′ and continues to flow within second channel 112′ along a lower surface of outer cover 44′ where it is exhausted from housing 40′ through outlet port 48′ of inner cover 42′. In this way, air A flows into first channel 110′ from inlet port 46b′ on outer cover 44′ and the configuration of outer cover 44′ allows air A to flow therein to cool both stationary sheave 80′ of driven clutch 72′ and moveable sheave 76′ of drive clutch 70′.


Referring still to FIGS. 18A-20, with respect to inner cover 42′, a third channel 113′ directs air A toward stationary sheave 78′ of drive clutch 70′. Air A is configured to flow through third channel 113′ to cool at least stationary sheave 78′ of drive clutch 70′ and into a fourth channel 116 extending around the perimeter of inner cover 42′ to direct air A towards driven clutch 72′. More particularly, fins 84′ on stationary sheave 78′ may fill with air A flowing into third channel 113′ and then evacuate air in a radial direction once fins 84′ rotate past third channel 113′, thereby moving air A about drive clutch 70′ and towards fourth channel 116. As air A flows within fourth channel 116 of inner cover 42′, air A flows from drive clutch 70′ to driven clutch 72′ along a lower surface of inner cover 42′ and continues to flow within fourth channel 116 along an upper surface of inner cover 42′ where it is exhausted from housing 40′ through outlet port 48′ of inner cover 42′. In this way, air A flows into third channel 113′ from inlet port 46a′ on inner cover 42′ and the configuration of inner cover 42′ allows air A to flow therein to cool both stationary sheave 78′ of drive clutch 70′ and moveable sheave 82′ of driven clutch 72′.


The configuration of housing 40′ includes a plurality of volutes configured to promote and direct air A to flow within housing 40′. Illustratively, housing 40′ includes at least three volutes including a first volute 120, a second volute 122, and a third volute 124. More particularly, as shown in FIGS. 18A, 18B, and 19, first volute 120 is defined by the cooperation of inner and outer covers 42′, 44′ and, illustratively, is defined by the cooperation of second channel 112′ of outer cover 44′ and fourth channel 116 of inner cover 42′. As shown, first volute 120 is positioned adjacent a lower portion of inner and outer covers 42′, 44′ at a location generally adjacent drive clutch 70′. First volute 120 is configured to pump or otherwise drive air A towards a center portion of driven clutch 72′ through channels 112′, 116. In this way, first volute 120 allows air therein to cool driven clutch 72′ rather than merely flowing past it to increase cooling of at least the center portion of driven clutch 72′.


Additionally, and as shown in FIGS. 18A, 18B, and 20, housing 40′ includes second volute 122 which is defined by the cooperation of inner and outer covers 42′, 44′ and, illustratively, is defined by the cooperation of second channel 112′ of outer cover 44′ and fourth channel 116 of inner cover 42′. As shown, second volute 122 is positioned adjacent an upper portion of inner and outer covers 42′, 44′ at a location generally adjacent driven clutch 72′. Second volute 122 is configured to pump or otherwise drive or distribute air A towards drive clutch 70′ through channels 112′, 116. As shown in FIG. 18B, second volute 122 may have a less stepped surface than second volute 122 of FIG. 18A.


As is also shown in FIGS. 18A and 18B, housing 40′ includes third volute 124 defined within a lower portion of inner cover 42′ along an inboard portion of fourth channel 116. Illustratively, third volute 124 is positioned generally adjacent driven clutch 72′ and outlet port 48′ and is configured to pump or otherwise drive or direct hot air A within housing 40′ outwardly through outlet port 48′ and outlet duct 52′.


In addition to volutes 120, 122, 124 for directing air A through housing 40′, at least moveable sheave 82′ of driven clutch 72′ includes a windage plate 128 coupled thereto, as shown best in FIGS. 15 and 20. More particularly, windage plate 128 may be coupled to fins 92′. Windage plate 128 is configured to promote cooling to at least moveable sheave 82′ by pulling air A through a center opening 130 thereof to allow for efficient cooling of moveable sheave 82′ when at different axial positions. It may be appreciated that sheaves 76′, 78′, and/or 80′ also may include a windage plate or similar feature to promote further cooling thereof. For example, a windage plate 170 also may be included on stationary sheave 78′ of drive clutch 70′, as shown in FIG. 15.


