Continuously variable transmission

Information

  • Patent Grant
  • 10066713
  • Patent Number
    10,066,713
  • Date Filed
    Wednesday, December 21, 2016
    7 years ago
  • Date Issued
    Tuesday, September 4, 2018
    6 years ago
Abstract
Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a carrier assembly to facilitate the support of components in a CVT. In another embodiment, a carrier includes a stator support member and a stator interfacial member. In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies and idler assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs configured to have a sliding interface with a carrier assembly. Embodiments of a hub shell, a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The field of the invention relates generally to transmissions, and more particularly to continuously variable transmissions (CVTs).


Description of the Related Art


There are well-known ways to achieve continuously variable ratios of input speed to output speed. The mechanism for adjusting an input speed from an output speed in a CVT is known as a variator. In a belt-type CVT, the variator consists of two adjustable pulleys having a belt between them. The variator in a single cavity toroidal-type CVT has two partially toroidal transmission discs rotating about an axle and two or more disc-shaped power rollers rotating on respective axes that are perpendicular to the axle and clamped between the input and output transmission discs.


Embodiments of the invention disclosed here are of the spherical-type variator utilizing spherical speed adjusters (also known as power adjusters, balls, sphere gears or rollers) that each has a tiltable axis of rotation; the speed adjusters are distributed in a plane about a longitudinal axis of a CVT. The speed adjusters are contacted on one side by an input disc and on the other side by an output disc, one or both of which apply a clamping contact force to the rollers for transmission of torque. The input disc applies input torque at an input rotational speed to the speed adjusters. As the speed adjusters rotate about their own axes, the speed adjusters transmit the torque to the output disc. The input speed to output speed ratio is a function of the radii of the contact points of the input and output discs to the axes of the speed adjusters. Tilting the axes of the speed adjusters with respect to the axis of the variator adjusts the speed ratio.


SUMMARY OF THE INVENTION

The systems and methods herein described have several features, no single one of which is solely responsible for its desirable attributes. Without limiting the scope as expressed by the claims that follow, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Inventive Embodiments” one will understand how the features of the system and methods provide several advantages over traditional systems and methods.


One aspect of the invention relates to a continuously variable transmission having a group of balls that are arranged radially about a longitudinal axis. Each ball is configured to have a tiltable axis of rotation. In one embodiment, a leg is operably coupled to each of the balls. The leg can be configured to tilt the axis of rotation of the ball. The transmission can include a stator interfacial member slidingly coupled to the leg. The transmission can also include a stator support member coupled to the stator interfacial member.


Another aspect of the invention concerns a transmission having a torque driver rotatable about a longitudinal axis. The torque driver can be configured to receive a power input. The transmission can include a torsion plate operably coupled to the torque driver. The torsion plate can have a splined inner bore and a group of triangular extensions extending radially from the splined inner bore. In one embodiment, the transmission includes a load cam ring operably coupled to the torsion plate. The transmission can include a load cam roller retainer assembly operably coupled to the load cam ring. The transmission includes a traction ring operably coupled to the load cam roller retainer assembly. The transmission also includes a group of balls arranged radially about a longitudinal axis. Each ball has a tiltable axis of rotation. Each ball can be operably coupled to the traction ring.


Yet another aspect of the invention involves a power input device that includes a torque driver rotatable about a longitudinal axis. The torque driver can be configured to receive a power input. In one embodiment, the power input device includes a torsion plate coupled to the torque driver. The torsion plate can have a splined inner bore and a number of triangular extensions extending radially from the splined inner bore. The power input device can include a load cam ring coupled to the torsion plate. In one embodiment, the power input device includes a load cam roller retainer subassembly coupled to the load cam ring. The power input device can also include a traction ring coupled to the load cam roller retainer subassembly.


One aspect of the invention concerns an assembly for an axial force generator that includes a first slotted ring configured to receive a number of load cam rollers. In one embodiment, the assembly includes a second slotted ring configured to receive the load cam rollers. The assembly can also include a spring configured to be retained in the first and/or second slotted ring.


Another aspect of the invention relates to a torsion plate having a substantially disc-shaped body with a splined inner bore. In one embodiment, the torsion plate has a number of structural ribs coupled to the disc-shaped body. The structural ribs extend radially from the spline inner bore. The torsion plate can also have a set of splines coupled to the outer periphery of the disc shaped body.


Yet one more aspect of the invention addresses a carrier for a continuously variable transmission having a group of planet subassemblies. Each planet subassembly has a ball configured to rotate about a tiltable axis. In one embodiment, the carrier includes a stator interfacial member configured to be operably coupled to a planet subassembly. The carrier can include a stator support member operably coupled to the stator interfacial member. The carrier can also include a stator torque reaction member operably coupled to the stator support member.


In another aspect, the invention concerns a transmission having a group of balls. Each ball is operably coupled to at least one leg. The transmission includes a stator interfacial member coupled to each leg. In one embodiment, the transmission includes a stator support member coupled to the stator interfacial member. The transmission also includes a stator torque reaction member coupled to the stator support member.


Another aspect of the invention relates to a transmission having a group of planet assemblies arranged angularly about a longitudinal axis of the transmission. Each planet assembly has a leg. In one embodiment, the transmission includes a stator interfacial member coaxial with the longitudinal axis. The stator interfacial member has a number of radial grooves configured to slidingly support the leg. The transmission also includes a stator support member coupled to the stator interfacial member. The stator support member is coaxial with the longitudinal axis.


One aspect of the invention relates to a stator assembly for a continuously variable transmission. The stator assembly includes a stator torque reaction insert having a number of torque reaction shoulders. In one embodiment, the stator assembly has a stator support member coupled to the stator torque reaction insert. The stator support member extends radially outward from the stator torque reaction insert. The stator support member can have a first face and a second face. The stator assembly can also include a stator interfacial member coupled to the stator support member. The stator interfacial member is substantially supported by the first face of the stator support member. The stator interfacial member has a number of radial grooves.


Another aspect of the invention addresses a stator support member for a continuously variable transmission (CVT). The stator support member can include a substantially disc-shaped body having an inner bore, a first face and a second face. The stator support member can also have a group of spacer support extensions arranged angularly on the first face. In one embodiment, the stator support member includes a number of guide support slots. Each guide support slot is arranged substantially between each of the spacer support extensions. The stator support member has a number of interlocking holes formed in each of the guide support slots. The stator support member also has a number of capture extensions formed on the outer periphery of the disc-shaped body.


One more aspect of the invention concerns a stator interfacial member for a continuously variable transmission. The stator interfacial member includes a substantially disc-shaped body having a central bore, a first face, and a second face. In one embodiment, the stator interfacial member includes a number of sliding guide slots that extend radially from the central bore. The guide slots can be arranged substantially on the first face. The stator interfacial member can include a set of interlocking tabs extending from the second face. The stator interfacial member has a capture ring formed around the outer circumference of the disc-shaped body. The stator interfacial member also has a group of capture cavities formed on the capture ring.


Yet another aspect of the invention involves a planet assembly for a continuously variable transmission (CVT) having a shift cam and a carrier assembly. The planet assembly has a ball with a through bore. In one embodiment, the planet assembly has a ball axle coupled to the through bore. The planet assembly also has a leg coupled to the ball axle. The leg has a first end configured to slidingly engage the shift cam. The leg further has a face configured to slidingly engage the carrier assembly.


Another aspect of the invention relates to a leg for a continuously variable transmission (CVT) having a carrier assembly. The leg includes an elongated body having a first end and a second end. In one embodiment, the leg has an axle bore formed on the first end. The leg can have a shift cam guide surface formed on the second end. The shift cam guide surface can be configured to slidingly engage a shift cam of the CVT. The leg can also have a sliding interface formed between the first end and the second end. The sliding interface can be configured to slidingly engage the carrier assembly.


Yet another aspect of the invention involves a transmission. In one embodiment, the transmission includes a group of planet assemblies arranged angularly about, and on a plane perpendicular to, a longitudinal axis of the transmission. Each planet assembly has a leg. The transmission can include a set of stator interfacial inserts arranged angularly about the longitudinal axis. Each leg is configured to slidingly couple to each of the stator interfacial inserts. The transmission can also include a stator support member mounted coaxially with the longitudinal axis. The stator support member can be configured to couple to each of the stator interfacial inserts.


In another aspect, the invention concerns a stator support member for a continuously variable transmission (CVT). The stator support member includes a generally cylindrical body having a central bore. In one embodiment, the stator support member has a number of insert support slots arranged angularly about, and extending radially from, the central bore. The stator support member can include a number of stator support extensions arranged coaxial with the insert support slots. The stator support extensions are arranged angularly about the central bore. Each of the stator support extensions has a fastening hole and a dowel pin hole.


Another aspect of the invention relates to a planet assembly for a continuously variable transmission (CVT) having a shift cam and a carrier assembly. The planet assembly includes a ball having a through bore. In one embodiment, the planet assembly includes a ball axle received in the through bore. The planet assembly can also include a leg coupled to the ball axle. The leg has a first end configured to slidingly engage the shift cam. The leg has a face configured to slidingly engage the carrier assembly. The leg has an axle bore formed on a second end. The leg has a bearing support extension extending from the axle bore.


One aspect of the invention relates to a shift cam for a continuously variable transmission (CVT). The shift cam has a number of leg contact surfaces arranged angularly about, and extending radially from, a longitudinal axis of the CVT. Each of the leg contact surfaces has a convex profile with respect to a first plane and a substantially flat profile with respect to a second plane. The shift cam also has a shift nut engagement shoulder formed radially inward of each of the leg contact surfaces.


Another aspect of the invention addresses a transmission having a group of planet assemblies arranged angularly about a longitudinal axis. Each planet assembly has a leg. The transmission can have a stator interfacial member operably coupled to each of the planet assemblies. The stator interfacial member can be coaxial with the group of planet assemblies. In one embodiment, the transmission has a stator support member coupled to the stator interfacial member. The stator support member includes a substantially bowl-shaped body having a central bore. The stator support member can have a fastening flange located on an outer periphery of the bowl-shaped body. The stator support member also includes a set of interlocking tabs located on an interior surface of the bowl-shaped body. The interlocking tabs are configured to couple to the stator interfacial member.


One more aspect of the invention concerns a stator support member for a continuously variable transmission having a stator interfacial member. In one embodiment, the stator support member has a substantially bowl-shaped body with a central bore. The stator support member includes a fastening flange located on an outer periphery of the bowl-shaped body. The stator support member also has a set of interlock tabs located on an interior surface of the bowl-shaped body.


Yet another aspect of the invention involves a stator interfacial member for a continuously variable transmission (CVT). The stator interfacial member includes a substantially disc-shaped body with an inner bore, a first face, and a second face. In one embodiment, the stator interfacial member has a number of guide slots arranged angularly about, and extending radially from the inner bore. The guide slots are formed on the first face. The stator interfacial member includes a set of interlock tabs substantially aligned with each of the guide slots. The interlock tabs are formed on the second face. The stator interfacial member can also include a number of stator support member extensions coupled to each of the guide slots. The stator support member extensions are located on an outer periphery of the disc-shaped body.


Another aspect of the invention relates to a transmission having a group of planet assemblies arranged angularly about a longitudinal axis of the transmission. Each planet assembly has a leg. In one embodiment, the transmission includes an axle arranged along the longitudinal axis. The transmission can include a first stator support member slidingly coupled to each of the planet assemblies. The first stator support member has a first central bore. The first central bore can be coupled to the axle. The transmission includes a second stator support member sliding coupled to each of the planet assemblies. The second stator support member has a second central bore. The second central bore has a diameter larger than a diameter of the first central bore. The transmission can also include a set of stator spacers coupled to the first and second stator support members. The stator spacers are arranged angularly about the longitudinal axis.


Yet one more aspect of the invention addresses a stator support member for a continuously variable transmission (CVT). The stator support member has a generally disc-shaped body having a central bore. In one embodiment, the stator support member has a group of support extensions arranged angularly about the central bore. Each of the support extensions has a substantially triangular shape. Each of the support extensions is located radially outward of the central bore. The stator support member includes a number of stator spacer cavities coupled to the support extensions. The stator spacer cavities have a substantially triangular shape. The stator support member can also include a number of guide slots formed on the disc-shaped body. Each guide slot extends radially from the central bore. Each guide slot is substantially angularly aligned with each of the support extensions.


In another aspect, the invention concerns a stator spacer for a continuously variable transmission. The stator spacer includes an elongated body having a first end and a second end. In one embodiment, the stator spacer has a clearance neck formed between the first end and the second end. Each of the first and second ends has a substantially triangular cross-section. At least a portion of the clearance neck has a substantially diamond-shaped cross-section.


Another aspect of the invention relates to an idler assembly for a continuously variable transmission (CVT). The idler assembly includes a substantially cylindrical idler having a central bore. The central bore defines a longitudinal axis. The idler is configured to rotate about the longitudinal axis. In one embodiment, the idler assembly includes first and second shift cams operably coupled respectively to a first and a second end of the idler. The first and second shift cams are configured to be substantially non-rotatable about the longitudinal axis. The idler assembly includes a first shift nut coupled to the first shift cam. The first shift nut has a threaded bore and a shift cam engagement shoulder extending radially from the threaded bore. The idler assembly also includes a second shift nut coupled to the second shift cam, the second shift nut comprising a second threaded bore and a second shift cam engagement shoulder extending radially from the second threaded bore.


One aspect of the invention relates to a method of manufacturing an idler assembly for a continuously variable transmission (CVT) having an axle arranged along a longitudinal axis. In one embodiment, the method includes providing a shift nut clearance slot in the axle. The method can include providing a substantially cylindrical idler having a central bore. The method includes operably coupling the idler to a first shift cam on a first end of the idler and to a second shift cam on a second end of the idler thereby yielding a subassembly including the idler, the first shift cam, and the second shift cam. The method includes placing a shift nut in the shift nut clearance slot. The shift nut has a shift cam engagement shoulder extending radially from a threaded bore. The method includes installing the subassembly of the idler, the first shift cam, and the second shift cam on the axle such that said subassembly substantially surrounds the shift nut. The method also includes coupling a shift rod to the threaded bore of the shift nut thereby coupling the shift nut engagement shoulder to the first or second shift cam.


Another aspect of the invention concerns a hub shell for a continuously variable transmission (CVT). The hub shell includes a generally hollow cylindrical body having a substantially closed end and a central bore. In one embodiment, the hub shell has first and a second spoke flanges coupled to an outer periphery of the hollow cylindrical body. The hub shell includes a set of brake splines coupled to the substantially closed end. The hub shell can have a locking chamfer coupled to the substantially closed end. The locking chamfer is located radially outward of, and coaxial with the brake splines. The hub shell can also include a set of splines coupled to the substantially closed end. The splines are located on an interior surface of the cylindrical body.


Yet another aspect of the invention involves a brake adapter kit for a continuously variable transmission (CVT) having a hub shell. The brake adapter kit includes a brake adapter ring having a brake alignment surface. The brake adapter ring has a locking chamfer configure to engage the hub shell. The brake adapter kit can include a roller brake adapter configured to couple to the brake adapter ring and to the hub shell. Once assembled the roller brake adapter is rigidly coupled to the hub shell.


One aspect of the invention concerns a brake adapter kit for a continuously variable transmission (CVT) having a hub shell. The brake adapter kit includes a brake adapter ring having a brake alignment surface. The brake adapter ring has a locking chamfer configure to engage the hub shell. In one embodiment, the brake adapter kit includes a disc brake adapter configured to couple to the brake adapter ring and to the hub shell. Once assembled the disc brake adapter is rigidly coupled to the hub shell.


