The field of the invention relates generally to transmissions, and more particularly to continuously variable transmissions (CVTs).
Embodiments of the CVTs disclosed here can be used in any machine, device, vehicle, etc., where it is desired to adjust the ratio of input speed to output speed. A bicycle is one such application. The drivetrain of a bicycle typically consists of pedals coupled to cranks for driving a crankshaft, which is received in, and supported by, frame members of the bicycle. The crankshaft is coupled to a sprocket that transfers power to the rear wheel of the bicycle by a chain. A cog at the rear wheel receives power from the chain and is adapted to interface with the rear wheel hub for driving the rear wheel of the bicycle. Some bicycles are provided with internally geared rear hubs, where a set of gears is arranged to receive power from the cog and drive the rear wheel. In some applications, a bicycle is provided with a CVT at the rear hub to drive the rear wheel.
However, there remains an unfulfilled need for a CVT that is received and supported by the frame members of the bicycle at a location forward of the rear wheel or rear wheel hub. The embodiments of the CVTs disclosed here address this and other needs in the field of continuously variable transmissions.
The systems and methods described herein have several features, no single one of which is solely responsible for the overall desirable attributes. Without limiting the scope as expressed by the claims that follow, the more prominent features of certain embodiments of the invention will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Inventive Embodiments,” one will understand how the features of the systems and methods provide several advantages over related traditional systems and methods.
One aspect of the invention relates to a bicycle having a plurality of bicycle frame members, a crankshaft operationally coupled to one or more cranks of the bicycle, and a continuously variable transmission (CVT) coaxially coupled with, and coaxially mounted about, the crankshaft.
Another aspect of the invention is addressed to a bicycle having a crankshaft coupled to a rotatable planetary gear set carrier coupled, and a plurality of planet gears coupled to said carrier. A ring gear, rotationally constrained, can be coupled to the planet gears, which can be coupled to a sun gear coupled. A first traction ring is operationally coupled to the sun gear, and a plurality of traction planets are coupled to the traction ring. A second traction ring is coupled to the traction planets. Power is transferred sequentially from the crankshaft to the planetary gear set carrier, to the planetary gears, to the sun gear, to the first traction ring, to the traction planets, and to the second traction ring. In another embodiment, the crankshaft is additionally coupled to a cage that is adapted to support the traction planets axially and radially and to transfer power to the traction planets.
Yet another aspect of the invention concerns a bicycle transmission having a planetary gear set configured for coupling to a crankshaft of a bicycle and to be mounted coaxially about the crankshaft. The bicycle transmission can further have a continuously variable variator coupled to the planetary gearset configured to be mounted coaxially about the crankshaft.
Still another aspect of the invention is directed to a shift screw and a shift pin hub for facilitating the adjustment of a transmission ratio. In another regard, the invention relates to a device for actuating an axial translation of an idler or traction sun as the transmission ratio is adjusted. In one embodiment, the traction sun actuation device includes a plurality of cam rollers configured to interface with a cam surface of a pivot arm. Another aspect of the invention covers the pivot arms having an integral cam surface for facilitating the axial translation of the traction sun.
In one aspect the invention is directed to a cage for a transmission. The cage has a plurality of splines for engaging corresponding splines of a transmission housing. The cage can further can a plurality of slots with skew roller reaction surfaces.
Reference will now be made in detail to the present embodiments(s) (exemplary embodiments) of the invention, an example(s) of which is (are) illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts (elements).
The CVT embodiments described here are generally related to those of the type disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; and 7,011,600. The entire disclosure of each of these patents is hereby incorporated herein by reference. Additionally, U.S. patent application Ser. No. 10/788,736 (now U.S. Pat. No. 7,011,600) was included as Appendix A of the provisional application from which this application claims priority. The disclosure of U.S. patent application Ser. No. 11/543,311, filed Oct. 3, 2006, is hereby incorporated by reference herein in its entirety.
The preferred embodiments will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be obvious to a person of ordinary skill in the relevant technology.
For description purposes, the term “radial” is used here to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term “axial” as used here refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled.
As described in the embodiments described in U.S. Pat. No. 7,011,600, the variator 106 of the illustrated embodiment includes an input ring 124, an output ring 126, and a set of planet balls 130 in contact with, and between, the input ring 124 and the output ring 126. An idler 132 is placed between, and in contact with, the planet balls 130, and is analogous to the sun gear 112 of the planetary gear set 110. The variator 106 operates as illustrated and described in U.S. Pat. No. 7,011,600.
Cranks 140 of a bicycle provide torque input into the planet carrier 120. The planet carrier 120 rotates the planet gears 114 about the sun gear 112. The ring gear 116 is fixed and the planet gears 114 drive the sun gear 112. The ring gear 116 is fixed, and the planet gears 114 drive the sun gear 112. The planet carrier 120 is connected to the cage 142 of the variator 106. The sun gear 112 is connected to the input ring 124 via a cam loader 144, a set of bearings 146 and ramps 148 that generates axial force that is proportional to the amount of torque applied, although any axial force generating mechanism described in U.S. Pat. No. 7,011,600 or known or described in previous publications can be used. Therefore, in the illustrated embodiment, torque is supplied to the variator 106 from both the sun gear 112, via the input ring 124, and the carrier 120, via the cage 142. The variator 106 takes and sums the two torque inputs and varies the output speed to the output ring 126 and out via an output sprocket 150. The illustrated embodiment includes an optional reaction sleeve 152 to react the axial force generated as well as a thrust bearing 154 for reacting the axial thrust generated to clamp the input ring 124 and the output ring 126 to the planet balls 130.
In the embodiment illustrated in
An alternative transmission 300 will now be described with reference to
Referencing
The cranks 350 are coupled to provide torque to a crank shaft or central shaft 360, which is generally positioned and supported in the housing 345 by bearings 395. The central shaft 360 can also be configured to provide radial and axial support for certain assemblies of the transmission 300. For purposes of description, the central shaft 360 defines a longitudinal axis of the transmission 300 that will serve as a reference point for describing the location and/or motion of other components of the transmission 300. As used here, the terms “axial,” “axially,” “lateral,” “laterally,” refer to a position or direction that is coaxial or parallel with the longitudinal axis defined by the central shaft 360. The terms “radial” and “radially” refer to locations or directions that extend perpendicularly from the longitudinal axis.
In one embodiment, the cranks 350 couple to a first stage planetary gear set via the central shaft 360. The first stage planetary gear set includes sun gear 312, compound planetary gears 310, carrier 320, and ring gear 316. The central shaft 360 couples to the ring gear 316. The carrier 320 is configured to receive and support, on planetary gear axles 318, the compound planetary gears 310. In one embodiment, the carrier 320 is rotationally and axially fixed, and can be part of (or attached to) the housing 345.
The ring gear 316 drives the compound planetary gears 310, which orbit around and drive the sun gear 312. The input driver 326 is coupled to and receives torque from the sun gear 312. The input driver 326 delivers torque via the input load cam 328 to the input traction ring 330, which transfers torque to the planet-pivot-arm assemblies 410. The output driver 340 receives torque from the planet-pivot-arm assemblies 410 via the output traction ring 340 and output load cam 338. The output driver 340 is coupled to and delivers torque to the sprocket 348. Although a sprocket is used in this example, other embodiments of the transmission 300 can use a pulley, a freewheel, a cog, etc.
In some embodiments, the input traction ring 330 and the output traction ring 340 are substantially similar. A traction ring 330, 340 preferably includes a traction surface for transmitting torque through frictional or hydroelastodynamic contact with the traction planets 332. In some embodiments, a traction ring 330, 340 can include ramps that form part of a load cam assembly (see
A cage 356 includes an input cage 352 and an output cage 354 (see
A planet-pivot-arm assembly 410 can have pivot arms 380, which can be operationally coupled to a traction sun actuation device 382 (see
To handle axial reaction forces and provide a rolling contact between moving and stationary members of the CVT 300, thrust bearings can be provide on either or both of the input and output ends of the CVT 300. At the input side, generally referring to the area where the central shaft 360 couples to the ring gear 316, an input thrust bearing is located between the stationary, first stage planetary carrier 320 and the input driver 326. The input thrust bearing, in the embodiment illustrated in
On the output side, generally referring to the area where the output driver 340 is located, an output thrust bearing can be positioned between the output driver 340 and the end cap 346, which can have a recess for receiving and support an output bearing race 344. Thus, in this embodiment, the end cap 346 helps to react the axial forces that arise in the transmission 300. The bearing races 322, 344 can be made of various bearing race materials such as steel, bearing steel, ceramic or any other material suitable for bearing races. The output thrust bearing includes a set of rollers 342 positioned and supported in roller retainer. In one embodiment, the output driver 340 can have an integral bearing race that cooperates with the output bearing race 344 and the rollers 342 to complete the output thrust bearing.