Additional details of vehicle 2 and/or the powertrain assembly may be disclosed in U.S. patent application Ser. No. 15/388,436, filed Dec. 22, 2016; U.S. patent application Ser. No. 15/388,106, filed Dec. 22, 2016; and U.S. Patent Application Ser. No. 62/613,796, filed Jan. 5, 2018, the complete disclosures of which are expressly incorporated by reference herein.


While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims
  • 1. A vehicle comprising: a frame;a plurality of ground engaging members supporting the frame;a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members;a CVT supported by the frame and operatively coupled to the power source, the CVT including a CVT housing, a drive member, and a driven member operatively coupled to the drive member, wherein the housing defines a single inlet positioned adjacent to the driven member and a single outlet positioned adjacent to the driven member, wherein the single inlet is axially aligned with an axis of rotation of the driven member, wherein the CVT housing includes an inner cover and an outer cover, and wherein the inner cover of the CVT housing includes a removable diverter member configured to direct air toward the drive member.
  • 2. The vehicle of claim 1, wherein the driven member rotates about an axis of rotation, wherein the single air inlet is configured to provide air toward the driven member along and parallel to the axis of rotation.
  • 3. The vehicle of claim 2, wherein the single air outlet is defined at a position substantially tangential to an outer perimeter of the driven member.
  • 4. The vehicle of claim 3, wherein the CVT further includes an outlet duct, wherein the outlet duct extends from the single air outlet in a direction substantially tangential to the outer perimeter of the driven member.
  • 5. The vehicle of claim 1, wherein the single inlet is defined on the outer cover and the single outlet is defined on the inner cover.
  • 6. The vehicle of claim 5, wherein the inner cover includes an extension member positioned adjacent the single air outlet, the extension member operable to deflect at least a portion of incoming air away from the single air outlet.
  • 7. The vehicle of claim 6, wherein the single air outlet is defined substantially interior to the extension member.
  • 8. The vehicle of claim 1, wherein the CVT housing defines an inner peripheral surface, wherein a distance between a radially outwardmost surface of the driven member and the inner peripheral surface of the CVT housing increases towards the single air outlet in a counterclockwise direction when viewing from an exterior side toward an interior side of the CVT.
  • 9. A vehicle comprising: a frame;a plurality of ground engaging members supporting the frame;a power source supported by the frame and operatively coupled to at least one of the plurality of ground engaging members;a CVT supported by the frame and operatively coupled to the power source, the CVT including a CVT housing, a drive member, and a driven member operatively coupled to the drive member, wherein the housing defines a first air inlet positioned adjacent to the driven member, a second air inlet port positioned adjacent the drive member, and a single outlet positioned adjacent to the driven member, wherein the CVT housing includes an outer cover and an inner cover, wherein the inner cover defines a rear surface, wherein the rear surface includes a recessed portion and a non-recessed portion, wherein the CVT further includes an intake duct operably coupled to the second air inlet, and wherein the intake duct is positioned substantially within the recessed portion.
  • 10. The vehicle of claim 9, wherein the driven member rotates about a first axis of rotation, wherein the first air inlet is configured to provide air toward the driven member along and parallel to the first axis of rotation.
  • 11. The vehicle of claim 10, wherein the drive member rotates about a second axis of rotation, wherein the second air inlet is configured to provide air toward the drive member in a direction radially toward the second axis of rotation.
  • 12. The vehicle of claim 11, wherein an outer edge of the single air outlet is defined at a position substantially tangential to an outer perimeter of the driven member.
  • 13. The vehicle of claim 9, wherein the first air inlet is defined in the outer cover and the second air inlet is defined in the inner cover.
  • 14. The vehicle of claim 9, wherein the CVT further includes an intake duct and an outlet duct, wherein the inlet duct and the outlet duct extend in a first direction.
  • 15. The vehicle of claim 9, wherein the powertrain includes a transmission including a bell housing, and wherein the CVT is coupled to and supported by the bell housing.
  • 16. The vehicle of claim 15, wherein a carrier bearing is positioned between the bell housing and the CVT.