Another aspect of the invention relates to a transmission having a group of planet assemblies arranged angularly about a longitudinal axis of the transmission. Each planet assembly has a leg. In one embodiment, the transmission includes a stator interfacial cap coupled to each leg. The transmission includes a stator support member coaxial with the planet assemblies. The stator support member has a number of guide grooves arranged angularly about, and extending radially from, the longitudinal axis. Each of the stator interfacial caps is configured to engage slidingly to the stator support member.


Yet one more aspect of the invention addresses a planet assembly for a continuously variable transmission. The planet assembly can include a ball with a through bore. The planet assembly includes an axle operably received in the through bore. The axle can be configured to provide a tiltable axis of rotation for the ball. In one embodiment, the planet assembly includes a leg coupled to the axle. The leg has an elongated body with a first end and a second end. The leg couples to the axle in proximity to the first end. The planet assembly also includes a stator interfacial cap coupled to the leg. The stator interfacial cap has a sliding interfacial surface.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective view of one embodiment of a bicycle having a continuously variable transmission (CVT) in accordance with inventive embodiments disclosed herein.



FIG. 2 is a partially cross-sectioned, perspective view of one embodiment of a (CVT).



FIG. 3 is a cross-sectional view of the CVT of FIG. 2.



FIG. 4 is a perspective, cross-sectional view of one embodiment of an input subassembly that can be used in the CVT of FIG. 2.



FIG. 5 is a perspective view of a torque driver that can be used in the input subassembly of FIG. 4.



FIG. 6 is a cross-sectional view of the torque driver of FIG. 5.



FIG. 7 is a perspective view of a torsion plate that can be used in the input subassembly of FIG. 4.



FIG. 8 is a cross-sectional view of the torsion plate of FIG. 7.



FIG. 9 is a perspective view of a load cam ring that can be used in the input subassembly of FIG. 4.



FIG. 10 is a cross-sectional view of the load cam ring of FIG. 9.



FIG. 11 is a perspective view of a traction ring that can be used in the input subassembly of FIG. 4.



FIG. 12 is an exploded, perspective, cross-sectional view of certain components of the CVT of FIG. 2.



FIG. 13 is a second exploded, perspective, cross-sectional view of certain of the components of FIG. 12.



FIG. 14 is a partial cross-section view of the components shown in FIG. 12.



FIG. 15A is a perspective view of one embodiment of a torsion plate that can be used in the input subassembly of FIG. 4.



FIG. 15B is a partially cross-sectioned perspective view of the torsion plate of FIG. 15A.



FIG. 16A is a cross-sectional perspective view of a torsion plate and traction ring that can be used with the CVT of FIG. 2.



FIG. 16B is an exploded cross-sectional perspective view of the torsion plate and traction ring of FIG. 16A.



FIG. 17 is a perspective view of one embodiment of an output load cam that can be used with the CVT of FIG. 2.



FIG. 18 is a block diagram showing one embodiment of a carrier assembly that can be used with the CVT of FIG. 2.



FIG. 19 is an exploded, partially-cross-sectioned, perspective view of the CVT of FIG. 2 employing an embodiment of a carrier assembly.



FIG. 20 is a cross-sectional view of the carrier assembly of FIG. 20.



FIG. 21 is an exploded, partially cross-sectioned, perspective view of one embodiment of a stator subassembly that can be used with the carrier assembly of FIG. 20.



FIG. 22 is a plan view of the stator subassembly of FIG. 21.



FIG. 23 is a second plan view of the stator subassembly of FIG. 21.



FIG. 24 is a cross-section of the stator subassembly of FIG. 21.



FIG. 25 is a perspective view of one embodiment of a stator support member that can be used with the stator subassembly of FIG. 21.



FIG. 26 is a second perspective view of the stator support member of FIG. 26.



FIG. 27 is a partially cross-sectioned, perspective view of a stator interfacial member that can be used with the stator subassembly of FIG. 21.



FIG. 28 is a perspective view of one embodiment of a planet subassembly that can be used in the CVT of FIG. 2.



FIG. 29 is a cross-sectional view of the planet subassembly of FIG. 28.



FIG. 30 is a perspective view of one embodiment of a leg that can be used with the planet subassembly of FIG. 28.



FIG. 31 is a cross-sectional view of the leg of FIG. 30.



FIG. 32 is a cross-sectional view of one embodiment of a leg that can be used with the planet subassembly of FIG. 28.



FIG. 33 is an exploded, partially cross-sectioned, perspective view of an embodiment of a carrier assembly that can be used with the CVT of FIG. 2.



FIG. 34 is a cross-sectional view of the carrier assembly of FIG. 33.



FIG. 35 is a perspective view of one embodiment of a stator support member that can be used with the carrier assembly of FIG. 33.



FIG. 36 is a partially cross-sectioned, perspective view of the stator support member of FIG. 35.



FIG. 37 is a plan view of the stator support member of FIG. 35.



FIG. 38 is a second plan view of the stator support member of FIG. 35.



FIG. 39 is a perspective view of one embodiment of a stator interfacial insert that can be used with the carrier assembly of FIG. 33.



FIG. 40 is a second perspective view of the stator interfacial insert of FIG. 39.



FIG. 41 is a cross-sectional view of the stator interfacial insert of FIG. 39.



FIG. 42 is a cross-sectional view of an embodiment of a stator interfacial insert that can be used with the carrier assembly of FIG. 33.



FIG. 43 is a partially cross-sectioned, exploded, perspective view of an embodiment of a carrier assembly that can be used with the CVT of FIG. 2.



FIG. 44 is a cross-sectional view of the carrier assembly of FIG. 43.



FIG. 45 is a perspective view of one embodiment of a stator support member that can be used in the carrier assembly of FIG. 43.



FIG. 46 is a second perspective view of the stator support member of FIG. 45.



FIG. 47 is a perspective view of one embodiment of a planet subassembly that can be used with the carrier assembly of FIG. 43.



FIG. 48 is a cross-sectional view of the planet subassembly of FIG. 47.



FIG. 49 is a partially cross-sectioned, perspective view of one embodiment of a shift cam that can be used in the CVT of FIG. 2.



FIG. 50 is a cross-sectional view of the shift cam of FIG. 49.



FIG. 51 is a partially cross-sectioned, exploded, perspective view of an embodiment of a carrier assembly that can be used in the CVT of FIG. 2.



FIG. 52 is a cross-sectional view of the carrier assembly of FIG. 51.



FIG. 53 is a perspective view of a stator support member that can be used in the carrier assembly of FIG. 51.



FIG. 54 is a second perspective view of the stator support member of FIG. 53.



FIG. 55 is a perspective view of one embodiment of a stator interfacial member that can be used in the carrier assembly of FIG. 51.



FIG. 56 is a second perspective view of the stator interfacial member of FIG. 55.



FIG. 57 is a partially cross-sectioned, exploded, perspective view of an embodiment of a carrier assembly that can be used in the CVT of FIG. 2.



FIG. 58 is a cross-sectional view of the carrier assembly of FIG. 57.



FIG. 59 is a perspective view of an embodiment of a stator support member that can be used in the carrier assembly of FIG. 57.



FIG. 60 is a perspective view of an embodiment of a stator support member that can be used in the carrier assembly of FIG. 57.



FIG. 61 is a perspective view of an embodiment of a stator spacer that can be used in the carrier assembly of FIG. 57.



FIG. 62 is a cross-sectional view of the stator spacer of FIG. 61.



FIG. 63 is a perspective view of an embodiment of a main axle that can be used in the CVT of FIG. 2.



FIG. 64 is a partially cross-sectioned, perspective view of a shift nut that can be used in the CVT of FIG. 2.



FIG. 65A is a partially cross-sectioned, exploded, perspective view of an embodiment of an idler assembly that can be used in the CVT of FIG. 2.



FIG. 65B is a cross-section of the idler assembly of FIG. 65A.



FIG. 66 is a perspective view of an embodiment of a shift nut that can be used in the idler assembly of FIG. 65A.



FIG. 67 is a perspective view of an embodiment of a hub shell that can be used in the CVT of FIG. 2.



FIG. 68 is a second perspective view of the hub shell of FIG. 67.



FIG. 69 is a cross-sectional view of the hub shell of FIG. 67.



FIG. 70 is a perspective view of an embodiment of a hub cover that can be used in the CVT of FIG. 2.



FIG. 71 is a second perspective view of the hub cover of FIG. 70.



FIG. 72 is a cross-sectional view of the hub cover of FIG. 70.



FIG. 73 is a perspective view of an embodiment of a brake adapter ring that can be used with the CVT FIG. 2.



FIG. 74 is a cross-sectional view of the brake adapter ring of FIG. 73.



FIG. 75 is a perspective view of an embodiment of a disc brake adapter that can be used with the CVT of FIG. 2.



FIG. 76 is a cross-section of the disc brake adapter of FIG. 75.



FIG. 77 is a perspective view of an embodiment of a roller brake adapter that can be used with the CVT of FIG. 2.



FIG. 78 is a second perspective view of the roller brake adapter of FIG. 77.



FIG. 79 is a cross-sectional view of the roller brake adapter of FIG. 77.



FIG. 80 is a partially cross-sectioned, exploded, perspective view of an embodiment of a carrier assembly that can be used with the CVT of FIG. 2.



FIG. 81 is a cross-sectional view of the carrier assembly of FIG. 80.



FIG. 82 is an exploded, perspective view of an embodiment of a planet subassembly that can be used with the carrier assembly of FIG. 80.



FIG. 83 is an exploded, perspective view of certain components of the planet subassembly of FIG. 82.





DETAILED DESCRIPTION OF CERTAIN INVENTIVE EMBODIMENTS

The preferred embodiments will be described now with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the descriptions below is not to be interpreted in any limited or restrictive manner simply because it is used in conjunction with detailed descriptions of certain specific embodiments of the invention. Furthermore, embodiments of the invention can include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions described. The CVT embodiments described here are generally of the type disclosed in U.S. Pat. Nos. 6,241,636; 6,419,608; 6,689,012; 7,011,600; 7,166,052; U.S. patent application Ser. Nos. 11/243,484; 11/543,311; 60/948,273; 60/864,941; and Patent Cooperation Treaty Patent Application PCT/US2007/023315. The entire disclosure of each of these patents and patent applications is hereby incorporated herein by reference.


As used here, the terms “operationally connected,” “operationally coupled”, “operationally linked”, “operably connected”, “operably coupled”, “operably linked,” and like terms, refer to a relationship (mechanical, linkage, coupling, etc.) between elements whereby operation of one element results in a corresponding, following, or simultaneous operation or actuation of a second element. It is noted that in using said terms to describe inventive embodiments, specific structures or mechanisms that link or couple the elements are typically described. However, unless otherwise specifically stated, when one of said terms is used, the term indicates that the actual linkage or coupling may take a variety of forms, which in certain instances will be readily apparent to a person of ordinary skill in the relevant technology.


For description purposes, the term “radial” is used here to indicate a direction or position that is perpendicular relative to a longitudinal axis of a transmission or variator. The term “axial” as used here refers to a direction or position along an axis that is parallel to a main or longitudinal axis of a transmission or variator. For clarity and conciseness, at times similar components labeled similarly (for example, stator assembly 200A and stator assembly 200B) will be referred to collectively by a single label (for example, stator assembly 200).


Embodiments of a continuously variable transmission (CVT), and components and subassemblies therefor, will be described now with reference to FIGS. 1-83. Referring now to FIG. 1, in one embodiment a bicycle 1 can include a continuously variable transmission (CVT) 100 supported in a frame 2. For simplification, only the rear portion of the bicycle 1 is shown FIG. 1. The frame 2 can include a set of dropouts 3 that are configured to support the CVT 100. A sprocket 4 can couple to the CVT 100, and the sprocket 4 further couples via a drive chain 5 to a crank sprocket 6. The crank sprocket 6 is typically coupled to a pedal and crank assembly 7. The CVT 100 can be coupled to a wheel 8 via a number of wheel spokes 9. For clarity, only a few of the wheel spokes 9 are shown in FIG. 1 as an illustrative example. In one embodiment, the transmission ratio of the CVT 100 can be adjusted via cables and a handle grip (not shown).


The CVT 100 can be used in many applications including, but not limited to, human powered vehicles, light electrical vehicles hybrid human-, electric-, or internal combustion powered vehicles, industrial equipment, wind turbines, etc. Any technical application that requires modulation of mechanical power transfer between a power input and a power sink (for example, a load) can implement embodiments of the CVT 100 in its power train.


Turning now to FIGS. 2 and 3, in one embodiment the CVT 100 includes a hub shell 102 coupled to a hub cover 104. The hub shell 102 substantially surrounds the internal components of the CVT 100. A brake adapter kit 106 couples to the hub shell 102. The CVT 100 can include a number of planet subassemblies 108 supported in a carrier assembly 101. The planet subassemblies 108 couple to an input subassembly 110, which input subassembly 110 is generally depicted in detail view A). In some embodiments, the planet subassemblies 108 are operably coupled to the hub shell 102 via a traction ring 145. The traction ring 145 can be configured to engage a cam roller retainer assembly 147, which couples to an output cam ring 149. The hub shell 102 couples to the output cam ring 149 in one embodiment. A main axle 112 can be arranged along the longitudinal axis of the CVT 100 and can be coupled to, for example, the dropouts 3 with no-turn-washers 114, axle nut 116, and lock-nut 118. In one embodiment, a shift rod 120 can be arranged along a central bore of the main axle 112 and can be coupled to an idler subassembly 109 via a shift nut 119. The idler subassembly 109 is arranged radially inward of, and in contact with, the planet subassemblies 108. The shift rod 120 can be axially constrained in the main axle 112 via a shift-rod-lock nut 122. In one embodiment, the shift rod 120 couples to, for example, cables (not shown) that are operationally coupled to a handlegrip or user control interface (not shown). For descriptive purposes, the sprocket side of the CVT 100 can be referred to as the input side of the CVT 100, and the brake adapter kit 106 side of the CVT 100 can be referred to as the output side of the CVT 100.


During operation of CVT 100, an input power can be transferred to the input subassembly 110 via, for example, the sprocket 4. The input subassembly 110 can transfer power to the planet subassemblies 108 via a traction or friction interface between the input subassembly 110 and the planet subassemblies 108. The planet subassemblies 108 deliver the power to the hub shell 102 via the traction ring 145 and the output cam ring 149. A shift in the ratio of input speed to output speed, and consequently a shift in the ratio of input torque to output torque, is accomplished by tilting the rotational axis of the planet subassemblies 108. A shift in the transmission ratio involves actuating an axial or rotational movement of the shift rod 120 in the main axle 112, which facilitates the axial translation of the idler assembly 109 and thereby motivates the tilting of the rotational axis of the planet subassemblies 108.


Passing now to FIG. 4, in one embodiment the input subassembly 110 includes a torque driver 140 coupled to a torsion plate 142. The torsion plate 142 can be attached to a load cam ring 144 with, for example, screw fasteners or rivets. In some embodiments, the torsion plate 142 can be coupled to the load cam ring 144 with a spline. In one embodiment, the load cam ring 144 couples to a load cam roller retainer subassembly 146. The load cam roller retainer subassembly 146 further couples to a traction ring 148. The load cam ring 144, the load cam roller retainer subassembly 146, and the traction ring 148 are preferably configured to produce axial force during operation of the CVT 100. In other embodiments, the load cam ring 144, the load cam roller retainer subassembly 146, and the traction ring 148 are substantially similar in function to the traction ring 145, the load cam roller retainer 147, and the output cam ring 149 that are located on the output side of the CVT 100.