Referencing
Turning to
Passing to
In one embodiment, the slots 915 of the cage 356 guide the planet-pivot-arm assemblies 410 along skew surfaces 910 through contact with the skew rollers 1220. The skew surfaces 910 provide reaction surfaces for the skew rollers 1220 as the planet-pivot-arm assemblies 410 pivot or tilt in slot 915 when the transmission ratio of the CVT 300 is adjusted. In some embodiments, the corresponding slots of cage halves 352, 354 are offset slightly in the angular direction, relative to one another, to reduce potential deleterious effects on shifting, for example, that can be caused by skewing (relative to a lateral axis) of the traction planet axles 334 (see
Turning to
In one embodiment, the pivot arms 380 are machined with a curvature suitable to axially translate the traction sun 333 in reaction to a shift mechanism input. The pivot arms 380 can be provide with a cam surface 1230. As will be further described below with reference to
The traction planet axle 334 can be a generally cylindrical shaft that extends through a bore formed through the center of the traction planet 332. In some embodiments, the traction planet axle 334 interfaces with the surface of the bore in the traction planet 332 via needle or radial bearings that align the traction planet 332 on the traction planet axle 334. The traction planet axle 334 extends beyond the sides of the traction planet 332 where the bore ends so that the pivot arms 380 can actuate a shift in the position of the traction planet 332. Where the traction planet axle 334 extends beyond the edge of the traction planet 332, it couples to the radial outward end of the pivot arms 380. The traction planet axle 334 passes through a bore formed in the radially outward end of the pivot arms 380.
In various embodiments, the interface between the traction planets 332 and the traction planet axles 334 can be any of the bearings described in other patents or publications. In some embodiments, the traction planets 332 are fixed to, and rotate with, the planet axles 334. In the embodiment of
Typically, traction-type transmissions use a clamping mechanism to prevent slippage between the traction planets 332 and the traction rings 330, 336 when transmitting certain levels of torque. Provision of a clamping mechanism is sometimes referred to here as generating an axial force, or providing an axial force generator. With reference to
As mentioned above with reference to
In some embodiments, the ramps 710 are provided on a ring that is fastened to the input driver 326 or to the input traction ring 330; alternatively, each of the input driver 326 and the input traction ring can be fitted with rings having the ramps 710. In some embodiments, the input traction ring 330 and the load cam assembly 328 are an integral unit, effectively as when the ramps 1610 are built into the input traction ring 330, and the rollers 705 and roller retainer 720 form a distinct assembly.
During operation of the transmission 300, the first stage planetary sun gear 312 imparts torque to the input driver 326. The input driver 326 transfers torque to the input traction ring 330 via the ramps 710, which can be integral with the input traction ring 330. As the input driver 326 rotates, the ramps 710 activate the rollers 705, which ride up the ramps 710. The rollers 705 wedge in place, pressed between the ramps 705 and a surface of the input driver 326, and transmit both torque and axial force through the ramps 705 from the input driver 326 to the input traction ring 330. The axial force then clamps the traction planets 332 between the input traction ring 330, the output traction ring 336, and the traction sun 333.
Turning to
Referencing
Referencing
The shift pin hub 374 is coupled to the pivot arms 380 by shift pins (not shown) that fit in the fingers 376 and in the shift pin hole 1212 of the pivot arms 380 (see
The shift screw 370 can mount coaxially with and is rotatable about the central shaft 360. In one embodiment, the shift screw 370 can be axially constrained by the sun gear 312 and the ring gear 316. Suitable thrust bearings can be positioned between the shift screw 370 and, respectively, the sun gear 312 and the ring gear 316 (see
To adjust the speed ratio of the transmission 300, a shift input is provided by the linear actuator (chain, cable, etc.) to the shift wheel 375, which rotates the shift screw 370. The shift screw threads 1005 engage the shift pin hub threads 580, and since the shift screw 370 is constrained axially at the same time that the shift pin hub 374 is constrained rotationally, the shift screw 370 causes the shift pin hub 374 to move axially. The axial translation of the shift pin hub 374 causes the pivot arms 380 to pivot on the pivot pins (not shown) coupling the shift pin hub fingers 376 and the pivot arms 380. The pivot arms 380 pivot about the centers of the planets 332. Because the pivot arms 380 are coupled to the traction planet axles 334, the pivoting of the pivot arms 380 causes the traction planet axles 334 to tilt radially inward or outward, which results in a change in the relative point of contact between the traction planets 332 and, respectively, the input traction ring 330 and the output traction ring 336. This change the relative point of contact between the traction planets 332 and the traction rings 330, 336 results in a change in the speed ratio of the transmission 300.
In some embodiments, it is preferable that the traction sun 333 translate axially as the pivot arms 380 tilt the traction planet axles 334. Translation of the traction sun 333 can be accomplished by a traction sun actuation device 382, which in one embodiment is positioned between the traction sun 333 and the pivot arms 380. In one embodiment, the traction sun actuation device 382 includes cam rollers 1805 adapted to engage the cam surface 1230 of the pivot arms 380. The cam rollers 1805 can be supported and positioned on cam roller support ring 1810 having support extensions 1812. To react and transfer axial forces, an angular contact thrust bearing is positioned between the support ring 1810 and the traction sun 333. In the embodiment illustrated in
As the pivot arms 380 pivot about the planets 332, the cam surface 1230 of the pivot arms 380 acts on the cam rollers 1805, which transfer an axial force to the cam roller support ring 1810. The cam rollers 1805 are provided with flanges 1807 to engage the pivot arms 380, and thereby the support ring 1810 is constrained from rotation about the central shaft 360. The support ring 1810 then transfers the axial force to the traction sun 333 via the bearing race 1810, bearing rollers 1820, and bearing race 1825. As will be discussed further below, the curvature or profile of the cam surface 1230 determines the relative speed between the speed of axial translation of the traction sun 333 vis-à-vis the speed of change of the tilt of the traction planet axles 334.
The profile of the shift cam surface 1230 usually varies according to the location of the contact point between the traction sun 333 and the traction planets 332, as well as the desired amount of relative axial motion between the traction planets 332 and the traction sun 333. The profile of the cam surface 1230 can be such that axial translation of the traction sun 333 relative to the traction planets 332 is proportional to the change of the tilt of the traction planets axles 334. The angle of tilt of the traction planet axles 334 is referred to herein as “gamma.” The applicant has discovered that controlling the axial translation of the traction sun 333 relative to the change in gamma influences CVT ratio control forces. For example, if the axial translation of the traction sun 333 is linearly proportional to a change in gamma, the normal force at the cam surface 1230 and the cam roller 1805 is generally parallel to the traction planet axles 334. This enables an efficient transfer of a shift moment about the traction planets 332 to horizontal shift forces that translate the traction sun 333.
A linear relation between translation of the traction sun 333 and gamma change is given as translation of the traction sun 333 is the mathematical product of the radius of the planets 332, the gamma angle and RSF (that is, translation of traction sun 333=ball radius*gamma angle*RSF), where RSF is a roll-slide factor. RSF describes the transverse creep rate between the traction planets 332 and the traction sun 333. As used here, “creep” is the discrete local motion of a body relative to another. In traction drives, the transfer of power from a driving element to a driven element via a traction interface requires creep. Usually, creep in the direction of power transfer is referred to as “creep in the rolling direction.” Sometimes the driving and driven elements experience creep in a direction orthogonal to the power transfer direction, in such a case this component of creep is referred to as “transverse creep.” During operation, the traction planet 332 and the traction sun 333 on each other. When the traction sun 333 is translated axially (that is, orthogonal to the rolling direction), transverse creep is imposed between the traction sun 333 and the traction planets 332. An RSF equal to 1.0 indicates pure rolling. At RSF values less than 1.0, the traction sun 333 translates slower than the traction planet 332 rotates. At RSF values greater than 1.0, the traction sun 333 translates faster than the traction planet 332 rotates.
A process for defining a profile for the cam surface 1230 for any variation of transverse creep and/or location of the interface between the traction sun 333 and the pivot arm 380 and cam roller 1805. This process generates different cam profiles and aids in determining the effects on shift forces and shifter displacement. In one embodiment, the process involves the use of parametric equations to define a two-dimensional datum curve that has the desired profile for the cam surface 1230. The curve is then used to generate models of the cam surface 1230. In one embodiment of the process, the parametric equations of the datum curve are as follows:
theta=2*GAMMA_MAX*t-GAMMA_MAX
x=LEG*sin(theta)−0.5*BALL_DIA*RSF*theta*pi/180+0.5*ARM*cos (theta)
y=LEG*cos (theta)−0.5*ARM*sin(theta)
z=0
The angle theta varies from minimum gamma (which in some embodiments is −20 degrees) to maximum gamma (which in some embodiments is +20 degrees). GAMMA_MAX is the maximum gamma. The parametric range variable “t” varies from 0 to 1. Here “x” and “y” are the center point of the cam rollers 1805 on each side of the traction sun 333. The equations for x and y are parametric. “LEG” and “ARM” define the position of the interface between the pivot arm 380, cam roller 1805, and traction sun 333. More specifically, LEG is the perpendicular distance between the longitudinal axis of the traction planet axle 334 to a line that passes through the centers of the two corresponding cam rollers 1805. ARM is the distance between centers of the cam rollers 1805 on either side of the traction sun 333.
RSF values above zero are preferred. Applicant discovered that an RSF of zero dramatically increases the force required to shift the CVT. Usually, RSF values above 1.0 and less than 2.5 are preferred. There is a maximum RSF for a maximum gamma angle. For example, for gamma equals to +20 degrees an RSF of about 1.6 is the maximum. RSF further depends on the size of the traction planet 332 and the size of the traction sun 333, as well as the location of the cam roller 1805.
Linear axial translation of the traction sun 333 relative to gamma is not the only desired relation. Hence, for example, if it is desired that the translation of the traction sun 333 be linearly proportional to CVT ratio, then the RSF factor is made a function of gamma angle or CVT ratio so that the relation between the position of the traction sun 333 and CVT ratio is linearly proportional. This is a desirable feature for some types of control schemes.