  • 17. A continuously variable transmission (“CVT”) for a vehicle, comprising: a drive clutch including a moveable sheave and a stationary sheave;a driven clutch operably coupled to the drive clutch and including a moveable sheave and a stationary sheave; anda housing generally surrounding the drive and driven clutches and including an inner cover and an outer cover, and the outer cover includes a channel configured to direct air toward the drive clutch, wherein the inner cover includes a diverter member positioned adjacent the stationary sheave of the drive clutch and configured to direct air from the channel toward the stationary sheave, the diverter being removably coupled to the inner cover, and wherein the outer cover includes a single inlet axially aligned with an axis of rotation of the driven clutch.
  • 18. The CVT of claim 17, wherein the channel is configured to direct towards the stationary sheave of the drive clutch at a position within the inner cover.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/357,676, filed Mar. 19, 2019, which claims priority to the U.S. Provisional Patent Application Ser. No. 62/644,717, filed Mar. 19, 2018, and is co-filed with U.S. patent application Ser. No. 16/357,695, filed Mar. 19, 2019, the complete disclosures of which are expressly incorporated by reference herein.

US Referenced Citations (355)
Number Name Date Kind
62016 Custer Feb 1867 A
2145545 Johnson Jan 1939 A
2953032 Ruess Sep 1960 A
3465827 Levy et al. Sep 1969 A
3467177 Hoddinott Sep 1969 A
3623565 Ward et al. Nov 1971 A
3651506 Olaf et al. Mar 1972 A
3750129 Takeno et al. Jul 1973 A
3789684 Freier Feb 1974 A
3861229 Domaas Jan 1975 A
3943785 Percifield Mar 1976 A
4319298 Davis et al. Mar 1982 A
4340126 Larson Jul 1982 A
4395249 Prasad et al. Jul 1983 A
4422498 Chen Dec 1983 A
4493677 Ikenoya Jan 1985 A
4531928 Ikenoya Jul 1985 A
4560369 Hattori Dec 1985 A
4594537 Arifian et al. Jun 1986 A
4596537 Te-Long Jun 1986 A
4621727 Strader Nov 1986 A
4622865 Itoh et al. Nov 1986 A
4631977 Kawashima Dec 1986 A
4632070 Onda et al. Dec 1986 A
4645028 Kawashima Feb 1987 A
4671781 Tanaka et al. Jun 1987 A
4671782 Ochiai et al. Jun 1987 A
4682511 Wittke Jul 1987 A
4697665 Eastman et al. Oct 1987 A
4708699 Takano et al. Nov 1987 A
4712629 Takahashi et al. Dec 1987 A
4809179 Klingler et al. Feb 1989 A
4826205 Kouda et al. May 1989 A
4854446 Strader Aug 1989 A
4895555 Watanabe et al. Jan 1990 A
4905461 Heuer Mar 1990 A
4905783 Bober Mar 1990 A
4990126 Ideta et al. Feb 1991 A
5025686 Sato et al. Jun 1991 A
5086858 Mizuta et al. Feb 1992 A
5094652 Sakakibara et al. Mar 1992 A
5152361 Hasegawa et al. Oct 1992 A
5233530 Shimada et al. Aug 1993 A
5362094 Jensen Nov 1994 A
5432326 Noblett et al. Jul 1995 A
5514046 Petersmann et al. May 1996 A
5536214 Akita et al. Jul 1996 A
5749596 Jensen et al. May 1998 A
5807194 Knutson et al. Sep 1998 A
5890870 Berger et al. Apr 1999 A
5897287 Berger et al. Apr 1999 A
5976044 Kuyama Nov 1999 A
5976054 Yasuoka Nov 1999 A