Referring to FIGS. 5 and 6, in one embodiment the torque driver 140 can be a substantially hollow cylindrical body with a first end having a set of torsion plate engagement splines 130 and a second end having a set of sprocket engagement splines 132. In some embodiments, the torque driver 140 can include a sprocket support shoulder 134 located on the outer circumference of the cylindrical body and axially positioned between the torsion plate engagement splines 130 and the sprocket engagement splines 132. In other embodiments, the second end can have a standard bicycle freewheel thread to allow the coupling of a threaded freewheel or threaded sprocket. A first bearing bore 136 can be provided on the inner circumference of the cylindrical body in proximity to the first end. A first bearing support shoulder 137 can be arranged on the inner circumference of the cylindrical body in proximity to the first bearing bore 136. A second bearing bore 138 can be provided on the inner circumference of the cylindrical body in proximity to the sprocket engagement splines 132. A second bearing support shoulder 139 can be arranged on the inner circumference of the cylindrical body in proximity to the second bearing bore 138. In some embodiments, the torque driver 140 includes a number of service tool engagement splines 135 formed on the inner circumference of the cylindrical body. The service tool engagement splines 135 can be arranged in proximity to the sprocket engagement splines 132 and can generally be accessible to the exterior of the CVT 100.


Turning to FIGS. 7 and 8, in one embodiment the torsion plate 142 includes a splined inner bore 170 and a number of triangular extensions 172 extending radially from the splined inner bore 170. In some embodiments, the triangular extensions 172 are substantially axially aligned with a first end of the splined inner bore 170 so that the splined inner bore 170 and the triangular extensions 172 form a substantially flat face on the torsion plate 142. In other embodiments, the triangular extensions 172 extend from the splined inner bore 170 so that the radially outward end of the triangular extension 172 is angled relative to the splined inner bore 170 when viewed in the plane of the page of FIG. 8. In one embodiment, each of the triangular extensions 172 can be provided with a cutout 174. Each of the triangular extensions 172 can be provided with a fastening hole 176 positioned on a radially outward portion of the extension 172. The fastening holes 176 facilitate the coupling of the torsion plate 142 to the load cam ring 144. The splined inner bore 170 facilitates the coupling of the torsion plate 142 to the torque driver 140. The triangular extensions 172 provide a lightweight and torsionally stiff structure to the torsion plate 142. The torsion plate 142 can be made from steel, aluminum, magnesium, plastic, or other suitable material.


Turning to FIGS. 9 and 10, in one embodiment the load cam ring 144 is a substantially annular ring with a number of ramps 152 formed on a first side of the annular ring. The load cam ring 144 can include a set of preload spring grooves 154, which can be formed on the first side of the annular ring. In some embodiments, the load cam ring 144 can have a bearing support surface 158 formed on a second side of the annular ring that is oppositely located from the first side of the annular ring. In one embodiment, the load cam ring 144 can include a number of fastening lugs 156 arranged on the inner circumference of the annular ring. The fastening lugs 156 can be substantially axially aligned with the second side of the annular ring. In some embodiments, the fastening lugs 156 can be used to support an over-molded plastic torsion plate that is substantially similar to torsion plate 142.


Referring to FIG. 11, the traction ring 148 can be a generally annular ring having a number of ramps 153 formed on one side. The traction ring 148 can be provided with a traction contact surface 1480 on the inner circumference of the annular ring that is substantially opposite the side having ramps 153. The traction contact surface 1480 is configured to contact the planet subassembly 108. A number of preload spring grooves 155 can be formed on the annular ring. In one embodiment, the preload spring grooves 155 are formed on the side having the ramps 153. In the embodiment shown in FIGS. 2 and 3, the traction ring 145 is substantially similar to the traction ring 148.


Referring now to FIGS. 12-14, in one embodiment, an axial force generator device includes, among other things, the load cam ring 144, the load cam roller retainer subassembly 146 and the traction ring 148. In one embodiment, the ramps 152 are arranged to contact a number of load cam rollers 160. The load cam rollers 160 are retained in the load cam roller retainer subassembly 146. A number of springs 162, for example two, can be retained in the load cam roller retainer subassembly 146 and can be arranged to simultaneously contact the load cam ring 144 and the traction ring 148. In the embodiment illustrated in FIG. 13, the load cam roller retainer subassembly 146 includes a first slotted ring 146A coupled to a second slotted ring 146B. In some embodiments, the first and second slotted rings 146A, 146B are received in a band 146C. The first slotted ring 146A and the second slotted ring 146B can be provided with slots 164. The slots 164 are configured to support the load cam rollers 160. The first slotted ring 146A and the second slotted ring 146B can be coupled together with, for example, a plurality of pegs 166A and bores 166B. In some embodiments, each of the slotted rings 146A and 146B have equally as many pegs 166A as bores 166B. The arrangement of the pegs 166A and the bores 166B around the face of the slotted rings 146A and 146B can be configured to accommodate various manufacturing methods, such as plastic injection molding. For example, the arrangement of the pegs 166A and the bores 166B can allow the slotted rings 146A and 146B to be substantially identical for manufacture while retaining features for alignment during assembly. In one embodiment, the pegs 166A are arranged around half the circumference of the slotted ring 146A while the bores 166B are arranged around the other half of the circumference. The arrangement of pegs 166A and 166B are substantially similar on slotted ring 146B, so that once assembled the slotted rings 146A and 146B are aligned when joined. In some embodiments, the slotted rings 146A and 146B are further retained around their outer circumference or periphery with the band 146C. The band 146C can be a generally annular ring made from, for example, steel or aluminum. An outer circumference of the band 146C can have a number of holes 167. The holes 167 are generally aligned with the slotted rings 146A and 146B. The holes 167 are configured to, among other things, axially retain and align the slotted rings 146A and 146B. In some embodiments, the slotted rings 146A and 146B can be coupled to the band 146C with standard fasteners (not shown) via fastening the holes 167. In other embodiments, the fastening holes 167 can receive mating features formed onto outer periphery of the slotted rings 146.


Still referring to FIGS. 12-14, a plurality of springs 162, for example two, are retained in load cam roller retainer subassembly 146 and are arranged in such a way that one end of the spring 162 couples to the load cam ring 144 and the other end of the spring 162 couples to the traction ring 148. The springs 162 can be generally arranged 180-degrees with respect to each other for configurations provided with two springs. In one embodiment, a middle portion of the spring 162 is retained in the load cam roller retainer subassembly 146. Shoulders 177 and 173 formed on the slotted rings 146A and 146B, respectively, can be provided to capture the middle portion of the spring 162. In some embodiments, the spring 162 can be a coil spring of the compression type. In other embodiments, the spring 162 can be a wire spring. In yet other embodiments, the spring 162 can be a flat spring. It is preferable that the ends of spring 162 have rounded or curved surfaces that have generally the same shape as reaction surfaces 170 and 171.


A preload spring groove 154 can be formed onto the load cam ring 144. Similarly, a groove 155 can be formed onto the traction ring 148. Once assembled, the preload spring grooves 154 and 155 aid to, among other things, retain the spring 162 and provide the reaction surfaces 170 and 171, respectively. Channels 174 and 175 can be formed into the slotted rings 146A and 146B to provide clearance for the spring 162.


Preferably, once assembled, the springs 162 are configured to apply a force on the load cam ring 144 and the traction ring 148 that engages the load cam rollers 160 with the load cam ring 144 and the traction ring 148. The load cam rollers 160 are positioned generally on the flat portion of the ramps 152 and 153. The interaction between the traction ring 148, the load cam ring 144, and the springs 162 causes the load cam rollers 160 to roll up the ramps 152 and 153 for some distance to produce a preload that ensures that a certain minimum level of clamping force will be available during operation of the CVT 100.


Passing now to FIGS. 15A-15B, a torsion plate 1420 can include a substantially disc-shaped body having a splined inner bore 1422 configured to couple to, for example, the torque driver 140. The torsion plate 1420 can be provided with a bearing support surface 1424 on the outer periphery of one side of the disc-shaped body, and the torsion plate 1420 can be provided with a set of engagement splines 1426 located on the outer periphery of a second side of the disc-shaped body. The engagement splines 1426 can be configured to engage a cam ring such as cam ring 144. In one embodiment, the torsion plate 1420 can include a number of structural ribs 1428 arranged on the disc-shaped body. The structural ribs 1428 can form a lattice or triangulated pattern that connects the outer periphery of the disc-shaped body to the splined inner bore 1422.


Referring to FIGS. 16A and 16B, a torsion plate 1600 can couple to a load cam ring 1602. The load cam ring 1602 and the torsion plate 1600 can generally be used in CVT 100 in a similar manner as the load cam ring 144 and the torsion plate 142. In one embodiment, the torsion plate 1600 can be a generally disc shaped body 1604 having a splined central bore 1606. The splined central bore 1606 can be configured to mate with the splines 130 of the torque driver 140, for example. An outer periphery of the disc shaped body 1604 can be provided with a number of splines 1608. In some embodiments, the torsion plate 1600 can include a number of structural ribs 1609 formed on a first side of the disc shaped body 1604. The structural ribs 1609 can extend radially outward from the splined central bore 1606 and can be configured in a substantially triangulated pattern, such as the pattern shown in FIG. 16A. Configuring the structural ribs 1609 in this way can, among other things, improve the torsional strength and stiffness to the torsion plate 1600.


The load cam ring 1602 can include a substantially annular ring 1610 having a number of ramps 1612 formed on a first face. The ramps 1612 can be substantially similar to the ramps 152. The inner circumference of the annular ring 1610 can be provided with a number of splines 1614 that can be adapted to mate with the splines 1608. In one embodiment, the torsion plate 1600 can be made of a plastic material that is formed over the load cam ring 1602. The splines 1608 and 1614 can be configured to rigidly couple the torsion plate 1600 to the traction ring 1602. In one embodiment, the annular ring 1610 can be provided with a bearing support surface 1616 that can be substantially similar to the bearing support surface 158. In some embodiments, the annular ring 1610 can include a number of preload spring grooves 1618 that are substantially similar to the preload spring grooves 155.


Turning to FIG. 17, in one embodiment the output cam ring 149 can be a generally annular ring, substantially similar to the load cam ring 144. The output cam ring 149 can include a number of preload spring slots 1492 arranged substantially similar to the preload spring slots 154. The output cam ring 149 can also be provided with ramps 1494 that are substantially similar to ramps 152, and are configured to engage the load cam rollers 160. In one embodiment, the output cam ring 149 includes lugs 1496 arranged on the inner circumference of the annular ring. The lugs 1496 are preferably adapted to couple to a mating feature on the hub shell 102.


Referring now to the functional block diagram of FIG. 18, in one embodiment a carrier assembly 50 can be configured to couple to, and/or to support, a planet subassembly 52. The carrier assembly 50 can be functionally similar in some respects to the carrier assembly 101. The planet subassembly 52 can be functionally similar in some respects to the planet subassembly 108. The carrier assembly 50 includes a stator interfacial member 54 coupled to the stator support member 56. In one embodiment, the stator support member 56 is further coupled to a stator torque reaction member 58. The stator interfacial member 54 can be configured to provide a sliding interface between certain components of the planet subassembly 52 and the stator support member 56. In one embodiment, the stator interfacial member 54 is a component that attaches to the stator support member 56. In some embodiments, the stator interfacial member 54 is integral with the stator support member 56. In yet other embodiments, the stator interfacial member 54 is integral with the planet subassembly 52. The stator interfacial member 54 is preferably a low-friction interface and made from materials such as plastic, bronze, or polished metals.


The stator support member 56 can be configured to provide structural support for the carrier assembly 50, and the stator support member 56 can be adapted to react forces generated during operation of the CVT 100. The stator support member 56 positions and supports the planet subassembly 52. The stator torque reaction member 58 can be provided to transfer torque from the stator support member 56 to another component in, for example, the CVT 100 during operation of the CVT 100. In one embodiment, the stator torque reaction member 58 is a component that can be coupled to the stator support member 56 so that the stator torque reaction member 58 can be made from a different material than the stator support member 56. For example, the stator torque reaction member 58 can be made of steel and the stator support member 56 can be made of aluminum. It should be noted that the reference to steel and aluminum are exemplary only; in other embodiments, other materials can be used (such as, for example, plastics, alloys, ceramics, composites, etc.). In some embodiments, the stator torque reaction member 58 is integral with the stator support member 56. In yet other embodiments, the stator interfacial member 54, the stator support member 56, and the stator torque reaction member 58 can be one integral component.


Turning now to FIGS. 19 and 20, the carrier assembly 101 can include a first stator subassembly 200A coupled with a number of stator spacers 202 to a second stator subassembly 200B. The stator spacers 202 can be arranged angularly around the perimeter of the stator subassemblies 200. In one embodiment, the stator spacers 202 can be attached to the stator subassemblies 200 with common fasteners. In the embodiment shown in FIG. 20, the stator spacers 202 are orbit formed on stator spacer ends 203 for coupling the stator spacers 202 and the stator subassemblies 200. The carrier assembly 101 supports and facilitates a tilting of the rotational axis of balls 240 of the planet subassemblies 108. In some embodiments, the carrier assembly 101 is configured to couple to the main axle 112. In one embodiment, for example, the carrier assembly 101 is rigidly and non-rotatably coupled to the main axle 112.


Referring to FIGS. 21-27, the stator subassembly 200 can include a stator torque reaction insert 204, a stator support member 206, and a stator interfacial member 208. In one embodiment, the stator torque reaction insert 204 can be rigidly attached to the stator support member 206, and the stator interfacial member 208 can be attached to the stator support member 206.


The stator torque reaction insert 204 facilitates the coupling of the carrier assembly 101 to the main axle 112. In one embodiment, the stator torque reaction insert 204 includes a number of torque reaction shoulders 210 that are adapted to engage mating surfaces on the main axle 112. The stator torque reaction insert 204 prevents, among other things, rotation of the stator subassembly 200 with respect to the main axle 112. In one embodiment, the stator torque reaction insert 204 has six torque reaction shoulders 210 that form a hexagonal body. A number of locking splines 212 can be provided on the periphery of the hexagonal body. The locking splines 212 can facilitate the rigid attachment of the stator torque reaction insert 204 to the stator support member 206.


In one embodiment, the stator support member 206 includes a substantially disc-shaped body having an inner bore adapted to couple to the stator torque reaction insert 204. In some embodiments, the stator support member 206 has an inner bore having a hexagonal shape. The stator support member 206 can be provided with a number of spacer support extensions 214 arranged angularly on a first face of the disc-shaped body about the longitudinal axis of the CVT 100. The stator support extensions 214 are preferably positioned angularly about the longitudinal axis of the CVT 100 and, for example, can be placed angularly between the planet subassemblies 108 in the CVT 100. In one embodiment, each of the spacer support extensions 214 includes a stator spacer support hole 216. In some embodiments, the stator spacer support holes 216 are arranged on a radially outward periphery of the stator support extensions 214. In one embodiment, each of the stator spacer support holes 216 can be provided with a stator spacer end relief 217 (see FIG. 25, for example). The stator spacer end relief 217 substantially surrounds the stator spacer support hole 216. Once assembled, the stator spacer end 203 is substantially enclosed in the stator spacer end relief 217. The arrangement of stator spacers 200 on the outward periphery of the stator support extensions 214 maximizes torsional stiffness of the carrier assembly 101. The stator support member 206 can be provided with a number of structural ribs 218 arranged on a face of the disc-shaped body. The structural ribs 218 provide strength and stiffness to the disc-shaped body. The stator support member 206 provides structural support to the carrier assembly 101 for reacting forces generated during the operation of, for example, the CVT 100.