It should be noted that while several embodiments have been described above that implement a continuously variable variator in conjunction with a planetary gear set for a bicycle transmission, in other embodiments the planetary gear set is not used. Rather, the crankshaft can be directly, or through a load cam assembly, coupled to the input driver 326 or the input traction ring 330 of the variator.
Turning to
The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.
This application is a continuation of U.S. patent application Ser. No. 15/155,508, filed May 16, 2016 and scheduled to issue on Jul. 18, 2017 as U.S. Pat. No. 9,709,138, which is a continuation of U.S. patent application Ser. No. 14/263,900, filed Apr. 28, 2014 and issued as U.S. Pat. No. 9,341,246 on May 17, 2016, which is a continuation of U.S. patent application Ser. No. 12/039,590, filed Feb. 28, 2008 and issued as U.S. Pat. No. 8,708,360 on Apr. 29, 2014, which is a continuation of U.S. patent application Ser. No. 11/562,317, filed on Nov. 21, 2006, which claims benefit of U.S. Provisional Patent Application No. 60/738,865, filed on Nov. 22, 2005. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
719595 | Huss | Feb 1903 | A |
1121210 | Techel | Dec 1914 | A |
1175677 | Barnes | Mar 1916 | A |
1207985 | Null et al. | Dec 1916 | A |
1380006 | Nielsen | May 1921 | A |
1390971 | Samain | Sep 1921 | A |
1558222 | Beetow | Oct 1925 | A |
1629902 | Arter et al. | May 1927 | A |
1686446 | Gilman | Oct 1928 | A |
1774254 | Daukus | Aug 1930 | A |
1793571 | Vaughn | Feb 1931 | A |
1847027 | Thomsen et al. | Feb 1932 | A |
1850189 | Weiss | Mar 1932 | A |
1858696 | Weiss | May 1932 | A |
1865102 | Hayes | Jun 1932 | A |
1978439 | Sharpe | Oct 1934 | A |
2030203 | Gove et al. | Feb 1936 | A |
2060884 | Madle | Nov 1936 | A |
2086491 | Dodge | Jul 1937 | A |
2100629 | Chilton | Nov 1937 | A |
2109845 | Madle | Mar 1938 | A |
2112763 | Cloudsley | Mar 1938 | A |
2131158 | Almen et al. | Sep 1938 | A |
2134225 | Christiansen | Oct 1938 | A |
2152796 | Erban | Apr 1939 | A |
2196064 | Erban | Apr 1940 | A |
2209254 | Ahnger | Jul 1940 | A |
2259933 | Holloway | Oct 1941 | A |
2269434 | Brooks | Jan 1942 | A |
2325502 | Auguste | Jul 1943 | A |
RE22761 | Wemp | May 1946 | E |
2461258 | Brooks | Feb 1949 | A |
2469653 | Kopp | May 1949 | A |
2480968 | Ronai | Sep 1949 | A |
2553465 | Monge | May 1951 | A |
2586725 | Henry | Feb 1952 | A |
2595367 | Picanol | May 1952 | A |
2596538 | Dicke | May 1952 | A |
2597849 | Alfredeen | May 1952 | A |
2675713 | Acker | Apr 1954 | A |
2696888 | Chillson et al. | Dec 1954 | A |
2868038 | Billeter | May 1955 | A |
2716357 | Rennerfelt | Aug 1955 | A |
2730904 | Rennerfelt | Jan 1956 | A |
2748614 | Weisel | Jun 1956 | A |
2959070 | Flinn | Jan 1959 | A |
2873911 | Perrine | Feb 1959 | A |
2874592 | Oehrli | Feb 1959 | A |
2883883 | Chillson | Apr 1959 | A |
2891213 | Kern | Jun 1959 | A |
2901924 | Banker | Sep 1959 | A |
2913932 | Oehrli | Nov 1959 | A |
2931234 | Hayward | Apr 1960 | A |
2931235 | Hayward | Apr 1960 | A |
2949800 | Neuschotz | Aug 1960 | A |
2959063 | Perry | Nov 1960 | A |
2959972 | Madson | Nov 1960 | A |
2964959 | Beck | Dec 1960 | A |
3008061 | Mims et al. | Nov 1961 | A |
3028778 | Hayward | Apr 1962 | A |
3035460 | Guichard | May 1962 | A |
3048056 | Wolfram | Aug 1962 | A |
3051020 | Hartupee | Aug 1962 | A |
3086704 | Hurtt | Apr 1963 | A |
3087348 | Kraus | Apr 1963 | A |
3154957 | Kashihara | Nov 1964 | A |
3163050 | Kraus | Dec 1964 | A |
3176542 | Monch | Apr 1965 | A |
3184983 | Kraus | May 1965 | A |
3204476 | Rouverol | Sep 1965 | A |
3209606 | Yamamoto | Oct 1965 | A |
3211364 | Wentling et al. | Oct 1965 | A |
3216283 | General | Nov 1965 | A |
3229538 | Schlottler | Jan 1966 | A |
3237468 | Schlottler | Mar 1966 | A |
3246531 | Kashihara | Apr 1966 | A |
3248960 | Schottler | May 1966 | A |
3273468 | Allen | Sep 1966 | A |
3280646 | Lemieux | Oct 1966 | A |
3283614 | Hewko | Nov 1966 | A |
3292443 | Felix | Dec 1966 | A |
3340895 | Osgood, Jr. et al. | Sep 1967 | A |
3374009 | Jeunet | Mar 1968 | A |
3407687 | Hayashi | Oct 1968 | A |
3430504 | Dickenbrock | Mar 1969 | A |
3439563 | Petty | Apr 1969 | A |
3440895 | Fellows | Apr 1969 | A |
3464281 | Hiroshi et al. | Sep 1969 | A |
3477315 | Macks | Nov 1969 | A |
3487726 | Burnett | Jan 1970 | A |
3487727 | Gustafsson | Jan 1970 | A |
3574289 | Scheiter et al. | Apr 1971 | A |
3581587 | Dickenbrock | Jun 1971 | A |
3661404 | Bossaer | May 1972 | A |
3695120 | Titt | Oct 1972 | A |
3707888 | Schottler | Jan 1973 | A |
3727473 | Bayer | Apr 1973 | A |
3727474 | Fullerton | Apr 1973 | A |
3736803 | Horowitz et al. | Jun 1973 | A |
3768715 | Tout | Oct 1973 | A |
3769849 | Hagen | Nov 1973 | A |
3800607 | Zurcher | Apr 1974 | A |
3802284 | Sharpe et al. | Apr 1974 | A |
3810398 | Kraus | May 1974 | A |
3820416 | Kraus | Jun 1974 | A |
3866985 | Whitehurst | Feb 1975 | A |
3891235 | Shelly | Jun 1975 | A |
3934492 | Timbs | Jan 1976 | A |
3934493 | Hillyer | Jan 1976 | A |
3954282 | Hege | May 1976 | A |
3984129 | Hege | Oct 1976 | A |
3987681 | Keithley et al. | Oct 1976 | A |
3996807 | Adams | Dec 1976 | A |
4023442 | Woods et al. | May 1977 | A |
4053173 | Chase, Sr. | Oct 1977 | A |
4098146 | McLarty | Jul 1978 | A |
4103514 | Grosse-Entrup | Aug 1978 | A |
4158317 | James | Jun 1979 | A |
4159653 | Koivunen | Jul 1979 | A |
4169609 | Zampedro | Oct 1979 | A |
4177683 | Moses | Dec 1979 | A |
4227712 | Dick | Oct 1980 | A |
4314485 | Adams | Feb 1982 | A |
4345486 | Olesen | Aug 1982 | A |
4369667 | Kemper | Jan 1983 | A |
4391156 | Tibbals | Jul 1983 | A |
4459873 | Black | Jul 1984 | A |
4464952 | Stubbs | Aug 1984 | A |
4468984 | Castelli et al. | Sep 1984 | A |
4493677 | Ikenoya | Jan 1985 | A |
4494524 | Wagner | Jan 1985 | A |
4496051 | Ortner | Jan 1985 | A |
4501172 | Kraus | Feb 1985 | A |
4515040 | Takeuchi et al. | May 1985 | A |
4526255 | Hennessey et al. | Jul 1985 | A |
4546673 | Shigematsu et al. | Oct 1985 | A |
4549874 | Wen | Oct 1985 | A |
4560369 | Hattori | Dec 1985 | A |
4567781 | Russ | Feb 1986 | A |
4569670 | McIntosh | Feb 1986 | A |
4574649 | Seol | Mar 1986 | A |
4585429 | Marier | Apr 1986 | A |
4617838 | Anderson | Oct 1986 | A |
4628766 | De Brie Perry | Dec 1986 | A |
4630839 | Seol | Dec 1986 | A |
4631469 | Tsuboi et al. | Dec 1986 | A |