6047814 Alles et al. Apr 2000 A
6120411 Booth, Jr. Sep 2000 A
6149540 Johnson et al. Nov 2000 A
6176796 Lislegard Jan 2001 B1
6182784 Pestotnik Feb 2001 B1
6189412 Tsubata et al. Feb 2001 B1
6254108 Germain et al. Jul 2001 B1
6257081 Gagnon et al. Jul 2001 B1
6264577 Hutchins Jul 2001 B1
6267700 Takayama Jul 2001 B1
6338688 Minami et al. Jan 2002 B1
6379278 Eguchi et al. Apr 2002 B1
6398680 Onogi Jun 2002 B1
6445038 Tihanyi Sep 2002 B1
6468170 Ito Oct 2002 B1
6657539 Yamamoto et al. Dec 2003 B2
6715602 Gartland Apr 2004 B1
6820708 Nakamura Nov 2004 B2
6848348 Liao Feb 2005 B2
6902502 Murakami et al. Jun 2005 B2
6938508 Saagge Sep 2005 B1
6938676 Lan et al. Sep 2005 B2
7002454 Gustafson Feb 2006 B1
7058490 Kim Jun 2006 B2
7070527 Saagge Jul 2006 B1
7086837 Kamoshita et al. Aug 2006 B2
7282010 Iriyama et al. Oct 2007 B2
7363999 Hastings Apr 2008 B2
7367420 Sherrod et al. May 2008 B1
7392893 Inomoto et al. Jul 2008 B2
7407462 Tsukada et al. Aug 2008 B2
7427248 Chonan Sep 2008 B2
7438147 Kato et al. Oct 2008 B2
7454282 Mizuguchi Nov 2008 B2
7505842 Luh Mar 2009 B2
7641588 Thomson et al. Jan 2010 B2
7686123 Ishida Mar 2010 B2
7688557 Ishioka Mar 2010 B2
7731613 Ishida et al. Jun 2010 B2
7744505 Tanaka et al. Jun 2010 B2
7771299 Mochizuki et al. Aug 2010 B2
7823891 Bushko et al. Nov 2010 B2
7901319 Tabata et al. Mar 2011 B2
7905803 Mochizuki et al. Mar 2011 B2
8002061 Yamamura et al. Aug 2011 B2
8029395 Hokari et al. Oct 2011 B2
8052572 Unno Nov 2011 B2
8069975 Wallace Dec 2011 B2
8104524 Manesh et al. Jan 2012 B2
8109308 Manesh et al. Feb 2012 B2
8157039 Melvin et al. Apr 2012 B2
8176957 Manesh et al. May 2012 B2
8256563 Suzuki et al. Sep 2012 B2
8381855 Suzuki et al. Feb 2013 B2
8382620 Morita Feb 2013 B2
8439141 Bessho et al. May 2013 B2
8442731 Unno May 2013 B2
8459397 Bessho et al. Jun 2013 B2
8534397 Grajkowski et al. Sep 2013 B2
8534413 Nelson et al. Sep 2013 B2
8556015 Itoo et al. Oct 2013 B2
8596406 Itoo et al. Dec 2013 B2
8613335 Deckard et al. Dec 2013 B2
8662290 Twigger et al. Mar 2014 B2
8682550 Nelson et al. Mar 2014 B2
8684887 Krosschell Apr 2014 B2
8834307 Itoo et al. Sep 2014 B2
8840496 Yamanishi et al. Sep 2014 B2
8910777 Minkin Dec 2014 B2
8911312 Itoo et al. Dec 2014 B2
8950290 Dieter et al. Feb 2015 B2
8991594 Nakamura et al. Mar 2015 B2
8997908 Kinsman et al. Apr 2015 B2
8997952 Getz et al. Apr 2015 B2
9027937 Ryan et al. May 2015 B2
9108470 Tercha et al. Aug 2015 B2
9151384 Kohler et al. Oct 2015 B2
9162573 Grajkowski et al. Oct 2015 B2
9205717 Brady et al. Dec 2015 B2
9341255 Itoo et al. May 2016 B2
9365251 Safranski et al. Jun 2016 B2
9366331 Eberhardt Jun 2016 B2
9429235 Krosschell et al. Aug 2016 B2
9453573 Renner et al. Sep 2016 B2
9566858 Hicke et al. Feb 2017 B2
9665418 Arnott et al. May 2017 B2
9695899 Smith et al. Jul 2017 B2
9718351 Ripley et al. Aug 2017 B2
9771084 Norstad Sep 2017 B2
9802621 Gillingham et al. Oct 2017 B2
9863523 Stocks et al. Jan 2018 B2
9909659 Bessho et al. Mar 2018 B2
9920810 Smeljanskij et al. Mar 2018 B2