Referring to FIGS. 21-27, the stator support member 206 can be further provided with a number of guide support slots 220. The guide support slots 220 are substantially arranged between the spacer support extensions 214 around the disc-shaped body and extend radially outward from the inner bore. The number of guide support slots 220 provided on the stator support member 206 generally, though not necessarily, corresponds to the number of planet subassemblies provided in the CVT 100. Each of the guide support slots 220 can be provided with a leg clearance relief 222A positioned on a radially inward portion of the guide support slot 220. The leg clearance reliefs 222A provide clearance for certain components of the planet subassembly 108 during operation of the CVT 100. In some embodiments, the stator support member 206 can include a piloting shoulder 224 located radially inward of the guide support slots 220 and spacer support extensions 214. The piloting shoulder 224 facilitates alignment of the stator support member 206 to the stator interfacial member 208. In some embodiments, the stator support member 206 can have a uniform material thickness throughout the component, which aides manufacturing processes such as casting or forging.


In one embodiment, the stator interfacial member 208 is a substantially disc-shaped body having an inner bore. The stator interfacial member 208 can be provided with a number of sliding guide slots 226 arranged angularly about a longitudinal axis of the disc-shaped body. The disc-shaped body can include a number of interlocking tabs 228 formed on one side. The interlocking tabs 228 are configured to mate with a number of interlocking holes 229 on the stator support member 206. In some embodiments, a number of leg clearance reliefs 222B are formed toward the inner periphery of the guide slots 226. The stator interfacial member 208 can be provided with a capture ring 230 formed on the outer periphery of the disc-shaped body. The capture ring 230 is preferably formed on the side of the disc-shaped body with the interlocking tabs 228. The capture ring 230 can couple to a capture shoulder 231 formed on the stator support member 206. The interlocking tabs 228 and capture ring 230 facilitate a rigid coupling between the stator interfacial member 208 and the stator support member 206. A number of capture extensions 232 (see FIG. 26) can be provided on the outer periphery of the stator support member 206. The capture extensions 232 are generally concentric with the capture shoulder 231 and are configured to couple to capture cavities 233 (FIG. 27) of the stator interfacial member 208. In one embodiment, the stator interfacial member 208 can be a plastic component, and can be pressed onto the stator support member 206 so that the capture ring 230 and the interlocking tabs 228 engage the corresponding mating capture shoulder 231 and the interlocking holes 229. In some embodiments, the stator interfacial member 208 can be plastic injection molded onto the stator support member 206. The stator interfacial member 208 facilitates a low friction, sliding coupling between the carrier assembly 101 and the planet subassemblies 108.


Turning now to FIGS. 28-29, the planet subassembly 108 can include a substantially spherical ball 240, a ball axle 242, and at least one leg 244. The ball 240 can be provided with a central bore. The ball 240 is supported on the ball axle 242 with ball support bearings 249 arranged in the central bore and positioned with spacers 245A, 245B, and 245C. In other embodiments, the spacers 245A, 245B, and 245C can be integral with the ball support bearings 249. The ball axle 242 can be supported on one end with one leg 244 and on a second end with another leg 244. In some embodiments, the leg 244 can be pressed onto the ball axle 242 so that there is no relative motion between the leg 244 and the ball axle 242 during operation of the CVT 100. The legs 244 can be configured to act as levers to pivot the ball axle 242 about the center of the ball 240.


Referring to FIGS. 30-32, in one embodiment the leg 244 includes a sliding interface 246 and a shift cam guide end 248. The leg 244 can be provided with a ball axle support bore 250. In some embodiments, the leg 244 can include a hole 252. The hole 252 can serve to, among other things, reduce the weight of the leg 244. In one embodiment, the sliding interface 246 can have a length L1 of about 12.5 mm and a width W1 of about 8 mm. In some embodiments, a leg 2444 can be substantially similar in function to the leg 244. The leg 2444 can be provided with a sliding interface 2466 that can be of a length L2 that can be about 7 mm, for example. The shift cam guide end 2488 can have a width w2, which is generally about 3.5 mm. The shift cam guide ends 248 and 2488 are preferably adapted to slide on the shift cams 260 (see FIG. 20, for example). The sliding interfaces 246 and 2466 are preferably adapted to slide in the carrier assembly 101. In some embodiments, the sliding interfaces 246 and 2466 have curved profiles as shown in the plane of the page of FIG. 31 or FIG. 32. Each of the curved profiles of the sliding interfaces 246 and 2466 are typically conformal to a mating surface of the carrier assembly 101. The legs 244 or 2444 are preferably adapted to transfer forces from the planet subassembly 108 to the carrier assembly 101.


Passing now to FIGS. 33-34, an alternative carrier assembly 300 includes a number of stator interfacial inserts 302 supported in a stator support member 304. The stator interfacial inserts 302 are slidingly coupled to legs 240 of the planet subassemblies 108. The carrier assembly 300 includes a retaining ring 306 configured to couple the stator interfacial inserts 302 to the stator support member 304. In one embodiment, the carrier assembly 300 includes two stator support members 304 rigidly coupled together. Preferably, each leg 240 of the planet subassemblies 108 is provided with a corresponding stator interfacial insert 302. It should be readily apparent to a person having ordinary skill in the relevant technology that the carrier assembly 300 is substantially similar in function to the carrier assembly 101.


Referring to FIGS. 35-38, the stator support member 304 can be a generally cylindrical body having a central bore. The stator support member 304 can include a number of insert support slots 308. The insert support slots 308 can be arranged angularly about, and extend radially from, the central bore of the cylindrical body. Preferably, though not necessarily, the stator support member 304 has at least one insert support slot 308 for each stator interfacial insert 302. Each of the insert support slots 308 can have a tab engagement hole 310 formed on a radially inward portion of the insert support slot 308. The tab engagement hole 310 can be configured to couple to a mating feature on the stator interfacial insert 302. The stator support member 304 can be provided with a number of support extensions 312. Each of the stator support extensions 312 includes a fastening hole 314 and a dowel pin hole 315; each hole is configured to receive a fastener and a dowel pin, respectively. In one embodiment, the fastening hole 314 is arranged radially inward of the dowel pin hole 315. The stator support member 304 can be provided with a number of cutouts 316 formed on one end of the cylindrical body. Preferably, the cutouts 316 reduce the weight of the stator support member 304 while retaining the strength and stiffness of the component. In one embodiment, the stator support member 304 can have a number of torque reaction shoulders 318 formed on the inner bore. The torque reaction shoulders 318 can be adapted to mate with corresponding shoulders on the main axle 112. In some embodiments, the torque reaction shoulders 318 form a square bore. In one embodiment, the stator support member 304 is provided with a retaining ring groove 320 that is configured to couple to the retaining ring 306.


Turning now to FIGS. 39-42, the stator interfacial insert 302 can be a generally rectangular body having a back 322 with at least two side extensions 324 attached to the back 322. A stator interlock tab 326 can be formed on the back 322. In one embodiment, the stator interlock tab 326 can be substantially circular and extend from the back 322. The stator interlock tab 326 can be configured to couple to the tab engagement hole 310 on the stator support member 304. In one embodiment, the stator interfacial insert 302 includes a retaining shoulder 328 formed on an end of the back 322 at a distal location from the stator interlock tab 326. The retaining shoulder 328 is configured to couple to the retaining ring 306. In other embodiments, a stator interfacial insert 303 is not provided with a retaining shoulder such as the retaining should 328, but can share many other similar elements with the stator interfacial insert 302.


The stator interfacial insert 302 can be provided with a sliding guide surface 330 formed between the two side extensions 324. The sliding guide surface 330 is preferably adapted to couple to a leg 240 of the planet subassembly 108. In one embodiment, the sliding guide surface 330 has a leg clearance recess 332 formed on an end of the rectangular body in proximity to the stator interlock tab 326. The stator interfacial insert 302 preferably is made from a low-friction material with sufficient compressive strength. For example, the stator interfacial insert 302 can be made out of a variety of plastics that can include Fortron 1342L4, Nylon 6/6 resin, Vespel, Rulon, PEEK, Delrin or other materials. The materials listed here are merely examples and are not intended to be an exhaustive list of acceptable materials as many different types of materials can be used in the embodiments disclosed herein.


Passing now to FIGS. 43-44, in one embodiment a carrier assembly 400 includes a stator support member 402 coupled a stator torque reaction insert 404, which can be substantially similar to the stator torque reaction insert 204. The stator support member 402 is adapted to slidingly couple to a number of planet subassemblies 406. Preferably, the carrier assembly 400 includes two stator support members 402 coupled to each other with common screw fasteners, rivets, or welds.


Referring to FIGS. 45-46, in one embodiment the stator support member 402 is a substantially bowl-shaped body having a central bore. The stator support member 402 can include a fastening flange 410 having a number of fastening holes 411. The fastening flange 410 can be arranged on the outer periphery of the bowl-shaped body. A number of guide support slots 412 can be formed on the interior of the bowl-shaped body. The stator support member 402 can be provided with a number of ball clearance cutouts 414 configured to substantially surround each of the planet subassemblies 406. The stator support member 402 can include a number of torque reaction shoulders 416 formed on the central bore of the bowl-shaped body. In one embodiment, the torque reaction shoulders 416 form a hexagonal pattern. The torque reaction shoulders 416 can be adapted to couple to the stator torque reaction insert 404. The stator support member 402 can be provided with a number of structural ribs 418 arranged on the bottom of the bowl-shaped body. The structural ribs provide strength and stiffness to the stator support member 402.


Referring to FIGS. 47 and 48, in one embodiment the planet subassembly 406 includes a ball 420, a ball axle 422, and a leg 424. The ball 420 has a bore and is supported on the ball axle 422 with support bearings 426. In one embodiment, the support bearings 426 are positioned in on the ball axle 422 with at least one spacer 428. The leg 424 can be pressed onto an end of the ball axle 422. Each end of the ball axle 422 is coupled to a leg 424. In one embodiment, the leg 424 includes a sliding interface guide 421, a shift cam engagement surface 423, and a bearing support extension 425 surrounding a ball axle bore 427. In some embodiments, the leg 424 can include a press relief hole 429 arranged concentric with the ball axle bore 427. The sliding interface guide 421 can have a curved profile when viewed in the plane of the page of FIG. 48. The sliding interface guide 421 is preferably substantially conformal with the guide support slots 412 so that the forces transferred from the leg 424 to the stator support member 402 are distributed over a large surface area of contact between the leg 424 and the stator support member 402. This arrangement minimizes stress and wear on the contacting components.


Turning to FIGS. 49-50, in one embodiment a shift cam 430 includes a number of leg contact surfaces 432. The leg contact surfaces 432 can have a profile that is substantially convex when viewed in the plane of the page in FIG. 50, and the profile can be substantially flat when viewed in the plane of the cross-section in FIG. 49. The substantially flat profile facilitates a line contact between the leg 424 and the shift cam 430. The line contact is preferable for minimizing wear and stress on the leg 424 and the shift cam 430. In one embodiment, the shift cam 430 includes a number of alignment extensions 436. The alignment extensions 436 are arranged on each side of each of the leg contact surfaces 432, so that the leg 424 is substantially flanked by the alignment extensions 436 when assembled. In some embodiments, the shift cam 430 is provided with a bearing race 438 that is adapted to support a bearing for facilitating the coupling of the shift cam 430 to, for example, the idler assembly 109. The shift cam 430 can also be provided with a shift nut engagement shoulder 440 that extends axially from the leg contact surfaces 432. The shift nut engagement shoulder 440 surrounds a hollow bore 442, which is configured to provide clearance to the main axle 112, for example. The shift nut engagement shoulder 440 can couple to the shift nut 119, for example.


Passing now to FIGS. 51-56, in one embodiment a carrier assembly 500 can include a stator support member 502 coupled to a stator interfacial member 504. A stator torque reaction insert 506 can be coupled to the inner bore of the stator support member 502. The stator support member 502 can be provided with a number of torque reaction shoulders 507 (see FIG. 53, for example). The torque reaction shoulders 507 are configured to engage a number of mating torque reaction shoulders 508 provided on the stator torque reaction insert 506. In one embodiment, the stator torque reaction insert 506 includes a piloting flange 510 that extends radially from the torque reaction shoulders 508. The piloting flange 510 is adapted to align and couple to the inner diameter of the stator interfacial member 504. In some embodiments, the piloting flange 510 can include a number of holes (not shown) configured to receive fasteners, such as rivets, to facilitate the coupling of the piloting flange 510 to the stator support member 502. In other embodiments, the piloting flange 510 can be welded to the stator support member 502. In yet other embodiments, the piloting flange 510 can be configured to couple to the stator support member 502 via the stator interfacial member 504. For example, the stator interfacial member 504 can be made of plastic, which can be formed around the piloting flange 510 and the stator support member 502 in such a way as to facilitate the coupling of the piloting flange 510 to the stator support member 502.


Referring now specifically to FIGS. 53-54, the stator support member 502 can be a generally bowl shaped body having a bottom face 512. In one embodiment, the torque reaction shoulders 507 are formed on the bottom face 512. It should be readily apparent that the torque reaction shoulders 507 can be, in some embodiments, knurls or splines (not shown) configured to facilitate the coupling of the stator support member 502 to, for example, the main axle 112. A number of interlock cavities 514 can be provided on the bottom face 512. The interlock cavities 514 are adapted to couple to mating features located on the stator interfacial member 504. In the embodiment shown in FIGS. 53 and 54, the interlock cavities 514 are arranged in groups of four interlock cavities 514 per planet assembly 108, and the groups of interlock cavities 514 are distributed angularly about the torque reaction shoulders 507 on the bottom face BF. In one embodiment, each of the interlock cavities 514 has a corresponding tab 515 that extends from the interlock cavity 514 towards the interior of the bowl shaped body. The tabs 515 are configured to align and couple to mating features of the stator interfacial member 504. The stator support member 502 can also be provided with a number of ball clearance cavities 516 formed on the outer periphery of the bowl shaped body. The number of ball clearance cavities 516 preferably, though not necessarily, corresponds to the number of planet subassemblies 108 provided in, for example, the CVT 100. The stator support member 502 can include a fastening flange 518 located on the outer periphery of the bowl-shaped body. The fastening flange 518 can have a number of fastening holes 519. In one embodiment, the stator support member 502 can be a stamped sheet metal component. Once assembled, carrier 500 can include two stator support members 502 coupled together at the respective fastening flange 518 with common screw fasteners or rivets.


Referring to now specifically to FIGS. 55 and 56, the stator interfacial member 504 can include a disk shaped body having an inner bore. In one embodiment, the disc shaped body has a number of guide slots 520 arranged angularly about the inner bore so that each of the guide slots 520 extends radially from the inner bore to an outer periphery of the disc shaped body. In some embodiments, the guide slots 520 have a conformal profile configured to couple to the legs 240 of the planet assembly 108. The stator interfacial member 504 can include a number of interlock tabs 522 configured to mate with the interlock cavities 514 and tabs 515 of the stator support member 502. In one embodiment, interlock tabs 522 can be arranged in groups of four interlock tabs 522 located at each guide slot 520. For example, each of the guide slots 520 can be flanked on each side by at least two interlock tabs 522. In some embodiments, at least one interlock tab 522 is arranged on either side of the guide slot 520. The stator interfacial member 504 can be provided with a number of leg clearance slots 524. The leg clearance slots 524 are generally formed on the inner circumference of the disk shaped body and the leg clearance slots 524 are substantially aligned angularly with the guide slots 520. In some embodiments, the stator interfacial member 504 can include a number of stator support member extensions 526 that are configured to engage the stator support member 502. The stator support member extensions 526 are preferably substantially aligned with, and extend from, the guide slots 520.