4647060 | Tomkinson | Mar 1987 | A |
4651082 | Kaneyuki | Mar 1987 | A |
4663990 | Itoh et al. | May 1987 | A |
4700581 | Tibbals, Jr. | Oct 1987 | A |
4713976 | Wilkes | Dec 1987 | A |
4717368 | Yamaguchi et al. | Jan 1988 | A |
4725258 | Joanis, Jr. | Feb 1988 | A |
4735430 | Tomkinson | Apr 1988 | A |
4738164 | Kaneyuki | Apr 1988 | A |
4744261 | Jacobson | May 1988 | A |
4756211 | Fellows | Jul 1988 | A |
4781663 | Reswick | Nov 1988 | A |
4806066 | Rhodes et al. | Feb 1989 | A |
4838122 | Takamiya et al. | Jun 1989 | A |
4856374 | Kreuzer | Aug 1989 | A |
4857035 | Anderson | Aug 1989 | A |
4869130 | Wiecko | Sep 1989 | A |
4881925 | Hattori | Nov 1989 | A |
4900046 | Aranceta-Angoitia | Feb 1990 | A |
4909101 | Terry | Mar 1990 | A |
4918344 | Chikamori et al. | Apr 1990 | A |
4961477 | Sweeney | Oct 1990 | A |
4964312 | Kraus | Oct 1990 | A |
5006093 | Itoh et al. | Apr 1991 | A |
5020384 | Kraus | Jun 1991 | A |
5025685 | Kobayashi et al. | Jun 1991 | A |
5033322 | Nakano | Jul 1991 | A |
5033571 | Morimoto | Jul 1991 | A |
5037361 | Takahashi | Aug 1991 | A |
5044214 | Barber | Sep 1991 | A |
5051106 | Fritsch | Sep 1991 | A |
5059158 | Bellio et al. | Oct 1991 | A |
5069655 | Schivelbusch | Dec 1991 | A |
5083982 | Sato | Jan 1992 | A |
5099710 | Nakano | Mar 1992 | A |
5121654 | Fasce | Jun 1992 | A |
5125677 | Ogilvie et al. | Jun 1992 | A |
5138894 | Kraus | Aug 1992 | A |
5156412 | Meguerditchian | Oct 1992 | A |
5230258 | Nakano | Jul 1993 | A |
5236211 | Meguerditchian | Aug 1993 | A |
5236403 | Schievelbusch | Aug 1993 | A |
5267920 | Hibi | Dec 1993 | A |
5273501 | Schievelbusch | Dec 1993 | A |
5318486 | Lutz | Jun 1994 | A |
5319486 | Vogel et al. | Jun 1994 | A |
5323570 | Kuhlman et al. | Jun 1994 | A |
5330396 | Lohr et al. | Jul 1994 | A |
5355749 | Obara et al. | Oct 1994 | A |
5375865 | Terry, Sr. | Dec 1994 | A |
5379661 | Nakano | Jan 1995 | A |
5383677 | Thomas | Jan 1995 | A |
5387000 | Sato | Feb 1995 | A |
5401221 | Fellows et al. | Mar 1995 | A |
5451070 | Lindsay et al. | Sep 1995 | A |
5489003 | Ohyama et al. | Feb 1996 | A |
5508574 | Vlock | Apr 1996 | A |
5562564 | Folino | Oct 1996 | A |
5564998 | Fellows | Oct 1996 | A |
5601301 | Liu | Feb 1997 | A |
5607373 | Ochiai et al. | Mar 1997 | A |
5645507 | Hathaway | Jul 1997 | A |
5651750 | Imanishi et al. | Jul 1997 | A |
5664636 | Ikuma et al. | Sep 1997 | A |
5669845 | Muramoto et al. | Sep 1997 | A |
5690346 | Keskitalo | Nov 1997 | A |
5722502 | Kubo | Mar 1998 | A |
5746676 | Kawase et al. | May 1998 | A |
5755303 | Yamamoto et al. | May 1998 | A |
5799541 | Arbeiter | Sep 1998 | A |
5823052 | Nobumoto | Oct 1998 | A |
5846155 | Taniguchi et al. | Dec 1998 | A |
5888160 | Miyata et al. | Mar 1999 | A |
5895337 | Fellows et al. | Apr 1999 | A |
5899827 | Nakano et al. | May 1999 | A |
5902207 | Sugihara | May 1999 | A |
5967933 | Valdenaire | Oct 1999 | A |
5976054 | Yasuoka | Nov 1999 | A |
5984826 | Nakano | Nov 1999 | A |
5995895 | Watt et al. | Nov 1999 | A |
6000707 | Miller | Dec 1999 | A |
6003649 | Fischer | Dec 1999 | A |
6004239 | Makino | Dec 1999 | A |
6006151 | Graf | Dec 1999 | A |
6012538 | Sonobe et al. | Jan 2000 | A |
6015359 | Kunii | Jan 2000 | A |
6019701 | Mori et al. | Feb 2000 | A |
6029990 | Busby | Feb 2000 | A |
6042132 | Suenaga et al. | Mar 2000 | A |
6045477 | Schmidt | Apr 2000 | A |
6045481 | Kumagai | Apr 2000 | A |
6050854 | Fang et al. | Apr 2000 | A |
6053833 | Masaki | Apr 2000 | A |
6053841 | Kolde et al. | Apr 2000 | A |
6054844 | Frank | Apr 2000 | A |
6066067 | Greenwood | May 2000 | A |
6071210 | Kato | Jun 2000 | A |
6074320 | Miyata et al. | Jun 2000 | A |
6076846 | Clardy | Jun 2000 | A |
6079726 | Busby | Jun 2000 | A |
6083139 | Deguchi | Jul 2000 | A |
6086506 | Petersmann et al. | Jul 2000 | A |
6095940 | Ai et al. | Aug 2000 | A |
6099431 | Hoge et al. | Aug 2000 | A |
6101895 | Yamane | Aug 2000 | A |
6113513 | Itoh et al. | Sep 2000 | A |
6119539 | Papanicolaou | Sep 2000 | A |
6119800 | McComber | Sep 2000 | A |
6159126 | Oshidari | Dec 2000 | A |
6171210 | Miyata et al. | Jan 2001 | B1 |
6174260 | Tsukada et al. | Jan 2001 | B1 |
6186922 | Bursal et al. | Feb 2001 | B1 |
6210297 | Knight | Apr 2001 | B1 |
6217473 | Ueda et al. | Apr 2001 | B1 |
6217478 | Vohmann et al. | Apr 2001 | B1 |
6241636 | Miller | Jun 2001 | B1 |
6243638 | Abo et al. | Jun 2001 | B1 |
6251038 | Ishikawa et al. | Jun 2001 | B1 |
6258003 | Hirano et al. | Jul 2001 | B1 |
6261200 | Miyata et al. | Jul 2001 | B1 |
6293575 | Burrows et al. | Sep 2001 | B1 |
6296593 | Gotou | Oct 2001 | B1 |
6311113 | Danz et al. | Oct 2001 | B1 |
6312358 | Goi et al. | Nov 2001 | B1 |
6322475 | Miller | Nov 2001 | B2 |
6325386 | Shoge | Dec 2001 | B1 |
6340067 | Fujiwara | Jan 2002 | B1 |
6358174 | Folsom et al. | Mar 2002 | B1 |
6358178 | Wittkopp | Mar 2002 | B1 |
6367833 | Horiuchi | Apr 2002 | B1 |
6371878 | Bowen | Apr 2002 | B1 |
6375412 | Dial | Apr 2002 | B1 |
6390945 | Young | May 2002 | B1 |
6390946 | Hibi et al. | May 2002 | B1 |
6406399 | Ai | Jun 2002 | B1 |
6414401 | Kuroda et al. | Jul 2002 | B1 |
6419608 | Miller | Jul 2002 | B1 |
6425838 | Matsubara et al. | Jul 2002 | B1 |
6434960 | Rousseau | Aug 2002 | B1 |
6440035 | Tsukada et al. | Aug 2002 | B2 |
6440037 | Takagi et al. | Aug 2002 | B2 |
6454287 | Fujiwara et al. | Sep 2002 | B1 |
6459978 | Tamiguchi et al. | Oct 2002 | B2 |
6461268 | Milner | Oct 2002 | B1 |
6482094 | Kefes | Nov 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494805 | Ooyama et al. | Dec 2002 | B2 |
6499373 | Van Cor | Dec 2002 | B2 |
6514175 | Taniguchi et al. | Feb 2003 | B2 |
6523223 | Wang | Feb 2003 | B2 |
6532890 | Chen | Mar 2003 | B2 |
6551210 | Miller | Apr 2003 | B2 |
6558285 | Sieber | May 2003 | B1 |
6561941 | Nakano et al. | May 2003 | B2 |
6575047 | Reik et al. | Jun 2003 | B2 |
6658338 | Joe et al. | Dec 2003 | B2 |
6659901 | Sakai et al. | Dec 2003 | B2 |
6672418 | Makino | Jan 2004 | B1 |
6676559 | Miller | Jan 2004 | B2 |
6679109 | Gierling et al. | Jan 2004 | B2 |
6682432 | Shinozuka | Jan 2004 | B1 |
6689012 | Miller | Feb 2004 | B2 |
6721637 | Abe et al. | Apr 2004 | B2 |
6723014 | Shinso et al. | Apr 2004 | B2 |
6723016 | Sumi | Apr 2004 | B2 |
6805654 | Nishii | Oct 2004 | B2 |
6808053 | Kirkwood et al. | Oct 2004 | B2 |
6839617 | Mensler et al. | Jan 2005 | B2 |
6849020 | Sumi | Feb 2005 | B2 |