10086698 Grajkowski et al. Oct 2018 B2
10183605 Weber et al. Jan 2019 B2
10246153 Deckard et al. Apr 2019 B2
10363941 Norstad Jul 2019 B2
10369861 Deckard et al. Aug 2019 B2
10406884 Oakden-Graus et al. Sep 2019 B2
10578184 Gilbert et al. Mar 2020 B2
10697532 Schleif et al. Jun 2020 B2
10704640 Galasso et al. Jul 2020 B2
10723408 Pelot Jul 2020 B2
10731724 Laird et al. Aug 2020 B2
10774896 Hamers et al. Sep 2020 B2
10933710 Tong Mar 2021 B2
10981429 Tsiaras et al. Apr 2021 B2
11001120 Cox May 2021 B2
11148748 Galasso Oct 2021 B2
11162555 Haugen Nov 2021 B2
11192424 Tabata et al. Dec 2021 B2
11279198 Marking Mar 2022 B2
11306798 Cox et al. Apr 2022 B2
11351834 Cox Jun 2022 B2
11413924 Cox et al. Aug 2022 B2
11448283 Strickland Sep 2022 B2
11472252 Tong Oct 2022 B2
11543005 Zurbruegg et al. Jan 2023 B2
11578793 Nelson et al. Feb 2023 B2
11649889 Nelson May 2023 B2
20020028727 Iida et al. Mar 2002 A1
20020125675 Clements et al. Sep 2002 A1
20040024515 Troupe et al. Feb 2004 A1
20040026880 Bundy Feb 2004 A1
20040094343 Fukuda May 2004 A1
20040097328 Makiyama et al. May 2004 A1
20040116245 Yamamoto et al. Jun 2004 A1
20040149049 Kuzik et al. Aug 2004 A1
20040171457 Fuller Sep 2004 A1
20040195019 Kato et al. Oct 2004 A1
20040195034 Kato et al. Oct 2004 A1
20040224806 Chonan Nov 2004 A1
20040262132 Pauley et al. Dec 2004 A1
20050049772 Liu Mar 2005 A1
20050077696 Ogawa Apr 2005 A1
20050096822 Aoki May 2005 A1
20050205313 Gilmore et al. Sep 2005 A1
20050217953 Bossard Oct 2005 A1
20060032690 Inomoto et al. Feb 2006 A1
20060055531 Cook et al. Mar 2006 A1
20060090942 Hastings May 2006 A1
20060114452 Schnell Jun 2006 A1
20060137920 Aoki et al. Jun 2006 A1
20060213703 Long Sep 2006 A1
20060229811 Herman et al. Oct 2006 A1
20060270503 Suzuki et al. Nov 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070007742 Allen et al. Jan 2007 A1
20070026982 Aoyama Feb 2007 A1
20070111854 Tabata et al. May 2007 A1
20070207884 Unno Sep 2007 A1
20070219030 Ho Sep 2007 A1
20070244619 Peterson Oct 2007 A1
20070260372 Langer Nov 2007 A1
20080035428 Omoto et al. Feb 2008 A1
20080103019 Cronin et al. May 2008 A1
20080108463 Unno May 2008 A1
20080178838 Ota Jul 2008 A1
20080182713 Asaoka Jul 2008 A1
20080183350 Noguchi Jul 2008 A1
20080183357 Asaoka Jul 2008 A1
20080183359 Sawada Jul 2008 A1
20080194380 Unno Aug 2008 A1
20080215217 Unno Sep 2008 A1
20080257692 Wallace Oct 2008 A1
20080283326 Bennett et al. Nov 2008 A1
20080284124 Brady et al. Nov 2008 A1
20080287256 Unno Nov 2008 A1
20080314676 Ishida Dec 2008 A1
20080319596 Yamada Dec 2008 A1
20090020966 Germain Jan 2009 A1
20090050386 Nobuhira Feb 2009 A1
20090101482 Kusel Apr 2009 A1
20090105039 Sah et al. Apr 2009 A1
20090175863 Kraus et al. Jul 2009 A1
20090239705 Tawara et al. Sep 2009 A1
20090254249 Ghoneim et al. Oct 2009 A1
20090291788 Hokari et al. Nov 2009 A1
20090298627 Johnson et al. Dec 2009 A1
20090308682 Ripley et al. Dec 2009 A1
20100152982 Bowman et al. Jun 2010 A1
20100155170 Melvin et al. Jun 2010 A1