Referring now to FIGS. 57-62, in one embodiment a carrier assembly 600 can include a first stator support member 602 coupled to a second stator support member 603 via a number of stator spacers 604. The carrier assembly 600 can be adapted to cooperate with planet subassemblies 406. The first stator support member 602 can be a generally disk-shaped body having a central bore 608. The central bore 608 is configured to couple to, for example, the main axle 112. In one embodiment, the main axle 112 is welded to the first stator support member 602, for example. In other embodiments, the main axle 112 can be coupled to the first stator support member 602 via torque reaction shoulders that are substantially similar to torque reaction shoulders 210 (see FIG. 21, for example) and the torque reaction shoulders 318 (see FIG. 35, for example).


Still referring to FIGS. 57-62, the second stator support member 603 can be a generally disc-shaped body having a central bore 610. The central bore 610 is configured to provide clearance between the disc-shaped body and the main axle 112. In one embodiment, the radial clearance between the disc-shaped body and the main axle 112 is large enough to allow the idler assembly 109, for example, to be removed from the main axle 112 while the second stator support member 603 and the first stator support member 602 remain assembled. The radial clearance between the second stator support member 603 and the main axle 112 facilitates, among other things, angular alignment between the first and second stator support members 602 and 603 that is independent from the alignment of the main axle 112 to the second stator support member 603, thereby simplifying assembly of the carrier 600 and the main axle 112.


In one embodiment, the first stator support member 602 is provided with a number of support extensions 612 and a number of guide slots 614 interposed between the support extensions 612. The guide slots 614 are arranged angularly about, and extend radially from, the central bore 608. The planet assemblies 406 are adapted to slide in the guide slots 614. The support extensions 612 substantially define the perimeter structure for a number of stator spacer cavities 616. Each of the stator spacer cavities 616 is adapted to receive an end of the stator spacer 604. The end of the stator spacer 604 can attach to the stator spacer cavity 616 with common screw fasteners, press fit, or other suitable fastening means. Similarly, the second stator support member 603 can be provided with the support extensions 612. The support extensions 612 form sides for the guide slots 614. The guide slots 614 are arranged angularly about, and extend radially from, the central bore 610. The support extensions 612 substantially define the perimeter structure for a number of stator spacer cavities 616.


In one embodiment, the stator spacer 604 includes ends 620 and 622 connected by a clearance neck 624. The clearance neck 624 is preferably configured to maximize torsional stiffness of the stator spacers 604 while maintaining adequate clearance between the planet subassemblies 406. In one embodiment, the clearance neck 624 has a substantially diamond shaped cross-section 626 at the mid-point of the body while the ends 620 and 622 are substantially triangular in cross-section, when viewed in the plane of the page of FIG. 62.


Turning to FIG. 63, in one embodiment the main axle 112 can include a substantially elongated body with a shift nut clearance slot 1120 arranged in a middle portion of the elongated body. The shift nut clearance slot 1120 is an opening in the elongated body that is aligned axially in the elongated body. The shift nut clearance slot 1120 has a first axial end and a second axial end. A number of torque reaction shoulders 1122 can be formed in proximity to each axial end. In one embodiment, six torque reaction shoulders 1122 are formed at the first axial end, and six torque reaction shoulders 1122 are formed at the second axial end. In some embodiments, only four torque reaction shoulders 1122 are formed at each axial end. In other embodiments, as few as one torque reaction shoulder 1122. In yet other embodiments, the torque reaction shoulders 1122 can be a knurled surface. The torque reaction shoulders 1122 are configured to couple to, for example, the carrier assembly 101. The main axle 112 can also include frame support flats 1124 on each end of the elongated body. The frame support flats 1124 are configured to couple to, for example, dropouts 3 (see FIG. 1, for example).


Referring to FIG. 64 now, a shift nut 119 can include a threaded bore 1190 configured to couple to the shift rod 120, for example. The shift nut 119 can include at least two shift cam engagement faces 1192 that extend from the threaded bore 1190. The shift cam engagement faces 1192 can be substantially flat surfaces that are configured to couple to, for example, the shift cam 430. In one embodiment, the shift nut 119 can be provided with a bore 1194 that intersects the threaded bore 1190. The bore 1194 can, among other things, reduce the weight of the shift nut 119.


Passing now to FIGS. 65A-66, in one embodiment an idler assembly 700 includes an idler 702, a first and a second shift cam 704 and 706 operably coupled to the idler with a bearing 705. In some embodiments, the bearing 705 has a flexible cage 707 that can be manipulated during assembly. In other embodiments, the bearing 705 can consist of two bearings that have independent cages. The idler assembly 700 can be coupled to, for example, the shift rod 120 with a first and a second shift nut 708A and 708B. The shift nuts 708 can be arranged in the shift nut clearance slot 1120 of the main axle 112 and couple to shift nut engagement shoulders 710 formed on the shift cams 704 and 706. The shift nut 708 can be provided with a threaded bore 712 adapted to couple to a threaded portion of the shift rod 720. The shift nut 708 can be configured to axially translate with a rotation of the shift rod 120, and thereby axially translating the idler assembly 700. In one embodiment, the shift nut 708 is provided with a shift cam engagement shoulder 714 formed on a first end. The shift cam engagement shoulder 714 is configured to mate with the shift nut engagement shoulders 710. The shift cam engagement shoulder 714 extends radially in one direction from the threaded bore 712 and is aligned axially with the first end of the body of the shift nut 708. In some embodiments, the shift nut 708 is provided with a set of flats 716.


During assembly, the first and the second shift nuts 708 are placed in the shift nut clearance slot 1120 and positioned to allow the idler assembly 700 to be placed onto the main axle 112. In some embodiments, the first and the second shift nuts 708 are one integral component. Once the idler assembly 700 is placed onto the main axle 112, the shift rod 120 is threaded into the first shift nut 708A, which aligns the threaded bore 712 with the longitudinal axis of the transmission and facilitates the engagement of the shift cam engagement shoulder 714 with the shift nut engagement shoulder 710. The second shift nut 708B is threaded onto the shift rod 120 and couples to the second shift cam 706. Once assembled, the two shift nuts 708 axially guide the idler assembly 700. The shift nuts 708 allow the idler assembly 700 to be removed from the main axle 112 without disassembly of the idler assembly 700.


Turning to FIGS. 67-69, one embodiment of the hub shell 102 will be described. The hub shell 102 can include a first spoke flange 6700A and a second spoke flange 6700B arranged on the outer periphery of the hub shell 102. The first and the second spoke flanges 6700 are provided with a number of spoke fastening holes 6702 to facilitate the coupling of the CVT 100 to a wheel of a bicycle, for example. The hub shell 102 can include a number of brake adapter splines 6704 formed on an exterior surface of the hub shell 102. The brake adapter splines 6704 are encircled with a set of threads 6706. The threads 6706 are configured to mate with a brake adapter ring 7300 (see FIG. 3, for example). A second set of threads 6708 are provided on an end opposite the brake adapter splines 6704. The second set of threads 6708 are configured to mate with the hub shell cover 104. The hub shell 102 can be provided with an interior face 6710 having a central bore concentric with the brake adapter splines 6704. The central bore can include a seal bore 6712, a bearing bore 6714, and a snap ring groove 6716. Preferably, the seal bore 6712 is positioned axially outward of the bearing bore 6714. The seal bore 6712 is configured to support, for example, an axle seal. The bearing bore 6714 is configured to support, for example, a bearing. The interior face 6710 can be provided with a set of splines 6718 configured to mate with the output cam ring 149, for example.


Referring to FIGS. 70-72 now, one embodiment of the hub cover 104 includes a disc-shaped body 7000 having a central bore 7002, an exterior face 7004, and an interior face 7006. The interior face 7006 is preferably arranged facing the interior of the CVT 100, and the exterior face 7004 is preferably arranged facing the exterior of the CVT 100. In some embodiments, the hub cover 104 is arranged on the input side of the CVT 100. The hub cover 104 includes a threaded outer periphery 7008 configured to mate with the hub shell 102. The central bore 7002 can be provided with a bearing support surface 7010 and a seal support bore 7012. The bearing support surface 7010 and the seal support bore 7012 are coaxial with the main axle 112. The interior face 7006 can be provided with a thrust reaction surface 7014 configured to support, for example, a thrust bearing of the CVT 100. The hub cover 104 can be provided with a set of stiffening ribs 7016 extending radially from the central bore 7002 on the interior face 7006. In some embodiments, the hub cover 104 includes a set of tool engagement splines 7018 arranged on the exterior face 7004 and surrounding the central bore 7002. The tool engagement splines 7018 facilitate, among other things, the coupling of the hub cover 104 to the hub shell 102.


Passing to FIGS. 73-74, in one embodiment a brake adapter ring 7300 can be a generally annular ring having a threaded perimeter 7302. A first exterior face of the annular ring can include a number of tool engagement holes 7304 configured to facilitate the coupling of the brake adapter ring 7300 to, for example, the hub shell 102. The brake adapter ring 7300 can be provided with a locking chamfer 7306 formed on the inner circumference of the annular ring. In some embodiments, the diameter of the annular ring is in the range of 1.25 to 3.25 inches.


Referring to FIGS. 75-76 now, in one embodiment a disc brake adapter 7500 includes a brake alignment surface 7502 and a number of torque reaction splines 7504. The brake alignment surface 7502 is substantially configured to mate with a standard disc brake for a bicycle. The torque reaction splines 7504 are configured to mate with the brake adapter splines 6704 of the hub shell 102 (see FIG. 67, for example). The disc brake adapter 7500 can be provided with a seal support surface 7506 that is configured to couple to a seal of the CVT 100. A number of brake fastening holes 7508 can be provided on the disc brake adapter 7500. The disc brake adapter 7500 can include a locking chamfer 7510 configured to engage the brake adapter ring 7300. The engagement of the locking chamfer 7510 with the locking chamfer 7306 provides a rigid coupling between the disc brake adapter 7500 and the hub shell 102.


Referring now to FIGS. 77-79, in one embodiment a roller brake adapter 7700 can include a number of torque reaction splines 7702 that are substantially similar to torque reaction splines 7504, and are configured to couple to the brake adapter splines 6704 of the hub shell 102. The roller brake adapter 7700 can be provided with a splined extension 7704 that is configured to couple to a standard roller brake of a bicycle. The roller brake adapter 7700 can include a locking chamfer 7706 that is substantially similar to the locking chamfer 7510, and is adapted to engage the locking chamfer 7306 of the brake adapter ring 7300. The roller brake adapter 7700 can also be provided with a seal support surface 7708 that is configured to couple to a seal of the CVT 100. Once assembled, the roller brake adapter 7700 can be coupled to, for example, the CVT 100 at substantially the same location on the hub shell 102 as the disc brake adapter 7500. The engagement of the locking chamfer 7706 with the locking chamfer 7306 provides a rigid coupling between the roller brake adapter 7700 and the hub shell 102. In one embodiment, the brake adapter kit 106 can include the brake adapter ring 7300 and the disc brake adapter 7500. In other embodiments, the brake adapter kit 106 can include the brake adapter ring 7300 and the roller brake adapter 7700.


Turning now to FIGS. 80 and 81, in one embodiment a carrier assembly 800 can include a first stator support member 802A coupled with a number of stator spacers 804 to a second stator support member 802B. The stator spacers 804 can be arranged angularly around the perimeter of the stator support members 802. In one embodiment, the stator support members 802 and the stator spacers 804 are substantially similar in function to the stator subassemblies 200 and the stator spacers 202. The carrier assembly 800 supports and facilitates a tilting of the rotational axis of a number of planet subassemblies 806. In some embodiments, the stator support member 802 can be coupled to a stator torque reaction insert 807 that is substantially similar to the stator torque reaction insert 204, for example. In other embodiments, the stator support member 802 is coupled directly to the main axle 112.


Turning to FIGS. 82 and 83, and still referring to FIGS. 80 and 81, in one embodiment, the planet subassembly 806 includes a first stator interfacial cap 808A coupled to a first leg 810A. The planet subassembly 806 includes a ball 812 configured to rotate about a planet axle 814. In one embodiment, the planet axle 814 is supported in the first leg 810A and in a second leg 810B. The second leg 810B can be coupled to a second stator interfacial cap 808B. Typically, each of the stator interfacial caps 808 are provided with a planet axle relief 816 that is configured to provide clearance between the planet axle 814 and the stator interfacial cap 808. The stator interfacial cap 808 preferably includes a sliding interface surface 817 that is configured to contact the stator support member 802. In one embodiment, the sliding interface surface 817 has a curved profile when viewed in the plane of the page of FIG. 81. The sliding interface surface 817 is substantially similar in certain functional aspects to the sliding interface guides 421. In some embodiments, the stator interfacial cap 808 includes sides 818 that extend from the sliding interface surface 817. The sides 818 can be arranged to substantially flank the leg 810. In some embodiments, the stator interfacial caps 808 are made of a plastic or other low-friction material. The legs 810 can be made of steel, for example. The stator interfacial cap 808 can be formed or assembled onto the legs 810 via a plastic molding process, for example. Once assembled, the stator interfacial cap 808A and the leg 810 can be substantially similar in certain functional aspects to the leg 244, 2444, or 424, for example. In some embodiments, the leg 810 can be adapted to couple to the shift cam 260 or 430, for example.


It should be noted that the description above has provided dimensions for certain components or subassemblies. The mentioned dimensions, or ranges of dimensions, are provided in order to comply as best as possible with certain legal requirements, such as best mode. However, the scope of the inventions described herein are to be determined solely by the language of the claims, and consequently, none of the mentioned dimensions is to be considered limiting on the inventive embodiments, except in so far as anyone claim makes a specified dimension, or range of thereof, a feature of the claim.


The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated.