6859709 | Joe et al. | Feb 2005 | B2 |
6868949 | Braford | Mar 2005 | B2 |
6931316 | Joe et al. | Aug 2005 | B2 |
6932739 | Miyata et al. | Aug 2005 | B2 |
6942593 | Nishii et al. | Sep 2005 | B2 |
6945903 | Miller | Sep 2005 | B2 |
6949049 | Miller | Sep 2005 | B2 |
6958029 | Inoue | Oct 2005 | B2 |
6991575 | Inoue | Jan 2006 | B2 |
6991579 | Kobayashi et al. | Jan 2006 | B2 |
7011600 | Miller et al. | Mar 2006 | B2 |
7011601 | Miller | Mar 2006 | B2 |
7014591 | Miller | Mar 2006 | B2 |
7029418 | Taketsuna et al. | Apr 2006 | B2 |
7032914 | Miller | Apr 2006 | B2 |
7036620 | Miller et al. | May 2006 | B2 |
7044884 | Miller | May 2006 | B2 |
7063195 | Berhan | Jun 2006 | B2 |
7063640 | Miller | Jun 2006 | B2 |
7074007 | Miller | Jul 2006 | B2 |
7074154 | Miller | Jul 2006 | B2 |
7074155 | Miller | Jul 2006 | B2 |
7077777 | Miyata et al. | Jul 2006 | B2 |
7086979 | Frenken | Aug 2006 | B2 |
7086981 | Ali et al. | Aug 2006 | B2 |
7094171 | Inoue | Aug 2006 | B2 |
7111860 | Grimaldos | Sep 2006 | B1 |
7112158 | Miller | Sep 2006 | B2 |
7112159 | Miller et al. | Sep 2006 | B2 |
7125297 | Miller et al. | Oct 2006 | B2 |
7131930 | Miller et al. | Nov 2006 | B2 |
7140999 | Miller | Nov 2006 | B2 |
7147586 | Miller et al. | Dec 2006 | B2 |
7153233 | Miller et al. | Dec 2006 | B2 |
7156770 | Miller | Jan 2007 | B2 |
7160220 | Shinojima et al. | Jan 2007 | B2 |
7160222 | Miller | Jan 2007 | B2 |
7163485 | Miller | Jan 2007 | B2 |
7163486 | Miller et al. | Jan 2007 | B2 |
7166052 | Miller et al. | Jan 2007 | B2 |
7166056 | Miller et al. | Jan 2007 | B2 |
7166057 | Miller et al. | Jan 2007 | B2 |
7166058 | Miller et al. | Jan 2007 | B2 |
7169076 | Miller et al. | Jan 2007 | B2 |
7172529 | Miller et al. | Feb 2007 | B2 |
7175564 | Miller | Feb 2007 | B2 |
7175565 | Miller et al. | Feb 2007 | B2 |
7175566 | Miller et al. | Feb 2007 | B2 |
7192381 | Miller et al. | Mar 2007 | B2 |
7197915 | Luh et al. | Apr 2007 | B2 |
7198582 | Miller et al. | Apr 2007 | B2 |
7198583 | Miller et al. | Apr 2007 | B2 |
7198584 | Miller et al. | Apr 2007 | B2 |
7198585 | Miller et al. | Apr 2007 | B2 |
7201693 | Miller et al. | Apr 2007 | B2 |
7201694 | Miller et al. | Apr 2007 | B2 |
7201695 | Miller et al. | Apr 2007 | B2 |
7204777 | Miller et al. | Apr 2007 | B2 |
7207918 | Shimazu | Apr 2007 | B2 |
7214159 | Miller et al. | May 2007 | B2 |
7217215 | Miller et al. | May 2007 | B2 |
7217216 | Inoue | May 2007 | B2 |
7217219 | Miller | May 2007 | B2 |
7217220 | Careau et al. | May 2007 | B2 |
7232395 | Miller et al. | Jun 2007 | B2 |
7234873 | Kato et al. | Jun 2007 | B2 |
7235031 | Miller et al. | Jun 2007 | B2 |
7238136 | Miller et al. | Jul 2007 | B2 |
7238137 | Miller et al. | Jul 2007 | B2 |
7238138 | Miller et al. | Jul 2007 | B2 |
7238139 | Roethler et al. | Jul 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7250018 | Miller et al. | Jul 2007 | B2 |
7261663 | Miller et al. | Aug 2007 | B2 |
7275610 | Kuang et al. | Oct 2007 | B2 |
7285068 | Hosoi | Oct 2007 | B2 |
7288042 | Miller et al. | Oct 2007 | B2 |
7288043 | Shioiri et al. | Oct 2007 | B2 |
7320660 | Miller | Jan 2008 | B2 |
7322901 | Miller et al. | Jan 2008 | B2 |
7343236 | Wilson | Mar 2008 | B2 |
7347801 | Guenter et al. | Mar 2008 | B2 |
7383748 | Rankin | Jun 2008 | B2 |
7384370 | Miller | Jun 2008 | B2 |
7393300 | Miller et al. | Jul 2008 | B2 |
7393302 | Miller | Jul 2008 | B2 |
7393303 | Miller | Jul 2008 | B2 |
7395731 | Miller et al. | Jul 2008 | B2 |
7396209 | Miller et al. | Jul 2008 | B2 |
7402122 | Miller | Jul 2008 | B2 |
7410443 | Miller | Aug 2008 | B2 |
7419451 | Miller | Sep 2008 | B2 |
7422541 | Miller | Sep 2008 | B2 |
7422546 | Miller et al. | Sep 2008 | B2 |
7427253 | Miller | Sep 2008 | B2 |
7431677 | Miller et al. | Oct 2008 | B2 |
7452297 | Miller et al. | Nov 2008 | B2 |
7455611 | Miller et al. | Nov 2008 | B2 |
7455617 | Miller et al. | Nov 2008 | B2 |
7462123 | Miller et al. | Dec 2008 | B2 |
7462127 | Miller et al. | Dec 2008 | B2 |
7470210 | Miller et al. | Dec 2008 | B2 |
7478885 | Urabe | Jan 2009 | B2 |
7481736 | Miller et al. | Jan 2009 | B2 |
7510499 | Miller et al. | Mar 2009 | B2 |
7540818 | Miller et al. | Jun 2009 | B2 |
7547264 | Usoro | Jun 2009 | B2 |
7574935 | Rohs et al. | Aug 2009 | B2 |
7591755 | Petrzik et al. | Sep 2009 | B2 |
7600771 | Miller et al. | Oct 2009 | B2 |
7632203 | Miller | Dec 2009 | B2 |
7651437 | Miller et al. | Jan 2010 | B2 |
7654928 | Miller et al. | Feb 2010 | B2 |
7670243 | Miller | Mar 2010 | B2 |
7686729 | Miller et al. | Mar 2010 | B2 |
7727101 | Miller | Jun 2010 | B2 |
7727106 | Maheu et al. | Jun 2010 | B2 |
7727107 | Miller | Jun 2010 | B2 |
7727108 | Miller et al. | Jun 2010 | B2 |
7727110 | Miller et al. | Jun 2010 | B2 |
7727115 | Serkh | Jun 2010 | B2 |
7731615 | Miller et al. | Jun 2010 | B2 |
7762919 | Smithson et al. | Jul 2010 | B2 |
7762920 | Smithson et al. | Jul 2010 | B2 |
7785228 | Smithson et al. | Aug 2010 | B2 |
7828685 | Miller | Nov 2010 | B2 |
7837592 | Miller | Nov 2010 | B2 |
7871353 | Nichols et al. | Jan 2011 | B2 |
7882762 | Armstrong et al. | Feb 2011 | B2 |
7883442 | Miller et al. | Feb 2011 | B2 |
7885747 | Miller et al. | Feb 2011 | B2 |
7887032 | Malone | Feb 2011 | B2 |
7909723 | Triller et al. | Mar 2011 | B2 |
7909727 | Smithson et al. | Mar 2011 | B2 |
7914029 | Miller et al. | Mar 2011 | B2 |
7959533 | Nichols et al. | Jun 2011 | B2 |
7963880 | Smithson et al. | Jun 2011 | B2 |
7967719 | Smithson et al. | Jun 2011 | B2 |
7976426 | Smithson et al. | Jul 2011 | B2 |
8066613 | Smithson et al. | Nov 2011 | B2 |
8066614 | Miller et al. | Nov 2011 | B2 |
8070635 | Miller | Dec 2011 | B2 |
8087482 | Miles et al. | Jan 2012 | B2 |
8123653 | Smithson et al. | Feb 2012 | B2 |
8133149 | Smithson et al. | Mar 2012 | B2 |
8142323 | Tsuchiya et al. | Mar 2012 | B2 |
8167759 | Pohl et al. | May 2012 | B2 |
8171636 | Smithson et al. | May 2012 | B2 |
8230961 | Schneidewind | Jul 2012 | B2 |
8262536 | Nichols et al. | Sep 2012 | B2 |
8267829 | Miller et al. | Sep 2012 | B2 |
8313404 | Carter et al. | Nov 2012 | B2 |
8313405 | Bazyn et al. | Nov 2012 | B2 |
8317650 | Nichols et al. | Nov 2012 | B2 |
8317651 | Lohr | Nov 2012 | B2 |
8321097 | Vasiliotis et al. | Nov 2012 | B2 |
8342999 | Miller | Jan 2013 | B2 |
8360917 | Nichols et al. | Jan 2013 | B2 |
8376889 | Hoffman et al. | Feb 2013 | B2 |