20100174456 Beaudoin et al. Jul 2010 A1
20100184543 Yamashita et al. Jul 2010 A1
20100280712 Bowman Nov 2010 A1
20110029181 Hyde et al. Feb 2011 A1
20110034279 Yamaguchi et al. Feb 2011 A1
20110059821 Lee et al. Mar 2011 A1
20110070991 Wu et al. Mar 2011 A1
20110071712 Mizuno et al. Mar 2011 A1
20110094818 Suzuki et al. Apr 2011 A1
20110152020 Brind et al. Jun 2011 A1
20110160696 Hoss Jun 2011 A1
20110160969 Oguri et al. Jun 2011 A1
20110166755 Eguchi et al. Jul 2011 A1
20110190972 Timmons et al. Aug 2011 A1
20110240394 Hurd et al. Oct 2011 A1
20110297462 Grajkowski et al. Dec 2011 A1
20110297463 Grajkowski et al. Dec 2011 A1
20110301824 Nelson et al. Dec 2011 A1
20110301825 Grajkowski et al. Dec 2011 A1
20110306457 Lee et al. Dec 2011 A1
20120031693 Deckard et al. Feb 2012 A1
20120031694 Deckard et al. Feb 2012 A1
20120035019 Martini et al. Feb 2012 A1
20120055728 Bessho et al. Mar 2012 A1
20120055729 Bessho et al. Mar 2012 A1
20120137828 Dieter et al. Jun 2012 A1
20120178561 Lafreniere et al. Jul 2012 A1
20120238384 Lee et al. Sep 2012 A1
20120289370 Yamanishi et al. Nov 2012 A1
20120309573 Well et al. Dec 2012 A1
20120316933 Pentland et al. Dec 2012 A1
20120323371 Ballhausen Dec 2012 A1
20130001840 Reck Jan 2013 A1
20130033070 Kinsman et al. Feb 2013 A1
20130040771 Well et al. Feb 2013 A1
20130087403 Itoo et al. Apr 2013 A1
20130090198 Itoo et al. Apr 2013 A1
20130090199 Itoo et al. Apr 2013 A1
20130092468 Nelson et al. Apr 2013 A1
20130096785 Kohler et al. Apr 2013 A1
20130096793 Krosschell Apr 2013 A1
20130158823 Dec Jun 2013 A1
20130220766 Tadych et al. Aug 2013 A1
20130240272 Gass et al. Sep 2013 A1
20140038755 Ijichi et al. Feb 2014 A1
20140131176 Minkin May 2014 A1
20140232082 Oshita et al. Aug 2014 A1
20140239602 Blankenship et al. Aug 2014 A1
20140243125 Koga et al. Aug 2014 A1
20140243134 Kucharczyk et al. Aug 2014 A1
20140262584 Lovold et al. Sep 2014 A1
20140342110 Zhu et al. Nov 2014 A1
20140348671 Pagliarin Nov 2014 A1
20150011344 Ebihara et al. Jan 2015 A1
20150024890 Eberhardt Jan 2015 A1
20150046034 Kikuchi Feb 2015 A1
20150061275 Deckard et al. Mar 2015 A1
20150081171 Ericksen et al. Mar 2015 A1
20150308560 Itoo et al. Oct 2015 A1
20150308561 Itoo et al. Oct 2015 A1
20150329141 Preijert Nov 2015 A1
20150377341 Renner et al. Dec 2015 A1
20160061088 Minnichsoffer et al. Mar 2016 A1
20160061314 Kuhl et al. Mar 2016 A1
20160121905 Gillingham et al. May 2016 A1
20160121924 Norstad May 2016 A1
20160176283 Hicke et al. Jun 2016 A1
20160176284 Nugteren et al. Jun 2016 A1
20160176287 Ripley et al. Jun 2016 A1
20160200164 Tabata et al. Jul 2016 A1
20160214455 Reul et al. Jul 2016 A1
20160215878 Hatajima Jul 2016 A1
20170002920 Bessho et al. Jan 2017 A1
20170045131 Yolitz Feb 2017 A1
20170087950 Brady et al. Mar 2017 A1
20170129298 Lu et al. May 2017 A1
20170211467 Hall et al. Jul 2017 A1
20170254405 Ballhausen Sep 2017 A1
20170268655 Stocks et al. Sep 2017 A1
20180009443 Norstad Jan 2018 A1
20180037212 Beyer Feb 2018 A1
20180126817 Russell et al. May 2018 A1