Claims
  • 1. An axial force generator for a continuously variable transmission (CVT), comprising: a traction ring having a first side for contact with a plurality of spherical planets and a second side having a plurality of ramps;a load cam roller retaining assembly for supporting a plurality of load cam rollers; andan output cam ring having a first side having a plurality of ramps.
  • 2. The axial force generator of claim 1, further comprising a spring having a first end coupled to the traction ring and a second end coupled to the output cam ring, wherein the spring biases the plurality of load cam rollers up the plurality of ramps on the traction ring and the plurality of ramps on the output cam ring.
  • 3. The axial force generator of claim 1, wherein the plurality of ramps on the traction ring comprises an angled portion and a substantially flat portion, whereby axial force increases as the plurality of load cam rollers move up the angled portion on the plurality of ramps on the traction ring and whereby axial force remains constant when the load cam rollers are in contact with the substantially flat portion of the plurality of ramps on the traction ring.
  • 4. The axial force generator of claim 1, wherein the output cam ring comprises a plurality of lugs for coupling to a hub shell.
  • 5. The axial force generator of claim 4, wherein the load cam ring and the traction ring each further comprises a spring groove for retaining a portion of one of a plurality of springs.
  • 6. An axial force generation system comprising: an input axial force generator comprising a load cam ring for receiving power into the CVT, the load cam ring having a first plurality of ramps,a load cam roller retaining assembly for supporting a first plurality of load cam rollers, anda first traction ring having a first side for contact with a plurality of spherical planets and a second side having a second plurality of ramps; andan output axial force generator comprising a second traction ring positioned on an opposite side of the plurality of spherical planets, the second traction ring having a first side for contact with the plurality of spherical planets and a second side having a third plurality of ramps,a load cam roller retaining assembly for supporting a second plurality of load cam rollers, andan output cam ring having a first side having a fourth plurality of ramps.
  • 7. The axial force generation system of claim 6, wherein the load cam ring is coupled to a torsion plate.
  • 8. The axial force generation system of claim 6, wherein the output cam ring is coupled to a hub shell.
  • 9. A method for assembling an axial force generator for a continuously variable transmission (CVT), comprising: positioning a first traction ring on a first side of a plurality of spherical planets, the first traction ring having a first plurality of ramps oriented at a first angle;positioning a second traction ring on a second side of the plurality of traction planets opposite the first traction ring, the second traction ring having a second plurality of ramps oriented at a second angle;positioning a first load cam roller retaining assembly having a first plurality of load cam rollers in contact with the first plurality of ramps on the first traction ring;positioning a load cam ring for receiving power in to the CVT, the load cam ring having a third plurality of ramps oriented at a third angle;positioning a second load cam roller retaining assembly having a second plurality of load cam rollers in contact with the second plurality of ramps on the second traction ring; andpositioning an output cam ring for transmitting power out of the CVT, the output cam ring having a fourth plurality of ramps oriented at a fourth angle.
  • 10. The method for assembling an axial force generator of claim 9, further comprising positioning a first end of a spring in the load cam ring and a second end of the spring in the first traction ring.
  • 11. The method for assembling an axial force generator of claim 9, wherein the first angle is the same as one of the second angle, the third angle, and the fourth angle.
  • 12. The method for assembling an axial force generator of claim 9, wherein the first traction ring is coupled to a torsion plate.
  • 13. The method for assembling an axial force generator of claim 9, wherein the second traction ring is coupled to a hub shell.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/790,475, filed Jul. 2, 2015 and scheduled to issue on Dec. 27, 2016 as U.S. Pat. No. 9,528,561, which is a continuation of U.S. application Ser. No. 14/171,025, filed Feb. 3, 2014 and issued as U.S. Pat. No. 9,074,674 on Jul. 7, 2015, which is a continuation of U.S. patent application Ser. No. 13/796,452, filed Mar. 12, 2013 and issued as U.S. Pat. No. 8,641,572 on Feb. 4, 2014, which is a continuation of U.S. patent application Ser. No. 12/999,586, filed Mar. 23, 2011 and issued as U.S. Pat. No. 8,398,518 on Mar. 19, 2013, which is a national phase application of International Application No. PCT/US2008/067940, filed Jun. 23, 2008. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.