8376903 | Pohl et al. | Feb 2013 | B2 |
8382631 | Hoffman et al. | Feb 2013 | B2 |
8382637 | Tange | Feb 2013 | B2 |
8393989 | Pohl | Mar 2013 | B2 |
8398518 | Nichols et al. | Mar 2013 | B2 |
8469853 | Miller et al. | Jun 2013 | B2 |
8469856 | Thomassy | Jun 2013 | B2 |
8480529 | Pohl et al. | Jul 2013 | B2 |
8496554 | Pohl et al. | Jul 2013 | B2 |
8506452 | Pohl et al. | Aug 2013 | B2 |
8512195 | Lohr et al. | Aug 2013 | B2 |
8517888 | Brookins | Aug 2013 | B1 |
8535199 | Lohr et al. | Sep 2013 | B2 |
8550949 | Miller | Oct 2013 | B2 |
8585528 | Carter et al. | Nov 2013 | B2 |
8608609 | Sherrill | Dec 2013 | B2 |
8622866 | Bazyn et al. | Jan 2014 | B2 |
8626409 | Vasiliotis et al. | Jan 2014 | B2 |
8628443 | Miller et al. | Jan 2014 | B2 |
8641572 | Nichols et al. | Feb 2014 | B2 |
8641577 | Nichols et al. | Feb 2014 | B2 |
8663050 | Nichols et al. | Mar 2014 | B2 |
8678974 | Lohr | Mar 2014 | B2 |
8708360 | Miller et al. | Apr 2014 | B2 |
8721485 | Lohr et al. | May 2014 | B2 |
8738255 | Carter et al. | May 2014 | B2 |
8776633 | Armstrong et al. | Jul 2014 | B2 |
8784248 | Murakami et al. | Jul 2014 | B2 |
8790214 | Lohr et al. | Jul 2014 | B2 |
8814739 | Hamrin et al. | Aug 2014 | B1 |
8818661 | Keilers et al. | Aug 2014 | B2 |
8827856 | Younggren et al. | Sep 2014 | B1 |
8827864 | Durack | Sep 2014 | B2 |
8845485 | Smithson et al. | Sep 2014 | B2 |
8852050 | Thomassy | Oct 2014 | B2 |
8870711 | Pohl et al. | Oct 2014 | B2 |
8888643 | Lohr et al. | Nov 2014 | B2 |
8900085 | Pohl et al. | Dec 2014 | B2 |
8920285 | Smithson et al. | Dec 2014 | B2 |
8924111 | Fuller | Dec 2014 | B2 |
8956262 | Tomomatsu et al. | Feb 2015 | B2 |
8961363 | Shiina et al. | Feb 2015 | B2 |
8992376 | Ogawa et al. | Mar 2015 | B2 |
8996263 | Quinn et al. | Mar 2015 | B2 |
9017207 | Pohl et al. | Apr 2015 | B2 |
9022889 | Miller | May 2015 | B2 |
9046158 | Miller et al. | Jun 2015 | B2 |
9052000 | Cooper | Jun 2015 | B2 |
9074674 | Nichols et al. | Jul 2015 | B2 |
9086145 | Pohl et al. | Jul 2015 | B2 |
9121464 | Nichols et al. | Sep 2015 | B2 |
9182018 | Bazyn et al. | Nov 2015 | B2 |
9239099 | Carter et al. | Jan 2016 | B2 |
9249880 | Vasiliotis et al. | Feb 2016 | B2 |
9273760 | Pohl et al. | Mar 2016 | B2 |
9279482 | Nichols et al. | Mar 2016 | B2 |
9291251 | Lohr et al. | Mar 2016 | B2 |
9328807 | Carter et al. | May 2016 | B2 |
9341246 | Miller et al. | May 2016 | B2 |
9360089 | Lohr et al. | Jun 2016 | B2 |
9365203 | Keilers et al. | Jun 2016 | B2 |
9371894 | Carter et al. | Jun 2016 | B2 |
9388896 | Hibino et al. | Jul 2016 | B2 |
9506562 | Miller et al. | Nov 2016 | B2 |
9528561 | Nichols et al. | Dec 2016 | B2 |
9574642 | Pohl et al. | Feb 2017 | B2 |
9574643 | Pohl | Feb 2017 | B2 |
9611921 | Thomassy et al. | Apr 2017 | B2 |
9618100 | Lohr | Apr 2017 | B2 |
9656672 | Schieffelin | May 2017 | B2 |
9676391 | Carter et al. | Jun 2017 | B2 |
9677650 | Nichols et al. | Jun 2017 | B2 |
9683638 | Kostrup | Jun 2017 | B2 |
9683640 | Lohr et al. | Jun 2017 | B2 |
9709138 | Miller et al. | Jul 2017 | B2 |
9726282 | Pohl et al. | Aug 2017 | B2 |
9732848 | Miller et al. | Aug 2017 | B2 |
9739375 | Vasiliotis et al. | Aug 2017 | B2 |
9878719 | Carter et al. | Jan 2018 | B2 |
9963199 | Hancock et al. | May 2018 | B2 |
10023266 | Contello et al. | Jul 2018 | B2 |
10047861 | Thomassy et al. | Aug 2018 | B2 |
10056811 | Pohl | Aug 2018 | B2 |
20010008192 | Morisawa | Jul 2001 | A1 |
20010023217 | Miyagawa et al. | Sep 2001 | A1 |
20010041644 | Yasuoka et al. | Nov 2001 | A1 |
20010044358 | Taniguchi | Nov 2001 | A1 |
20010044361 | Taniguchi et al. | Nov 2001 | A1 |
20020019285 | Henzler | Feb 2002 | A1 |
20020028722 | Sakai et al. | Mar 2002 | A1 |
20020037786 | Hirano et al. | Mar 2002 | A1 |
20020045511 | Geiberger et al. | Apr 2002 | A1 |
20020049113 | Watanabe et al. | Apr 2002 | A1 |
20020074767 | Wielkopolski | Jun 2002 | A1 |
20020117860 | Man et al. | Aug 2002 | A1 |
20020128107 | Wakayama | Sep 2002 | A1 |
20020153695 | Wang | Oct 2002 | A1 |
20020161503 | Joe et al. | Oct 2002 | A1 |
20020169051 | Oshidari | Nov 2002 | A1 |
20020179348 | Tamai et al. | Dec 2002 | A1 |
20030015358 | Abe et al. | Jan 2003 | A1 |
20030015874 | Abe et al. | Jan 2003 | A1 |
20030022753 | Mizuno et al. | Jan 2003 | A1 |
20030036456 | Skrabs | Feb 2003 | A1 |
20030132051 | Nishii et al. | Jul 2003 | A1 |
20030135316 | Kawamura et al. | Jul 2003 | A1 |
20030144105 | O'Hora | Jul 2003 | A1 |
20030160420 | Fukuda | Aug 2003 | A1 |
20030176247 | Gottschalk | Sep 2003 | A1 |
20030216216 | Inoue et al. | Nov 2003 | A1 |
20030221892 | Matsumoto et al. | Dec 2003 | A1 |
20040038772 | McIndoe et al. | Feb 2004 | A1 |
20040058772 | Inoue et al. | Mar 2004 | A1 |
20040067816 | Taketsuna et al. | Apr 2004 | A1 |
20040082421 | Wafzig | Apr 2004 | A1 |
20040092359 | Imanishi et al. | May 2004 | A1 |
20040119345 | Takano | Jun 2004 | A1 |
20040171452 | Miller | Sep 2004 | A1 |
20040171457 | Fuller | Sep 2004 | A1 |
20040204283 | Inoue | Oct 2004 | A1 |
20040231331 | Iwanami et al. | Nov 2004 | A1 |
20040254047 | Frank et al. | Dec 2004 | A1 |
20050037876 | Unno et al. | Feb 2005 | A1 |
20050037886 | Lemansky | Feb 2005 | A1 |
20050064986 | Ginglas | Mar 2005 | A1 |
20050085979 | Carlson et al. | Apr 2005 | A1 |
20050181905 | Ali et al. | Aug 2005 | A1 |
20050184580 | Kuan et al. | Aug 2005 | A1 |
20050227809 | Bitzer et al. | Oct 2005 | A1 |
20050229731 | Parks et al. | Oct 2005 | A1 |
20050233846 | Green et al. | Oct 2005 | A1 |
20060000684 | Agner | Jan 2006 | A1 |
20060006008 | Brunemann et al. | Jan 2006 | A1 |
20060052204 | Eckert et al. | Mar 2006 | A1 |
20060054422 | Dimsey et al. | Mar 2006 | A1 |
20060084549 | Smithson | Apr 2006 | A1 |
20060108956 | Clark | May 2006 | A1 |
20060111212 | Ai et al. | May 2006 | A9 |
20060154775 | Ali et al. | Jul 2006 | A1 |
20060172829 | Ishio | Aug 2006 | A1 |
20060180363 | Uchisasai | Aug 2006 | A1 |
20060223667 | Nakazeki | Oct 2006 | A1 |
20060234822 | Morscheck et al. | Oct 2006 | A1 |
20060234826 | Moehlmann et al. | Oct 2006 | A1 |
20060276299 | Imanishi | Dec 2006 | A1 |
20070004552 | Matsudaira et al. | Jan 2007 | A1 |
20070004556 | Rohs et al. | Jan 2007 | A1 |
20070041823 | Miller | Feb 2007 | A1 |
20070099753 | Matsui et al. | May 2007 | A1 |
20070149342 | Guenter et al. | Jun 2007 | A1 |
20070155552 | De Cloe | Jul 2007 | A1 |
20070155567 | Miller et al. | Jul 2007 | A1 |