20180178677 Swain et al. Jun 2018 A1
20180180163 Schleif et al. Jun 2018 A1
20180245682 Davis Aug 2018 A1
20180264902 Schroeder et al. Sep 2018 A1
20180320777 Becka et al. Nov 2018 A1
20180354336 Oakden-Graus et al. Dec 2018 A1
20180361853 Grajkowski et al. Dec 2018 A1
20190093745 Younggren et al. Mar 2019 A1
20190193501 Brady et al. Jun 2019 A1
20190210457 Galsworthy et al. Jul 2019 A1
20190285150 Zurbruegg et al. Sep 2019 A1
20190285159 Nelson et al. Sep 2019 A1
20190285160 Nelson et al. Sep 2019 A1
20190389478 Norstad Dec 2019 A1
20200016953 Oakden-Graus et al. Jan 2020 A1
20200096075 Lindblad Mar 2020 A1
20200108709 Kohler et al. Apr 2020 A1
20200164742 Safranski et al. May 2020 A1
20200223279 Mckeefery Jul 2020 A1
20200248793 Kuhl et al. Aug 2020 A1
20200269648 Halper Aug 2020 A1
20200282786 Lorenz et al. Sep 2020 A1
20210031579 Booth et al. Feb 2021 A1
20210088100 Woelfel Mar 2021 A1
20210102596 Malmborg et al. Apr 2021 A1
20210108696 Connor Apr 2021 A1
20210206263 Grajkowski et al. Jul 2021 A1
20210300140 Ericksen et al. Sep 2021 A1
20210379957 Tabata et al. Dec 2021 A1
20220032708 Tabata et al. Feb 2022 A1
20220041029 Randall et al. Feb 2022 A1
20220056976 Anderson Feb 2022 A1
20220082167 Kuhl et al. Mar 2022 A1
20220088988 Menden et al. Mar 2022 A1
20220243810 Truskolaski et al. Aug 2022 A1
20220397194 Kohler et al. Dec 2022 A1
20230019039 Kuhl et al. Jan 2023 A1
20230083658 Nelson et al. Mar 2023 A1
Foreign Referenced Citations (38)
Number Date Country
2012323853 May 2014 AU
2851626 Apr 2013 CA
2807101 Aug 2013 CA
2965309 May 2016 CA
101372930 Feb 2009 CN
101382193 Mar 2009 CN
101960175 Jan 2011 CN
103032535 Apr 2013 CN
103476621 Dec 2013 CN
103486233 Jan 2014 CN
103912664 Jul 2014 CN
103857576 Aug 2017 CN
107002859 Aug 2017 CN
107406094 Nov 2017 CN
107521449 Dec 2017 CN
107521499 Dec 2017 CN
4328551 Mar 1994 DE
10231210 Jan 2004 DE
0421241 Apr 1991 EP
0829383 Mar 1998 EP
1022169 Jul 2000 EP
1238833 Sep 2002 EP
1865227 Dec 2007 EP
2131074 Dec 2009 EP
3150454 Apr 2017 EP
2377415 Jan 2003 GB
59-009365 Jan 1984 JP
59-077924 May 1984 JP
2009-228708 Oct 2009 JP
2011-069457 Apr 2011 JP
5990365 Sep 2016 JP
9850248 Nov 1998 WO
2014059258 Apr 2014 WO
2016069405 May 2016 WO
2017187411 Nov 2017 WO
WO-2017187411 Nov 2017 WO
2018118470 Jun 2018 WO
2019126485 Jun 2019 WO
Non-Patent Literature Citations (35)
Entry
“2011 Polaris Ranger RZR XP 900 First Look-Motorcycle USA”, www.motorcycle-usa.com/2011/01/article/2011-polaris-ranger-rzr-xp-900-first-look/, Jan. 3, 2011; 10 pages.
“Alba Racing Belt Gauge”, www.Maverickforums.net; 8 pages.
“The Avid Off Racing BITD/SCORE factory Can Am Maverick race build”, www.Maverickforums.net; 31 pages.
“The Avid Off Racing BITD/SCORE factory Can Am Maverick race build”, www.Maverickforums.net; Dec. 13, 2016; 31 pages.
“UTVOutpost.com-UTV Side by Side Parts, Accessories & Videos”, http://www.utvoutpost.com/new-can-am-maverick-belt-cover-back-plate-transmission-clutch-cover-420612313; Jun. 29, 2015; 13 pages.