US Referenced Citations (700)
Number Name Date Kind
4963 Armstrong et al. Feb 1847 A
719595 Huss Feb 1903 A
1121210 Techel Dec 1914 A
1175677 Barnes Mar 1916 A
1207985 Null et al. Dec 1916 A
1380006 Nielsen May 1921 A
1390971 Samain Sep 1921 A
1558222 Beetow Oct 1925 A
1629902 After et al. May 1927 A
1631069 Smith May 1927 A
1683715 Erban Sep 1928 A
1686446 Gilman Oct 1928 A
1774254 Daukus Aug 1930 A
1793571 Vaughn Feb 1931 A
1847027 Thomsen et al. Feb 1932 A
1850189 Weiss Mar 1932 A
1858696 Weiss May 1932 A
1865102 Hayes Jun 1932 A
1978439 Sharpe Oct 1934 A
2030203 Gove et al. Feb 1936 A
2060884 Madle Nov 1936 A
2086491 Dodge Jul 1937 A
2100629 Chilton Nov 1937 A
2109845 Madle Mar 1938 A
2112763 Cloudsley Mar 1938 A
2131158 Almen et al. Sep 1938 A
2134225 Christiansen Oct 1938 A
2152796 Erban Apr 1939 A
2196064 Erban Apr 1940 A
2209254 Ahnger Jul 1940 A
2230398 Benjafield Feb 1941 A
2259933 Holloway Oct 1941 A
2269434 Brooks Jan 1942 A
2325502 Auguste Jul 1943 A
RE22761 Wemp May 1946 E
2461258 Brooks Feb 1949 A
2469653 Kopp May 1949 A
2480968 Ronai Sep 1949 A
2553465 Monge May 1951 A
2586725 Henry Feb 1952 A
2595367 Picanol May 1952 A
2596538 Dicke May 1952 A
2597849 Alfredeen May 1952 A
2675713 Acker Apr 1954 A
2696888 Chillson et al. Dec 1954 A
2868038 Billeter May 1955 A
2716357 Rennerfelt Aug 1955 A
2730904 Rennerfelt Jan 1956 A
2748614 Weisel Jun 1956 A
2959070 Flinn Jan 1959 A
2873911 Perrine Feb 1959 A
2874592 Oehrli Feb 1959 A
2883883 Chillson Apr 1959 A
2891213 Kern Jun 1959 A
2901924 Banker Sep 1959 A
2913932 Oehrli Nov 1959 A
2931234 Hayward Apr 1960 A
2931235 Hayward Apr 1960 A
2949800 Neuschotz Aug 1960 A
2959063 Perry Nov 1960 A
2959972 Madson Nov 1960 A
2964959 Beck Dec 1960 A
3008061 Mims et al. Nov 1961 A
3035460 Guichard May 1962 A
3048056 Wolfram Aug 1962 A
3051020 Hartupee Aug 1962 A
3071194 Geske Jan 1963 A
3086704 Hurtt Apr 1963 A
3087348 Kraus Apr 1963 A
3154957 Kashihara Nov 1964 A
3163050 Kraus Dec 1964 A
3176542 Monch Apr 1965 A
3184983 Kraus May 1965 A
3204476 Rouverol Sep 1965 A
3209606 Yamamoto Oct 1965 A
3211364 Wentling et al. Oct 1965 A
3216283 General Nov 1965 A
3229538 Schlottler Jan 1966 A
3237468 Schlottler Mar 1966 A
3246531 Kashihara Apr 1966 A
3248960 Schottler May 1966 A
3273468 Allen Sep 1966 A
3280646 Lemieux Oct 1966 A
3283614 Hewko Nov 1966 A
3292443 Felix Dec 1966 A
3340895 Osgood, Jr. et al. Sep 1967 A
3374009 Jeunet Mar 1968 A
3407687 Hayashi Oct 1968 A
3430504 Dickenbrock Mar 1969 A
3439563 Petty Apr 1969 A
3440895 Fellows Apr 1969 A
3464281 Hiroshi et al. Sep 1969 A
3477315 MacKs Nov 1969 A
3487726 Burnett Jan 1970 A
3487727 Gustafsson Jan 1970 A
3574289 Scheiter et al. Apr 1971 A
3581587 Dickenbrock Jun 1971 A
3661404 Bossaer May 1972 A
3695120 Titt Oct 1972 A
3707888 Schottler Jan 1973 A
3727473 Bayer Apr 1973 A
3727474 Fullerton Apr 1973 A
3736803 Horowitz et al. Jun 1973 A
3768715 Tout Oct 1973 A
3769849 Hagen Nov 1973 A
3800607 Zurcher Apr 1974 A
3802284 Sharpe et al. Apr 1974 A
3810398 Kraus May 1974 A
3820416 Kraus Jun 1974 A
3866985 Whitehurst Feb 1975 A
3891235 Shelly Jun 1975 A
3934493 Hillyer Jan 1976 A
3954282 Hege May 1976 A
3984129 Hege May 1976 A
3987681 Keithley et al. Oct 1976 A
3996807 Adams Dec 1976 A
4023442 Woods et al. May 1977 A
4053173 Chase, Sr. Oct 1977 A
4086026 Tamanini Apr 1978 A
4098146 McLarty Jul 1978 A
4103514 Grosse-Entrup Aug 1978 A
4159653 Koivunen Jul 1979 A
4169609 Zampedro Oct 1979 A
4177683 Moses Dec 1979 A
4227712 Dick Oct 1980 A
4314485 Adams Feb 1982 A
4345486 Olesen Aug 1982 A
4369667 Kemper Jan 1983 A
4382188 Cronin May 1983 A
4391156 Tibbals Jul 1983 A
4459873 Black Jul 1984 A
4464952 Stubbs Aug 1984 A
4468984 Castelli et al. Sep 1984 A
4493677 Ikenoya Jan 1985 A
4494524 Wagner Jan 1985 A
4496051 Ortner Jan 1985 A
4501172 Kraus Feb 1985 A
4515040 Takeuchi et al. May 1985 A
4526255 Hennessey et al. Jul 1985 A
4546673 Shigematsu et al. Oct 1985 A
4549874 Wen Oct 1985 A
4560369 Hattori Dec 1985 A
4567781 Russ Feb 1986 A
4569670 McIntosh Feb 1986 A
4574649 Seol Mar 1986 A
4585429 Marier Apr 1986 A
4617838 Anderson Oct 1986 A
4628766 De Brie Perry Dec 1986 A
4630839 Seol Dec 1986 A
4631469 Tsuboi et al. Dec 1986 A
4647060 Tomkinson Mar 1987 A
4651082 Kaneyuki Mar 1987 A
4663990 Itoh et al. May 1987 A
4700581 Tibbals, Jr. Oct 1987 A
4713976 Wilkes Dec 1987 A
4717368 Yamaguchi et al. Jan 1988 A
4725258 Joanis, Jr. Feb 1988 A
4735430 Tomkinson Apr 1988 A
4738164 Kaneyuki Apr 1988 A
4744261 Jacobson May 1988 A
4756211 Fellows Jul 1988 A
4781663 Reswick Nov 1988 A
4806066 Rhodes et al. Feb 1989 A
4838122 Takamiya et al. Jun 1989 A
4856374 Kreuzer Aug 1989 A
4857035 Anderson Aug 1989 A
4869130 Wiecko Sep 1989 A
4881925 Hattori Nov 1989 A
4900046 Aranceta-Angoitia Feb 1990 A
4909101 Terry Mar 1990 A
4918344 Chikamori et al. Apr 1990 A
4961477 Sweeney Oct 1990 A
4964312 Kraus Oct 1990 A
5006093 Itoh et al. Apr 1991 A
5020384 Kraus Jun 1991 A
5025685 Kobayashi et al. Jun 1991 A
5033322 Nakano Jul 1991 A
5033571 Morimoto Jul 1991 A
5037361 Takahashi Aug 1991 A
5044214 Barber Sep 1991 A
5059158 Bellio et al. Oct 1991 A
5069655 Schivelbusch Dec 1991 A
5083982 Sato Jan 1992 A
5099710 Nakano Mar 1992 A
5121654 Fasce Jun 1992 A
5125677 Ogilvie et al. Jun 1992 A
5138894 Kraus Aug 1992 A
5156412 Meguerditchian Oct 1992 A
5230258 Nakano Jul 1993 A
5236211 Meguerditchian Aug 1993 A
5236403 Schievelbusch Aug 1993 A
5267920 Hibi Dec 1993 A
5273501 Schievelbusch Dec 1993 A
5318486 Lutz Jun 1994 A
5319486 Vogel et al. Jun 1994 A
5323570 Kuhlman et al. Jun 1994 A
5330396 Lohr et al. Jul 1994 A
5355749 Obara et al. Oct 1994 A
5356348 Bellio et al. Oct 1994 A
5375865 Terry, Sr. Dec 1994 A
5379661 Nakano Jan 1995 A
5383677 Thomas Jan 1995 A
5387000 Sato Feb 1995 A
5401221 Fellows et al. Mar 1995 A
5451070 Lindsay et al. Sep 1995 A
5489003 Ohyama et al. Feb 1996 A
5508574 Vlock Apr 1996 A
5562564 Folino Oct 1996 A
5564998 Fellows Oct 1996 A
5601301 Liu Feb 1997 A
5607373 Ochiai et al. Mar 1997 A
5645507 Hathaway Jul 1997 A
5651750 Imanishi et al. Jul 1997 A
5664636 Ikuma et al. Sep 1997 A
5669758 Williamson Sep 1997 A
5669845 Muramoto et al. Sep 1997 A
5690346 Keskitalo Nov 1997 A
5701786 Kawakami Dec 1997 A
5722502 Kubo Mar 1998 A
5746676 Kawase et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
5799541 Arbeiter Sep 1998 A
5823052 Nobumoto Oct 1998 A
5846155 Taniguchi et al. Dec 1998 A
5888160 Miyata et al. Mar 1999 A
5895337 Fellows et al. Apr 1999 A
5899827 Nakano et al. May 1999 A
5902207 Sugihara May 1999 A
5967933 Valdenaire Oct 1999 A
5976054 Yasuoka Nov 1999 A
5984826 Nakano Nov 1999 A
5995895 Watt et al. Nov 1999 A
6000707 Miller Dec 1999 A
6003649 Fischer Dec 1999 A
6004239 Makino Dec 1999 A
6006151 Graf Dec 1999 A
6012538 Sonobe et al. Jan 2000 A
6015359 Kunii Jan 2000 A
6019701 Mori et al. Feb 2000 A
6029990 Busby Feb 2000 A
6042132 Suenaga et al. Mar 2000 A
6045477 Schmidt Apr 2000 A
6045481 Kumagai Apr 2000 A
6050854 Fang et al. Apr 2000 A
6053833 Masaki Apr 2000 A
6053841 Kolde et al. Apr 2000 A
6054844 Frank Apr 2000 A
6066067 Greenwood May 2000 A
6071210 Kato Jun 2000 A
6074320 Miyata et al. Jun 2000 A
6076846 Clardy Jun 2000 A
6079726 Busby Jun 2000 A
6083139 Deguchi Jul 2000 A
6086506 Petersmann et al. Jul 2000 A
6095940 Ai et al. Aug 2000 A
6099431 Hoge et al. Aug 2000 A
6101895 Yamane Aug 2000 A
6113513 Itoh et al. Sep 2000 A
6119539 Papanicolaou Sep 2000 A
6119800 McComber Sep 2000 A
6155132 Yamane Dec 2000 A
6159126 Oshidari Dec 2000 A
6171210 Miyata et al. Jan 2001 B1
6174260 Tsukada et al. Jan 2001 B1
6186922 Bursal et al. Feb 2001 B1
6201315 Larsson Mar 2001 B1
6210297 Knight Apr 2001 B1
6217473 Ueda et al. Apr 2001 B1
6217478 Vohmann et al. Apr 2001 B1
6241636 Miller Jun 2001 B1
6243638 Abo et al. Jun 2001 B1
6251038 Ishikawa et al. Jun 2001 B1
6258003 Hirano et al. Jul 2001 B1
6261200 Miyata et al. Jul 2001 B1
6293575 Burrows et al. Sep 2001 B1
6296593 Gotou Oct 2001 B1
6311113 Danz et al. Oct 2001 B1
6312358 Goi et al. Nov 2001 B1
6322475 Miller Nov 2001 B2
6325386 Shoge Dec 2001 B1
6340067 Fujiwara Jan 2002 B1
6358174 Folsom et al. Mar 2002 B1
6358178 Wittkopp Mar 2002 B1
6367833 Horiuchi Apr 2002 B1
6371878 Bowen Apr 2002 B1
6375412 Dial Apr 2002 B1
6390945 Young May 2002 B1
6390946 Hibi et al. May 2002 B1
6406399 Ai Jun 2002 B1
6414401 Kuroda et al. Jul 2002 B1
6419608 Miller Jul 2002 B1
6425838 Matsubara et al. Jul 2002 B1
6434960 Rousseau Aug 2002 B1
6440037 Takagi et al. Aug 2002 B2
6459978 Tamiguchi et al. Oct 2002 B2
6461268 Milner Oct 2002 B1
6482094 Kefes Nov 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494805 Ooyama et al. Dec 2002 B2
6499373 Van Cor Dec 2002 B2
6514175 Taniguchi et al. Feb 2003 B2
6523223 Wang Feb 2003 B2
6532890 Chen Mar 2003 B2
6551210 Miller Apr 2003 B2
6558285 Sieber May 2003 B1
6571726 Tsai et al. Jun 2003 B2
6575047 Reik et al. Jun 2003 B2
6659901 Sakai et al. Dec 2003 B2
6672418 Makino Jan 2004 B1
6676559 Miller Jan 2004 B2
6679109 Gierling et al. Jan 2004 B2
6682432 Shinozuka Jan 2004 B1
6689012 Miller Feb 2004 B2
6721637 Abe et al. Apr 2004 B2
6723014 Shinso et al. Apr 2004 B2
6723016 Sumi Apr 2004 B2
6805654 Nishii Oct 2004 B2
6808053 Kirkwood et al. Oct 2004 B2
6839617 Mensler et al. Jan 2005 B2
6849020 Sumi Feb 2005 B2
6859709 Joe et al. Feb 2005 B2
6868949 Braford Mar 2005 B2
6931316 Joe et al. Aug 2005 B2
6932739 Miyata et al. Aug 2005 B2
6942593 Nishii et al. Sep 2005 B2
6945903 Miller Sep 2005 B2
6949049 Miller Sep 2005 B2
6958029 Inoue Oct 2005 B2
6991575 Inoue Jan 2006 B2
6991579 Kobayashi et al. Jan 2006 B2
7000496 Wessel et al. Feb 2006 B2
7011600 Miller Mar 2006 B2
7011601 Miller Mar 2006 B2
7014591 Miller Mar 2006 B2
7029418 Taketsuna et al. Apr 2006 B2
7032914 Miller Apr 2006 B2
7036620 Miller et al. May 2006 B2
7044884 Miller May 2006 B2
7063195 Berhan Jun 2006 B2
7063640 Miller Jun 2006 B2
7074007 Miller Jul 2006 B2
7074154 Miller Jul 2006 B2
7074155 Miller Jul 2006 B2
7077777 Miyata et al. Jul 2006 B2
7086979 Frenken Aug 2006 B2
7086981 Ali et al. Aug 2006 B2
7094171 Inoue Aug 2006 B2
7111860 Grimaldos Sep 2006 B1
7112158 Miller Sep 2006 B2
7112159 Miller et al. Sep 2006 B2
7125297 Miller et al. Oct 2006 B2
7131930 Miller et al. Nov 2006 B2
7140999 Miller Nov 2006 B2
7147586 Miller et al. Dec 2006 B2
7153233 Miller et al. Dec 2006 B2
7156770 Miller Jan 2007 B2
7160220 Shinojima et al. Jan 2007 B2
7160222 Miller Jan 2007 B2
7163485 Miller Jan 2007 B2
7163486 Miller et al. Jan 2007 B2
7166052 Miller et al. Jan 2007 B2
7166056 Miller et al. Jan 2007 B2
7166057 Miller et al. Jan 2007 B2
7166058 Miller et al. Jan 2007 B2
7169076 Miller et al. Jan 2007 B2
7172529 Miller et al. Feb 2007 B2
7175564 Miller Feb 2007 B2
7175565 Miller et al. Feb 2007 B2
7175566 Miller et al. Feb 2007 B2
7192381 Miller et al. Mar 2007 B2
7197915 Luh et al. Apr 2007 B2
7198582 Miller et al. Apr 2007 B2
7198583 Miller et al. Apr 2007 B2
7198584 Miller et al. Apr 2007 B2
7198585 Miller et al. Apr 2007 B2
7201693 Miller et al. Apr 2007 B2
7201694 Miller et al. Apr 2007 B2
7201695 Miller et al. Apr 2007 B2
7204777 Miller et al. Apr 2007 B2
7214159 Miller et al. May 2007 B2
7217215 Miller et al. May 2007 B2
7217216 Inoue May 2007 B2
7217219 Miller May 2007 B2
7217220 Careau et al. May 2007 B2
7232395 Miller et al. Jun 2007 B2
7234873 Kato et al. Jun 2007 B2
7235031 Miller et al. Jun 2007 B2
D546741 Iteya et al. Jul 2007 S
7238136 Miller et al. Jul 2007 B2
7238137 Miller et al. Jul 2007 B2
7238138 Miller et al. Jul 2007 B2
7238139 Roethler et al. Jul 2007 B2
7246672 Shirai et al. Jul 2007 B2
7250018 Miller et al. Jul 2007 B2
D548655 Barrow et al. Aug 2007 S
7261663 Miller et al. Aug 2007 B2
7275610 Kuang et al. Oct 2007 B2
7285068 Hosoi Oct 2007 B2
7288042 Miller et al. Oct 2007 B2
7288043 Shioiri et al. Oct 2007 B2
7320660 Miller Jan 2008 B2
7322901 Miller et al. Jan 2008 B2
7343236 Wilson Mar 2008 B2
7347801 Guenter et al. Mar 2008 B2
7383748 Rankin Jun 2008 B2
7383749 Rankin Jun 2008 B2
7384370 Miller Jun 2008 B2
7393300 Miller et al. Jul 2008 B2
7393302 Miller Jul 2008 B2
7393303 Miller Jul 2008 B2
7395731 Miller et al. Jul 2008 B2
7396209 Miller et al. Jul 2008 B2
7402122 Miller Jul 2008 B2
7410443 Miller Aug 2008 B2
7419451 Miller Sep 2008 B2
7422541 Miller Sep 2008 B2
7422546 Miller et al. Sep 2008 B2
7427253 Miller Sep 2008 B2
7431677 Miller et al. Oct 2008 B2
D579833 Acenbrak Nov 2008 S
7452297 Miller et al. Nov 2008 B2
7455611 Miller et al. Nov 2008 B2
7455617 Miller et al. Nov 2008 B2
7462123 Miller et al. Dec 2008 B2
7462127 Miller et al. Dec 2008 B2
7470210 Miller et al. Dec 2008 B2
7478885 Urabe Jan 2009 B2
7481736 Miller et al. Jan 2009 B2
7510499 Miller et al. Mar 2009 B2
7540818 Miller et al. Jun 2009 B2
7547264 Usoro Jun 2009 B2
7574935 Rohs et al. Aug 2009 B2
7591755 Petrzik et al. Sep 2009 B2
7600771 Miller et al. Oct 2009 B2
7632203 Miller Dec 2009 B2
7651437 Miller et al. Jan 2010 B2
7654928 Miller et al. Feb 2010 B2
7670243 Miller Mar 2010 B2
7686729 Miller et al. Mar 2010 B2
7727101 Miller Jun 2010 B2
7727106 Maheu et al. Jun 2010 B2
7727107 Miller Jun 2010 B2
7727108 Miller et al. Jun 2010 B2
7727110 Miller et al. Jun 2010 B2
7727115 Serkh Jun 2010 B2
7731615 Miller et al. Jun 2010 B2
7762919 Smithson et al. Jul 2010 B2
7762920 Smithson et al. Jul 2010 B2
7785228 Smithson et al. Aug 2010 B2
7828685 Miller Nov 2010 B2
7837592 Miller Nov 2010 B2
7871353 Nichols et al. Jan 2011 B2
7882762 Armstrong et al. Feb 2011 B2
7883442 Miller et al. Feb 2011 B2
7885747 Miller et al. Feb 2011 B2
7887032 Malone Feb 2011 B2
7909723 Triller et al. Mar 2011 B2
7909727 Smithson et al. Mar 2011 B2
7914029 Miller et al. Mar 2011 B2
7959533 Nichols et al. Jun 2011 B2
7963880 Smithson et al. Jun 2011 B2
7967719 Smithson et al. Jun 2011 B2
7976426 Smithson et al. Jul 2011 B2
8066613 Smithson et al. Nov 2011 B2
8066614 Miller et al. Nov 2011 B2
8070635 Miller Dec 2011 B2
8087482 Miles et al. Jan 2012 B2
8123653 Smithson et al. Feb 2012 B2
8133149 Smithson et al. Mar 2012 B2
8142323 Tsuchiya et al. Mar 2012 B2
8167759 Pohl et al. May 2012 B2
8171636 Smithson et al. May 2012 B2
8230961 Schneidewind Jul 2012 B2
8262536 Nichols et al. Sep 2012 B2
8267829 Miller et al. Sep 2012 B2
8313404 Carter et al. Nov 2012 B2
8313405 Bazyn et al. Nov 2012 B2
8317650 Nichols et al. Nov 2012 B2
8317651 Lohr Nov 2012 B2
8321097 Vasiliotis et al. Nov 2012 B2
8342999 Miller Jan 2013 B2
8360917 Nichols et al. Jan 2013 B2
8376889 Hoffman et al. Feb 2013 B2
8376903 Pohl Feb 2013 B2
8382631 Hoffman et al. Feb 2013 B2
8382637 Tange Feb 2013 B2
8393989 Pohl Mar 2013 B2
8398518 Nichols Mar 2013 B2
8469853 Miller et al. Jun 2013 B2