20070193391 | Armstrong et al. | Aug 2007 | A1 |
20070228687 | Parker | Oct 2007 | A1 |
20070232423 | Katou et al. | Oct 2007 | A1 |
20080009389 | Jacobs | Jan 2008 | A1 |
20080032852 | Smithson et al. | Feb 2008 | A1 |
20080032854 | Smithson et al. | Feb 2008 | A1 |
20080039269 | Smithson et al. | Feb 2008 | A1 |
20080039273 | Smithson et al. | Feb 2008 | A1 |
20080039276 | Smithson et al. | Feb 2008 | A1 |
20080070729 | Miller et al. | Mar 2008 | A1 |
20080073137 | Miller et al. | Mar 2008 | A1 |
20080073467 | Miller et al. | Mar 2008 | A1 |
20080079236 | Miller et al. | Apr 2008 | A1 |
20080081715 | Miller et al. | Apr 2008 | A1 |
20080081728 | Faulring et al. | Apr 2008 | A1 |
20080085795 | Miller et al. | Apr 2008 | A1 |
20080085796 | Miller et al. | Apr 2008 | A1 |
20080085797 | Miller et al. | Apr 2008 | A1 |
20080085798 | Miller et al. | Apr 2008 | A1 |
20080139363 | Williams | Jun 2008 | A1 |
20080149407 | Shibata et al. | Jun 2008 | A1 |
20080183358 | Thomson et al. | Jul 2008 | A1 |
20080200300 | Smithson et al. | Aug 2008 | A1 |
20080228362 | Muller et al. | Sep 2008 | A1 |
20080284170 | Cory | Nov 2008 | A1 |
20080305920 | Nishii et al. | Dec 2008 | A1 |
20090023545 | Beaudoin | Jan 2009 | A1 |
20090062062 | Choi | Mar 2009 | A1 |
20090082169 | Kolstrup | Mar 2009 | A1 |
20090107454 | Hiyoshi et al. | Apr 2009 | A1 |
20090251013 | Vollmer et al. | Oct 2009 | A1 |
20100093479 | Carter et al. | Apr 2010 | A1 |
20100145573 | Vasilescu | Jun 2010 | A1 |
20100181130 | Chou | Jul 2010 | A1 |
20110127096 | Schneidewind | Jun 2011 | A1 |
20110190093 | Bishop | Aug 2011 | A1 |
20110230297 | Shiina et al. | Sep 2011 | A1 |
20110237385 | Andre Parise | Sep 2011 | A1 |
20110291507 | Post | Dec 2011 | A1 |
20110319222 | Ogawa et al. | Dec 2011 | A1 |
20120035011 | Menachem et al. | Feb 2012 | A1 |
20120035015 | Ogawa et al. | Feb 2012 | A1 |
20120258839 | Smithson et al. | Oct 2012 | A1 |
20130035200 | Noji et al. | Feb 2013 | A1 |
20130053211 | Fukuda et al. | Feb 2013 | A1 |
20140094339 | Ogawa et al. | Apr 2014 | A1 |
20140148303 | Nichols et al. | May 2014 | A1 |
20140155220 | Messier et al. | Jun 2014 | A1 |
20140274536 | Versteyhe | Sep 2014 | A1 |
20150018154 | Thomassy | Jan 2015 | A1 |
20150038285 | Aratsu et al. | Feb 2015 | A1 |
20150051801 | Quinn et al. | Feb 2015 | A1 |
20150080165 | Pohl et al. | Mar 2015 | A1 |
20150219194 | Winter et al. | Aug 2015 | A1 |
20150226323 | Pohl et al. | Aug 2015 | A1 |
20150260284 | Miller et al. | Sep 2015 | A1 |
20150337928 | Smithson | Nov 2015 | A1 |
20150345599 | Ogawa | Dec 2015 | A1 |
20150369348 | Nichols et al. | Dec 2015 | A1 |
20160003349 | Kimura et al. | Jan 2016 | A1 |
20160031526 | Watarai | Feb 2016 | A1 |
20160061301 | Bazyn et al. | Mar 2016 | A1 |
20160131231 | Carter et al. | May 2016 | A1 |
20160146342 | Vasiliotis et al. | May 2016 | A1 |
20160186847 | Nichols et al. | Jun 2016 | A1 |
20160201772 | Lohr et al. | Jul 2016 | A1 |
20160281825 | Lohr et al. | Sep 2016 | A1 |
20160290451 | Lohr | Oct 2016 | A1 |
20160298740 | Carter et al. | Oct 2016 | A1 |
20160347411 | Yamamoto et al. | Dec 2016 | A1 |
20160362108 | Keilers et al. | Dec 2016 | A1 |
20160377153 | Ajumobi | Dec 2016 | A1 |
20170072782 | Miller et al. | Mar 2017 | A1 |
20170082049 | David et al. | Mar 2017 | A1 |
20170103053 | Nichols et al. | Apr 2017 | A1 |
20170159812 | Pohl et al. | Jun 2017 | A1 |
20170204948 | Thomassy et al. | Jul 2017 | A1 |
20170211698 | Lohr | Jul 2017 | A1 |
20170225742 | Hancock et al. | Aug 2017 | A1 |
20170268638 | Nichols et al. | Sep 2017 | A1 |
20170276217 | Nichols et al. | Sep 2017 | A1 |
20170284519 | Kolstrup | Oct 2017 | A1 |
20170284520 | Lohr et al. | Oct 2017 | A1 |
20170328470 | Pohl | Nov 2017 | A1 |
20170335961 | Hamrin | Nov 2017 | A1 |
20170343105 | Vasiliotis et al. | Nov 2017 | A1 |
20180066754 | Miller et al. | Mar 2018 | A1 |
20180106359 | Bazyn et al. | Apr 2018 | A1 |
20180134750 | Pohl et al. | May 2018 | A1 |
20180148055 | Carter et al. | May 2018 | A1 |
20180148056 | Keilers et al. | May 2018 | A1 |
20180195586 | Thomassy et al. | Jul 2018 | A1 |
20180202527 | Nichols et al. | Jul 2018 | A1 |
20180236867 | Miller et al. | Aug 2018 | A1 |
20180251190 | Hancock et al. | Sep 2018 | A1 |
20180306283 | Engesather et al. | Oct 2018 | A1 |
20180327060 | Contello et al. | Nov 2018 | A1 |
20180347693 | Thomassy et al. | Dec 2018 | A1 |
20180372192 | Lohr | Dec 2018 | A1 |
20190049004 | Quinn et al. | Feb 2019 | A1 |
20190195321 | Smithson et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
118064 | Dec 1926 | CH |
1054340 | Sep 1991 | CN |
2245830 | Jan 1997 | CN |
1157379 | Aug 1997 | CN |
1167221 | Dec 1997 | CN |
1178573 | Apr 1998 | CN |
1178751 | Apr 1998 | CN |
1204991 | Jan 1999 | CN |
2320843 | May 1999 | CN |
1283258 | Feb 2001 | CN |
1300355 | Jun 2001 | CN |
1412033 | Apr 2003 | CN |
1434229 | Aug 2003 | CN |
1474917 | Feb 2004 | CN |
1483235 | Mar 2004 | CN |
1568407 | Jan 2005 | CN |
1654858 | Aug 2005 | CN |
2714896 | Aug 2005 | CN |
1736791 | Feb 2006 | CN |
1847702 | Oct 2006 | CN |
1860315 | Nov 2006 | CN |
1940348 | Apr 2007 | CN |
101016076 | Aug 2007 | CN |
101312867 | Nov 2008 | CN |
498 701 | May 1930 | DE |
1171692 | Jun 1964 | DE |
2021027 | Dec 1970 | DE |
2 310880 | Sep 1974 | DE |
2 136 243 | Jan 1975 | DE |
2436496 | Feb 1975 | DE |
19851738 | May 2000 | DE |
10155372 | May 2003 | DE |
20315691 | Jan 2004 | DE |
102011016672 | Oct 2012 | DE |
102012023551 | Jun 2014 | DE |
102014007271 | Dec 2014 | DE |
0 432 742 | Dec 1990 | EP |
0 528 381 | Feb 1993 | EP |
0 528 382 | Feb 1993 | EP |
0 635 639 | Jan 1995 | EP |
0 638 741 | Feb 1995 | EP |
0 831 249 | Mar 1998 | EP |
0 832 816 | Apr 1998 | EP |
0 976 956 | Feb 2000 | EP |
1 136 724 | Sep 2001 | EP |
1 251 294 | Oct 2002 | EP |
1 366 978 | Mar 2003 | EP |
1 433 641 | Jun 2004 | EP |
1 624 230 | Feb 2006 | EP |
2 893 219 | Jul 2015 | EP |
620375 | Apr 1927 | FR |
2460427 | Jan 1981 | FR |
2590638 | May 1987 | FR |
391448 | Apr 1933 | GB |
592320 | Sep 1947 | GB |
858710 | Jan 1961 | GB |
906002 | Sep 1962 | GB |
919430 | Feb 1963 | GB |
1132473 | Nov 1968 | GB |
1165545 | Oct 1969 | GB |
1376057 | Dec 1974 | GB |
2031822 | Apr 1980 | GB |
2035481 | Jun 1980 | GB |
2035482 | Jun 1980 | GB |
2080452 | Aug 1982 | GB |
2339863 | Feb 2000 | GB |
38-025315 | Nov 1963 | JP |
41-3126 | Feb 1966 | JP |