Decision Institution of Inter Partes Review 37 CFR .sctn. 42.108 issued by the U.S. Patent and Trademark Office Trial and Appeal Board, Arctic Cat, Inc. v. Polaris Industries Inc., Feb. 3, 2016; 34 pages.
Decision to Institute 37 C.F.R. .sctn. 42.108 issued by the U.S. Patent and Trademark Office Trial and Appeal Board, Arctic Cat, Inc. v. Polaris Industries, Inc., Feb. 3, 2016; 22 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US19/22912, dated Apr. 2, 2020, 24 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/065520, dated Jul. 4, 2019, 9 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/022706, dated Mar. 31, 2020, 16 pages.
International Preliminary Report on Patentability, issued by the European Patent Office, dated Apr. 14, 2015, for International Patent Application No. PCT/US2013/064516; 18 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Mar. 25, 2014, for International Patent Application No. PCT/US2013/064516; 23 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US19/22912, dated Jun. 20, 2019, 14 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/065520, dated Mar. 19, 2018, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/022706, dated May 17, 2019, 6 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Jul. 8, 2020, for Canadian Patent Application No. 3,046,825; 5 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/014291, dated Jun. 21, 2022, 15 pages.
Amended claims submitted to the European Patent Office dated May 5, 2014, in related European Patent Application No. 12787562.3 (Publication No. EP2766238); 9 pages.
Communication pursuant to Article 94(3) EPC issued by the European Patent Office, dated Mar. 27, 2020, for European Patent Application No. 16198993.4; 5 pages.
European Search Report issued by the European Patent Office, dated Mar. 2, 2017, for related European patent application No. 16198993.4; 11 pages.
Examination Report issued by the Intellectual Property India, dated Jun. 10, 2019, for Indian Patent Application No. 3632/DELNP/2014; 7 pages.
Gangadurai et al.; Development of control strategy for optimal control of a continuously variable transmission operating in combination with a throttle controlled engine; SAE International; Oct. 12, 2005.
http://www.hilliardcorp.com/centrifugal-clutch.html, Motion Control Division, Centrifugal Clutches, accessed Jan. 8, 2013.
International Preliminary Report on Patentability issued by the European Patent Office, dated Feb. 6, 2014, for International Application No. PCT/US2012/060269; 22 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2022/014291, dated Aug. 10, 2023, 8 pages.
International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 17, 2013, for International Application No. PCT/US2012/060269; 18 pages.
Non-final Office Action dated Apr. 9, 2015, in corresponding U.S. Appl. No. 13/652,289; 19 pages.
Office Action issued by the Canadian Intellectual Property Office, dated Jul. 26, 2018, for Canadian Patent Application No. 2,851,626; 4 pages.
U.S. Appl. filed Oct. 15, 2012, Primary Clutch Electronic CVT., U.S. Appl. No. 13/652,304, U.S. Appl. No. 13/652,304.
U.S. Appl. No. 13/399,422, filed Feb. 17, 2012 and issued as U.S. Pat. No. 8,534,413 on Sep. 17, 2013, entitled Primary Clutch Electronic CVT.
U.S. Appl. No. 13/652,253, filed Oct. 15, 2012 and issued as U.S. Pat. No. 8,682,550 on Mar. 25, 2014, entitled Primary Clutch Electronic CVT.
U.S. Appl. No. 13/652,278, filed Oct. 15, 2012 and issued as U.S. Pat. No. 8,684,887 on Apr. 1, 2014, entitled Primary Clutch Electronic CVT.
U.S. Appl. No. 13/652,297, filed Oct. 15, 2012 and issued as U.S. Pat. No. 9,151,384 on Oct. 6, 2015, entitled Primary Clutch Electronic CVT.
U.S. Appl. No. 13/652,289, filed Oct. 15, 2012, entitled Primary Clutch Electronic CVT.
Unno et al.; Development of Electronically Controlled DVT Focusing on Rider's Intention of Acceleration and Deceleration; SAE International; Oct. 30, 2007.
Related Publications (1)
Number Date Country
20230184318 A1 Jun 2023 US
Provisional Applications (1)
Number Date Country
62644717 Mar 2018 US
Continuations (1)
Number Date Country
Parent 16357676 Mar 2019 US
Child 18107329 US