8469856 Thomassy Jun 2013 B2
8480529 Pohl et al. Jul 2013 B2
8496554 Pohl et al. Jul 2013 B2
8506452 Pohl et al. Aug 2013 B2
8512195 Lohr et al. Aug 2013 B2
8517888 Brookins Aug 2013 B1
8535199 Lohr et al. Sep 2013 B2
8550949 Miller Oct 2013 B2
8585528 Carter et al. Nov 2013 B2
8608609 Sherrill Dec 2013 B2
8622866 Bazyn et al. Jan 2014 B2
8626409 Vasiliotis et al. Jan 2014 B2
8628443 Miller et al. Jan 2014 B2
8641572 Nichols et al. Feb 2014 B2
8641577 Nichols et al. Feb 2014 B2
8663050 Nichols et al. Mar 2014 B2
8678974 Lohr Mar 2014 B2
8708360 Miller Apr 2014 B2
8721485 Lohr et al. May 2014 B2
8738255 Carter et al. May 2014 B2
8776633 Armstrong et al. Jul 2014 B2
8784248 Murakami et al. Jul 2014 B2
8790214 Lohr et al. Jul 2014 B2
8818661 Keilers et al. Aug 2014 B2
8827856 Younggren et al. Sep 2014 B1
8827864 Durack Sep 2014 B2
8845485 Smithson et al. Sep 2014 B2
8852050 Thomassy Oct 2014 B2
8870711 Pohl et al. Oct 2014 B2
8888643 Lohr et al. Nov 2014 B2
8900085 Pohl et al. Dec 2014 B2
8920285 Smithson et al. Dec 2014 B2
8924111 Fuller Dec 2014 B2
8961363 Shiina et al. Feb 2015 B2
8992376 Ogawa et al. Mar 2015 B2
8996263 Quinn et al. Mar 2015 B2
9017207 Pohl et al. Apr 2015 B2
9022889 Miller May 2015 B2
9046158 Miller et al. Jun 2015 B2
9074674 Nichols Jul 2015 B2
9086145 Pohl et al. Jul 2015 B2
9121464 Nichols et al. Sep 2015 B2
9182018 Bazyn et al. Nov 2015 B2
9239099 Carter et al. Jan 2016 B2
9249880 Vasiliotis et al. Feb 2016 B2
9273760 Pohl et al. Mar 2016 B2
9279482 Nichols et al. Mar 2016 B2
9291251 Lohr et al. Mar 2016 B2
9328807 Carter et al. May 2016 B2
9341246 Miller et al. May 2016 B2
9360089 Lohr et al. Jun 2016 B2
9365203 Keilers et al. Jun 2016 B2
9371894 Carter et al. Jun 2016 B2
9506562 Miller et al. Nov 2016 B2
9528561 Nichols et al. Dec 2016 B2
9574643 Pohl Feb 2017 B2
9656672 Schieffelin May 2017 B2
20010008192 Morisawa Jul 2001 A1
20010023217 Miyagawa et al. Sep 2001 A1
20010041644 Yasuoka et al. Nov 2001 A1
20010044358 Taniguchi Nov 2001 A1
20010044361 Taniguchi et al. Nov 2001 A1
20020019285 Henzler Feb 2002 A1
20020028722 Sakai et al. Mar 2002 A1
20020037786 Hirano et al. Mar 2002 A1
20020045511 Geiberger et al. Apr 2002 A1
20020049113 Watanabe et al. Apr 2002 A1
20020117860 Man et al. Aug 2002 A1
20020128107 Wakayama Sep 2002 A1
20020153695 Wang Oct 2002 A1
20020161503 Joe et al. Oct 2002 A1
20020169051 Oshidari Nov 2002 A1
20020179348 Tamai et al. Dec 2002 A1
20020189524 Chen Dec 2002 A1
20030015358 Abe et al. Jan 2003 A1
20030015874 Abe et al. Jan 2003 A1
20030022753 Mizuno et al. Jan 2003 A1
20030036456 Skrabs Feb 2003 A1
20030096674 Uno May 2003 A1
20030132051 Nishii et al. Jul 2003 A1
20030135316 Kawamura et al. Jul 2003 A1
20030144105 O'Hora Jul 2003 A1
20030160420 Fukuda Aug 2003 A1
20030176247 Gottschalk Sep 2003 A1
20030216216 Inoue et al. Nov 2003 A1
20030221892 Matsumoto et al. Dec 2003 A1
20040038772 McIndoe et al. Feb 2004 A1
20040058772 Inoue et al. Mar 2004 A1
20040067816 Taketsuna et al. Apr 2004 A1
20040082421 Wafzig Apr 2004 A1
20040092359 Imanishi et al. May 2004 A1
20040119345 Takano Jun 2004 A1
20040171457 Fuller Sep 2004 A1
20040204283 Inoue Oct 2004 A1
20040231331 Iwanami et al. Nov 2004 A1
20040237698 Hilsky et al. Dec 2004 A1
20040254047 Frank et al. Dec 2004 A1
20050037876 Unno et al. Feb 2005 A1
20050064986 Ginglas Mar 2005 A1
20050085979 Carlson et al. Apr 2005 A1
20050181905 Ali et al. Aug 2005 A1
20050184580 Kuan et al. Aug 2005 A1
20050227809 Bitzer et al. Oct 2005 A1
20050229731 Parks et al. Oct 2005 A1
20050233846 Green et al. Oct 2005 A1
20060000684 Agner Jan 2006 A1
20060006008 Brunemann et al. Jan 2006 A1
20060052204 Eckert et al. Mar 2006 A1
20060054422 Dimsey et al. Mar 2006 A1
20060108956 Clark May 2006 A1
20060111212 Ai et al. May 2006 A9
20060154775 Ali et al. Jul 2006 A1
20060172829 Ishio Aug 2006 A1
20060180363 Uchisasai Aug 2006 A1
20060223667 Nakazeki Oct 2006 A1
20060234822 Morscheck et al. Oct 2006 A1
20060234826 Moehlmann et al. Oct 2006 A1
20060276299 Imanishi Dec 2006 A1
20070004552 Matsudaira et al. Jan 2007 A1
20070004556 Rohs et al. Jan 2007 A1
20070041823 Miller Feb 2007 A1
20070099753 Matsui et al. May 2007 A1
20070149342 Guenter et al. Jun 2007 A1
20070155552 De Cloe Jul 2007 A1
20070155567 Miller et al. Jul 2007 A1
20070193391 Armstrong et al. Aug 2007 A1
20070228687 Parker Oct 2007 A1
20080009389 Jacobs Jan 2008 A1
20080032852 Smithson et al. Feb 2008 A1
20080032854 Smithson et al. Feb 2008 A1
20080039269 Smithson et al. Feb 2008 A1
20080039273 Smithson et al. Feb 2008 A1
20080039276 Smithson et al. Feb 2008 A1
20080070729 Miller et al. Mar 2008 A1
20080073137 Miller et al. Mar 2008 A1
20080073467 Miller et al. Mar 2008 A1
20080079236 Miller et al. Apr 2008 A1
20080081715 Miller et al. Apr 2008 A1
20080081728 Faulring et al. Apr 2008 A1
20080085795 Miller et al. Apr 2008 A1
20080085796 Miller et al. Apr 2008 A1
20080085797 Miller et al. Apr 2008 A1
20080085798 Miller et al. Apr 2008 A1
20080139363 Williams Jun 2008 A1
20080149407 Shibata et al. Jun 2008 A1
20080183358 Thomson et al. Jul 2008 A1
20080200300 Smithson et al. Aug 2008 A1
20080228362 Muller et al. Sep 2008 A1
20080284170 Cory Nov 2008 A1
20080305920 Nishii et al. Dec 2008 A1
20090023545 Beaudoin Jan 2009 A1
20090082169 Kolstrup Mar 2009 A1
20090107454 Hiyoshi et al. Apr 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20100093479 Carter Apr 2010 A1
20100145573 Vasilescu Jun 2010 A1
20100181130 Chou Jul 2010 A1
20110127096 Schneidewind Jun 2011 A1
20110230297 Shiina et al. Sep 2011 A1
20110237385 Andre Parise Sep 2011 A1
20110291507 Post Dec 2011 A1
20110319222 Ogawa et al. Dec 2011 A1
20120035011 Menachem et al. Feb 2012 A1
20120035015 Ogawa et al. Feb 2012 A1
20120258839 Smithson et al. Oct 2012 A1
20130035200 Noji et al. Feb 2013 A1
20130053211 Fukuda et al. Feb 2013 A1
20130337971 Kostrup Dec 2013 A1
20140148303 Nichols et al. May 2014 A1
20140206499 Lohr Jul 2014 A1
20140274536 Versteyhe Sep 2014 A1
20140329637 Thomassy et al. Nov 2014 A1
20140335991 Lohr et al. Nov 2014 A1
20150018154 Thomassy Jan 2015 A1
20150039195 Pohl et al. Feb 2015 A1
20150051801 Quinn et al. Feb 2015 A1
20150080165 Pohl et al. Mar 2015 A1
20150226323 Pohl et al. Aug 2015 A1
20150260284 Miller et al. Sep 2015 A1
20150337928 Smithson Nov 2015 A1
20150345599 Ogawa Dec 2015 A1
20150369348 Nichols et al. Dec 2015 A1
20160003349 Kimura et al. Jan 2016 A1
20160031526 Watarai Feb 2016 A1
20160040763 Nichols et al. Feb 2016 A1
20160061301 Bazyn et al. Mar 2016 A1
20160131231 Carter et al. May 2016 A1
20160146342 Vasiliotis et al. May 2016 A1
20160178037 Pohl Jun 2016 A1
20160186847 Nichols et al. Jun 2016 A1
20160201772 Lohr et al. Jul 2016 A1
20160244063 Carter et al. Aug 2016 A1
20160273627 Miller et al. Sep 2016 A1
20160281825 Lohr et al. Sep 2016 A1
20160290451 Lohr Oct 2016 A1
20160298740 Carter et al. Oct 2016 A1
20160347411 Yamamoto et al. Dec 2016 A1
20160362108 Keilers et al. Dec 2016 A1
20170072782 Miller et al. Mar 2017 A1
20170082049 David et al. Mar 2017 A1
20170159812 Pohl et al. Jun 2017 A1
20170163138 Pohl Jun 2017 A1
20170204948 Thomassy et al. Jul 2017 A1
20170204969 Thomassy et al. Jul 2017 A1
20170211698 Lohr Jul 2017 A1
20170268638 Nichols et al. Sep 2017 A1
20170274903 Carter et al. Sep 2017 A1
20170276217 Nichols et al. Sep 2017 A1
20170284519 Kolstrup Oct 2017 A1
20170284520 Lohr et al. Oct 2017 A1
20170314655 Miller et al. Nov 2017 A1
Foreign Referenced Citations (229)
Number Date Country
118064 Dec 1926 CH
1054340 Sep 1991 CN
2245830 Jan 1997 CN
1157379 Aug 1997 CN
1167221 Dec 1997 CN
1178573 Apr 1998 CN
1178751 Apr 1998 CN
1204991 Jan 1999 CN
1283258 Feb 2001 CN
1300355 Jun 2001 CN
1412033 Apr 2003 CN
1434229 Aug 2003 CN
1474917 Feb 2004 CN
1483235 Mar 2004 CN
1568407 Jan 2005 CN
1654858 Aug 2005 CN
2714896 Aug 2005 CN
1736791 Feb 2006 CN
1847702 Oct 2006 CN
1860315 Nov 2006 CN
1940348 Apr 2007 CN
101016076 Aug 2007 CN
498 701 May 1930 DE
1171692 Jun 1964 DE
2021027 Dec 1970 DE
2 310880 Sep 1974 DE
2 136 243 Jan 1975 DE
2436496 Feb 1975 DE
263566 Jan 1989 DE
39 40 919 Jun 1991 DE
19851738 May 2000 DE
10155372 May 2003 DE
102011016672 Oct 2012 DE
102012023551 Jun 2014 DE
102014007271 Dec 2014 DE
0 432 742 Dec 1990 EP
0 528 381 Feb 1993 EP
0 528 382 Feb 1993 EP
0 635 639 Jan 1995 EP
0 638 741 Feb 1995 EP
0 831 249 Mar 1998 EP
0 832 816 Apr 1998 EP
0 976 956 Feb 2000 EP
1 136 724 Sep 2001 EP
1 251 294 Oct 2002 EP
1 366 978 Mar 2003 EP
1 362 783 Nov 2003 EP
1 433 641 Jun 2004 EP
1 452 441 Sep 2004 EP
1 518 785 Mar 2005 EP
1 624 230 Feb 2006 EP
2 893 219 Jul 2015 EP
620375 Apr 1927 FR
2460427 Jan 1981 FR
2590638 May 1987 FR
14132 May 1910 GB
391448 Apr 1933 GB
592320 Sep 1947 GB
906002 Sep 1962 GB
919430 Feb 1963 GB
1132473 Nov 1968 GB
1165545 Oct 1969 GB
1376057 Dec 1974 GB
2031822 Apr 1980 GB
2035481 Jun 1980 GB
2035482 Jun 1980 GB
2080452 Aug 1982 GB
38-025315 Nov 1963 JP
41-3126 Feb 1966 JP
42-2843 Feb 1967 JP
42-2844 Feb 1967 JP
44-1098 Jan 1969 JP
47-000448 Jan 1972 JP
47-207 Jun 1972 JP
47-20535 Jun 1972 JP
47-00962 Nov 1972 JP
47-29762 Nov 1972 JP
48-54371 Jul 1973 JP
49-012742 Mar 1974 JP
49-013823 Apr 1974 JP
49-041536 Nov 1974 JP
50-114581 Sep 1975 JP
51-25903 Aug 1976 JP
51-150380 Dec 1976 JP
52-35481 Mar 1977 JP
53-048166 Jan 1978 JP
55-135259 Oct 1980 JP
56-24251 Mar 1981 JP
56-047231 Apr 1981 JP
56-127852 Oct 1981 JP
58-065361 Apr 1983 JP
59-069565 Apr 1984 JP
59-144826 Aug 1984 JP
59-190557 Oct 1984 JP
60-247011 Dec 1985 JP
61-031754 Feb 1986 JP
61-053423 Mar 1986 JP
61-144466 Jul 1986 JP
61-173722 Oct 1986 JP
61-270552 Nov 1986 JP
62-075170 Apr 1987 JP
63-125854 May 1988 JP
63-219953 Sep 1988 JP
63-160465 Oct 1988 JP
01-039865 Nov 1989 JP
01-286750 Nov 1989 JP
01-308142 Dec 1989 JP
02-130224 May 1990 JP
02-157483 Jun 1990 JP
02-271142 Jun 1990 JP
02-182593 Jul 1990 JP
03-149442 Jun 1991 JP
03-223555 Oct 1991 JP
04-166619 Jun 1992 JP
04-272553 Sep 1992 JP
04-327055 Nov 1992 JP
04-351361 Dec 1992 JP
05-087154 Apr 1993 JP
06-050169 Feb 1994 JP
06-050358 Feb 1994 JP
07-42799 Feb 1995 JP
07-133857 May 1995 JP
07-139600 May 1995 JP
07-259950 Oct 1995 JP
08-135748 May 1996 JP
08-170706 Jul 1996 JP
08-247245 Sep 1996 JP
08-270772 Oct 1996 JP
09-024743 Jan 1997 JP
09-089064 Mar 1997 JP
10-061739 Mar 1998 JP
10-078094 Mar 1998 JP
10-089435 Apr 1998 JP
10-115355 May 1998 JP
10-115356 May 1998 JP
10-194186 Jul 1998 JP
10-225053 Aug 1998 JP
10-511621 Nov 1998 JP
11-063130 Mar 1999 JP
11-091411 Apr 1999 JP
11-210850 Aug 1999 JP
11-240481 Sep 1999 JP
11-257479 Sep 1999 JP
2000-6877 Jan 2000 JP
2000-46135 Feb 2000 JP
2000-177673 Jun 2000 JP
2001-027298 Jan 2001 JP
2001-071986 Mar 2001 JP
2001-107827 Apr 2001 JP
2001-165296 Jun 2001 JP
2001-234999 Aug 2001 JP
2001-328466 Nov 2001 JP
2002-147558 May 2002 JP
2002-250421 Jun 2002 JP
2002-307956 Oct 2002 JP
2002-533626 Oct 2002 JP
2002-372114 Dec 2002 JP
56-101448 Jan 2003 JP
2003-028257 Jan 2003 JP
2003-56662 Feb 2003 JP
2003-161357 Jun 2003 JP
2003-194206 Jul 2003 JP
2003-194207 Jul 2003 JP
2003-320987 Nov 2003 JP
2003-336732 Nov 2003 JP
2004-011834 Jan 2004 JP
2004-38722 Feb 2004 JP
2004-162652 Jun 2004 JP
2004-189222 Jul 2004 JP
2004-526917 Sep 2004 JP
2004-301251 Oct 2004 JP
2005-003063 Jan 2005 JP
2005-096537 Apr 2005 JP
2005-188694 Jul 2005 JP
2005-240928 Sep 2005 JP
2005-312121 Nov 2005 JP
2006-015025 Jan 2006 JP
2006-283900 Oct 2006 JP
2006-300241 Nov 2006 JP
2007-085404 Apr 2007 JP
2007-321931 Dec 2007 JP
2008-002687 Jan 2008 JP
2008-133896 Jun 2008 JP
2010-069005 Apr 2010 JP
2012-225390 Nov 2012 JP
2015-227690 Dec 2015 JP
2015-227691 Dec 2015 JP
2002 0054126 Jul 2002 KR
10-2002-0071699 Sep 2002 KR
98467 Jul 1961 NE
74007 Jan 1984 TW
175100 Dec 1991 TW
218909 Jan 1994 TW
227206 Jul 1994 TW
275872 May 1996 TW
360184 Jun 1999 TW
366396 Aug 1999 TW
401496 Aug 2000 TW
510867 Nov 2002 TW
512211 Dec 2002 TW
582363 Apr 2004 TW
590955 Jun 2004 TW
I225129 Dec 2004 TW
I225912 Jan 2005 TW
I235214 Jan 2005 TW
M294598 Jul 2006 TW
200637745 Nov 2006 TW
200821218 May 2008 TW
WO 9908024 Feb 1999 WO
WO 9920918 Apr 1999 WO
WO 0173319 Oct 2001 WO
WO 03100294 Dec 2003 WO
WO 05083305 Sep 2005 WO
WO 05108825 Nov 2005 WO
WO 05111472 Nov 2005 WO
WO 06091503 Aug 2006 WO
WO 07044128 Apr 2007 WO
WO 07077502 Jul 2007 WO
WO 07133538 Nov 2007 WO
WO 08078047 Jul 2008 WO
WO 08100792 Aug 2008 WO
WO 10135407 Nov 2010 WO
WO 11064572 Jun 2011 WO
WO 11101991 Aug 2011 WO
WO 11121743 Oct 2011 WO
WO 12030213 Mar 2012 WO
WO 13042226 Mar 2013 WO
WO 14186732 Nov 2014 WO
WO 16062461 Apr 2016 WO
Non-Patent Literature Citations (16)
Entry
Office Action dated Nov. 8, 2016 in Chinese Patent Application No. 201410191666.x.
Office Action dated May 31, 2013 in U.S. Appl. No. 13/796,452.
Office Action dated Nov. 13, 2014 in U.S. Appl. No. 14/171,025.
Chinese Office Action dated Jan. 28, 2013 for Chinese Patent Application No. 200880129965.3.
Chinese Office Action dated Sep. 18, 2013 for Chinese Patent Application No. 200880129965.3.
Examination Report dated Dec. 20, 2013 in European Patent Application No. 08874837.1.
Examination Report dated Mar. 26, 2015 in European Patent Application No. 08874837.1.
International Preliminary Report on Patentability for Application No. PCT/US2008/067940 dated Jan. 13, 2011.
International Search Report for International Application No. PCT/2008/067940 dated Jun. 15, 2009.
Goi et al., Development of Traction Drive IDG (T-IDG), Proceedings of International Congress on Continuously Variable and Hybrid Transmissions, Sep. 2007, 6 pages.
Pohl, Brad, CVT Split Power Transmissions, A Configuration versus Performance Study with an Emphasis on the Hydromechanical Type, Society of Automotive Engineers, Mar. 4, 2002, 11 pages.
Pohl, et al., Configuration Analysis of a Spherical Traction Drive CVT/IVT, SAE International, 2004 International Continuously Variable and Hybrid Transmission Congress, Sep. 23, 2004, 6 pages.
Smithson et al., Scalability for an Alternative Rolling Traction CVT, Society of Automotive Engineers, Mar. 8, 2004, 6 pages.
Thomassy: An Engineering Approach to Simulating Traction EHL. CVT-Hybrid International Conference Mecc/Maastricht/The Netherlands, Nov. 17-19, 2010, p. 97.
Office Action dated Feb. 19, 2016 in Chinese Patent Application No. 201410191666.X.
Partial European Search Report in EP Patent Application No. 17159751.1, dated Dec. 11, 2017.
Related Publications (1)
Number Date Country
20170102053 A1 Apr 2017 US
Continuations (4)
Number Date Country
Parent 14790475 Jul 2015 US
Child 15387131 US
Parent 14171025 Feb 2014 US
Child 14790475 US
Parent 13796452 Mar 2013 US
Child 14171025 US
Parent 12999586 US
Child 13796452 US