42-2843 | Feb 1967 | JP |
42-2844 | Feb 1967 | JP |
44-1098 | Jan 1969 | JP |
46-029087 | Aug 1971 | JP |
47-000448 | Jan 1972 | JP |
47-207 | Jun 1972 | JP |
47-20535 | Jun 1972 | JP |
47-00962 | Nov 1972 | JP |
47-29762 | Nov 1972 | JP |
48-54371 | Jul 1973 | JP |
49-012742 | Mar 1974 | JP |
49-013823 | Apr 1974 | JP |
49-041536 | Nov 1974 | JP |
50-114581 | Sep 1975 | JP |
51-25903 | Aug 1976 | JP |
51-150380 | Dec 1976 | JP |
52-35481 | Mar 1977 | JP |
53-048166 | Jan 1978 | JP |
53-50395 | Apr 1978 | JP |
55-135259 | Oct 1980 | JP |
56-24251 | Mar 1981 | JP |
56-047231 | Apr 1981 | JP |
56-101448 | Aug 1981 | JP |
56-127852 | Oct 1981 | JP |
58-065361 | Apr 1983 | JP |
59-069565 | Apr 1984 | JP |
59-144826 | Aug 1984 | JP |
59-190557 | Oct 1984 | JP |
60-247011 | Dec 1985 | JP |
61-031754 | Feb 1986 | JP |
61-053423 | Mar 1986 | JP |
61-144466 | Jul 1986 | JP |
61-173722 | Oct 1986 | JP |
61-270552 | Nov 1986 | JP |
62-075170 | Apr 1987 | JP |
63-125854 | May 1988 | JP |
63-219953 | Sep 1988 | JP |
63-160465 | Oct 1988 | JP |
01-039865 | Nov 1989 | JP |
01-286750 | Nov 1989 | JP |
01-308142 | Dec 1989 | JP |
02-130224 | May 1990 | JP |
02-157483 | Jun 1990 | JP |
02-271142 | Jun 1990 | JP |
02-182593 | Jul 1990 | JP |
03-149442 | Jun 1991 | JP |
03-223555 | Oct 1991 | JP |
04-166619 | Jun 1992 | JP |
04-272553 | Sep 1992 | JP |
04-327055 | Nov 1992 | JP |
04-351361 | Dec 1992 | JP |
05-087154 | Apr 1993 | JP |
06-050169 | Feb 1994 | JP |
06-050358 | Feb 1994 | JP |
07-42799 | Feb 1995 | JP |
07-133857 | May 1995 | JP |
07-139600 | May 1995 | JP |
07-259950 | Oct 1995 | JP |
08-135748 | May 1996 | JP |
08-170706 | Jul 1996 | JP |
08-247245 | Sep 1996 | JP |
08-270772 | Oct 1996 | JP |
09-024743 | Jan 1997 | JP |
09-089064 | Mar 1997 | JP |
10-061739 | Mar 1998 | JP |
10-078094 | Mar 1998 | JP |
10-089435 | Apr 1998 | JP |
10-115355 | May 1998 | JP |
10-115356 | May 1998 | JP |
10-194186 | Jul 1998 | JP |
10-225053 | Aug 1998 | JP |
10-511621 | Nov 1998 | JP |
11-063130 | Mar 1999 | JP |
11-091411 | Apr 1999 | JP |
11-210850 | Aug 1999 | JP |
11-240481 | Sep 1999 | JP |
11-257479 | Sep 1999 | JP |
2000-6877 | Jan 2000 | JP |
2000-46135 | Feb 2000 | JP |
2000-177673 | Jun 2000 | JP |
2001-027298 | Jan 2001 | JP |
2001-071986 | Mar 2001 | JP |
2001-107827 | Apr 2001 | JP |
2001-165296 | Jun 2001 | JP |
2001-328466 | Nov 2001 | JP |
2002-147558 | May 2002 | JP |
2002-250421 | Jun 2002 | JP |
2002-291272 | Oct 2002 | JP |
2002-307956 | Oct 2002 | JP |
2002-533626 | Oct 2002 | JP |
2002-372114 | Dec 2002 | JP |
2003-028257 | Jan 2003 | JP |
2003-56662 | Feb 2003 | JP |
2003-161357 | Jun 2003 | JP |
2003-194206 | Jul 2003 | JP |
2003-194207 | Jul 2003 | JP |
2003-320987 | Nov 2003 | JP |
2003-336732 | Nov 2003 | JP |
2004-011834 | Jan 2004 | JP |
2004-38722 | Feb 2004 | JP |
2004-162652 | Jun 2004 | JP |
2004-189222 | Jul 2004 | JP |
2004-232776 | Aug 2004 | JP |
2004-526917 | Sep 2004 | JP |
2004-301251 | Oct 2004 | JP |
2005-003063 | Jan 2005 | JP |
2005-096537 | Apr 2005 | JP |
2005-188694 | Jul 2005 | JP |
2005-240928 | Sep 2005 | JP |
2005-312121 | Nov 2005 | JP |
2006-015025 | Jan 2006 | JP |
2006-283900 | Oct 2006 | JP |
2006-300241 | Nov 2006 | JP |
2007-085404 | Apr 2007 | JP |
2007-321931 | Dec 2007 | JP |
2008-002687 | Jan 2008 | JP |
2008-14412 | Jan 2008 | JP |
2008-133896 | Jun 2008 | JP |
2010-069005 | Apr 2010 | JP |
2012-107725 | Jun 2012 | JP |
2012-122568 | Jun 2012 | JP |
2012-211610 | Nov 2012 | JP |
2012-225390 | Nov 2012 | JP |
2015-227690 | Dec 2015 | JP |
2015-227691 | Dec 2015 | JP |
2002 0054126 | Jul 2002 | KR |
10-2002-0071699 | Sep 2002 | KR |
98467 | Jul 1961 | NE |
74007 | Jan 1984 | TW |
175100 | Dec 1991 | TW |
218909 | Jan 1994 | TW |
227206 | Jul 1994 | TW |
275872 | May 1996 | TW |
360184 | Jun 1999 | TW |
366396 | Aug 1999 | TW |
401496 | Aug 2000 | TW |
510867 | Nov 2002 | TW |
512211 | Dec 2002 | TW |
582363 | Apr 2004 | TW |
590955 | Jun 2004 | TW |
I225129 | Dec 2004 | TW |
I225912 | Jan 2005 | TW |
I235214 | Jan 2005 | TW |
M294598 | Jul 2006 | TW |
200637745 | Nov 2006 | TW |
200821218 | May 2008 | TW |
WO 9908024 | Feb 1999 | WO |
WO 9920918 | Apr 1999 | WO |
WO 0173319 | Oct 2001 | WO |
WO 03100294 | Dec 2003 | WO |
WO 05083305 | Sep 2005 | WO |
WO 05108825 | Nov 2005 | WO |
WO 05111472 | Nov 2005 | WO |
WO 06091503 | Aug 2006 | WO |
WO 08078047 | Jul 2008 | WO |
WO 10073036 | Jul 2010 | WO |
WO 10135407 | Nov 2010 | WO |
WO 11064572 | Jun 2011 | WO |
WO 11101991 | Aug 2011 | WO |
WO 11121743 | Oct 2011 | WO |
WO 12030213 | Mar 2012 | WO |
WO 13042226 | Mar 2013 | WO |
WO 14186732 | Nov 2014 | WO |
WO 16062461 | Apr 2016 | WO |
Entry |
---|
Office Action dated Feb. 24, 2010 from Japanese Patent Application No. 2006-508892. |
Office Action dated Feb. 17, 2010 from Japanese Patent Application No. 2009-294086. |
Office Action dated Aug. 14, 2012 for U.S. Appl. No. 12/039,590. |
Office Action dated Oct. 18, 2012 for U.S. Appl. No. 12/039,590. |
Office Action dated May 24, 2013 for U.S. Appl. No. 12/039,590. |
Office Action dated Aug. 4, 2015 in U.S. Appl. No. 14/263,900. |
European Search Report dated Oct. 23, 2009 for European Patent Application No. 06838127.6, 8 pages. |
Office Action dated May 30, 2013 in Korean Patent Application No. 10-2008-7014990. |
Summary of the Office Action dated Nov. 11, 2013 in Korean Patent Application No. 10-2008-7014990. |
Notification of Allowance dated May 21, 2014 in Korean Patent Application No. 10-2008-7014990. |
International Search Report for International Application No. PCT/US2006/044983 dated Jun. 13, 2008. |
Office Action dated Oct. 15, 2012 for Taiwanese Patent Application No. 95143152. |
Office Action dated Aug. 12, 2013 for Taiwanese Patent Application No. 095143152. |
International Search Report and Written Opinion dated Feb. 2, 2010 from International Patent Application No. PCT/US2008/068929. |
Office Action dated Aug. 26, 2016 in U.S. Appl. No. 15/155,508. |
Number | Date | Country | |
---|---|---|---|
20170314655 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
60738865 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15155508 | May 2016 | US |
Child | 15651266 | US | |
Parent | 14263900 | Apr 2014 | US |
Child | 15155508 | US | |
Parent | 12039590 | Feb 2008 | US |
Child | 14263900 | US | |
Parent | 11562317 | Nov 2006 | US |
Child | 12039590 | US |