The present disclosure relates generally to the field of three-dimensional (3D) shaped glass for various applications including for automotive interiors.
There is interest in automotive displays having curved or conformal shapes (“conformal displays”) that can be integrated into the dashboard, console, or other auto interior locations that have a curved surface or partially curved surface. Such displays can include liquid crystal displays (LCDs), organic light-emitting diode (OLED) displays, micro light emitting diode (microLED) displays, and other displays. In addition, there is also interest in using a contoured cover glass to provide additional mechanical stability and reliability to the automotive displays.
Conformal shapes in displays and cover glass in automotive applications have been limited to shaping the cover glass, while the underlying displays are flat and rigid. The cover glass has been shaped by either hot forming or cold bending processes. Hot forming heats the glass to a temperature greater than its softening point to permanently bend the glass to the desired shape. Hot form processes can produce a variety of 3D shapes but adds significant cost. Moreover, hot formed glass need to be thermally shaped and then strengthened (e.g., by an ion exchange process). In contrast, in cold bending is performed at significantly lower temperatures (often room temperature); however, the achievable bend radius and shapes can be limited when glass sheets of constant thicknesses are used (i.e., such shapes may be limited to basic U- and S-curves with larger bend radii). More complex shapes create significant stress in the cold bent glass. moreover, decreasing the bend radius creates high bend stress in cold bent glass and requires more substantial mechanical frames or a strong adhesive to hold the cold bent glass in the correct shape due to overall stiffness.
Accordingly, there is a need for conformal displays and/or contoured cover glass shapes having high display quality and mechanical reliability.
The present disclosure described embodiments of a method of making contoured glass articles and embodiments of the resulting contoured glass articles.
In one or more embodiments, the method of making a contoured glass article comprises cold bending a flat glass sheet having first and second opposing major surfaces, at least one region having a first thickness, and at least one region having a second thickness, to produce cold bent glass sheet having at least one bend region along a portion of the at least one region having the second thickness; and restraining the cold bent glass sheet to produce the contoured glass article, wherein the first thickness is greater than the second thickness. In one or more specific embodiments, cold bending and the retaining the cold bent glass sheet are accomplished sequentially or simultaneously.
In one or more embodiments, the contoured glass article comprising: a cold bent glass sheet having first and second opposing major surfaces, at least one region having a first thickness, at least one region having a second thickness, and at least one bend region along a portion of the at least one region having the second thickness, wherein the first thickness is greater than the second thickness.
Various embodiments of the disclosure will be described in detail with reference to drawings, if any. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not limiting and merely set forth some of the many possible embodiments of the claimed invention.
Definitions
“Cold bending,” “cold bend,” and like terms refer to bending a glass article at a temperature below the glass transition temperature (T) of the glass. Cold-bending can occur, for example, at below 800° C., such as at 700, 600, 500, 400, 300, 280, 200, 100, 50, and 25° C., including intermediate values and ranges. A feature of a cold-bent glass article is asymmetric surface compressive stress between a first major surface 11, 111 and the second major surface 12, 112 as shown in
“IOX,” “IOXing,” “IOX'ed,” “ion-exchange,” “ion-exchanging,” or like terms refer to the ion exchange of ions, partially or completely, on at least a portion of the glass surface, on one or both sides as specified, with different ions such as an ion having a larger atomic radius compared to the exchanged ions such as K+ ions exchanged (i.e., replacing) for Na+ ions.
“Bend radius,” “radius,” or like terms refer to is the minimum radius measured to the inside curvature, alternatively or additionally, the maximum bend one can bend a glass sheet without damaging it or shortening its life. The smaller the bend radius, the greater is the material flexibility. A related term is “radius of curvature”. As the radius of curvature of the bent part or piece decreases, the curvature increases; a large radius of curvature represents a low curvature and a small radius of curvature represents high curvature.
Specific and preferred values disclosed for components, ingredients, additives, dimensions, conditions, times, and like aspects, and ranges thereof, are for illustration only; they do not exclude other defined values or other values within defined ranges. The composition and methods of the disclosure can include any value or any combination of the values, specific values, more specific values, and preferred values described herein, including explicit or implicit intermediate values and ranges.
A first aspect of this disclosure pertains to a contoured glass article as shown in
In one or more embodiments, the contoured glass article further includes a frame 150 (as shown in
In one or more embodiments, the contoured glass article (or the flat glass sheet that is used to form the contoured glass article) has a first thickness 115 that is about 2 mm or less, or about 1.5 mm or less. For example, the first thickness maybe in a range from about 0.01 mm to about 1.5 mm, 0.02 mm to about 1.5 mm, 0.03 mm to about 1.5 mm, 0.04 mm to about 1.5 mm, 0.05 mm to about 1.5 mm, 0.06 mm to about 1.5 mm, 0.07 mm to about 1.5 mm, 0.08 mm to about 1.5 mm, 0.09 mm to about 1.5 mm, 0.1 mm to about 1.5 mm, from about 0.15 mm to about 1.5 mm, from about 0.2 mm to about 1.5 mm, from about 0.25 mm to about 1.5 mm, from about 0.3 mm to about 1.5 mm, from about 0.35 mm to about 1.5 mm, from about 0.4 mm to about 1.5 mm, from about 0.45 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, from about 0.55 mm to about 1.5 mm, from about 0.6 mm to about 1.5 mm, from about 0.65 mm to about 1.5 mm, from about 0.7 mm to about 1.5 mm, from about 0.01 mm to about 1.4 mm, from about 0.01 mm to about 1.3 mm, from about 0.01 mm to about 1.2 mm, from about 0.01 mm to about 1.1 mm, from about 0.01 mm to about 1.05 mm, from about 0.01 mm to about 1 mm, from about 0.01 mm to about 0.95 mm, from about 0.01 mm to about 0.9 mm, from about 0.01 mm to about 0.85 mm, from about 0.01 mm to about 0.8 mm, from about 0.01 mm to about 0.75 mm, from about 0.01 mm to about 0.7 mm, from about 0.01 mm to about 0.65 mm, from about 0.01 mm to about 0.6 mm, from about 0.01 mm to about 0.55 mm, from about 0.01 mm to about 0.5 mm, from about 0.01 mm to about 0.4 mm, from about 0.01 mm to about 0.3 mm, from about 0.01 mm to about 0.2 mm, from about 0.01 mm to about 0.1 mm, from about 0.04 mm to about 0.07 mm, from about 0.1 mm to about 1.4 mm, from about 0.1 mm to about 1.3 mm, from about 0.1 mm to about 1.2 mm, from about 0.1 mm to about 1.1 mm, from about 0.1 mm to about 1.05 mm, from about 0.1 mm to about 1 mm, from about 0.1 mm to about 0.95 mm, from about 0.1 mm to about 0.9 mm, from about 0.1 mm to about 0.85 mm, from about 0.1 mm to about 0.8 mm, from about 0.1 mm to about 0.75 mm, from about 0.1 mm to about 0.7 mm, from about 0.1 mm to about 0.65 mm, from about 0.1 mm to about 0.6 mm, from about 0.1 mm to about 0.55 mm, from about 0.1 mm to about 0.5 mm, from about 0.1 mm to about 0.4 mm, or from about 0.3 mm to about 0.7 mm.
In one or more embodiments, the contoured glass article (and/the flat glass sheet that is used to form the contoured glass article) has a second thickness 116 that is less than the first thickness. In one or more embodiments, the first thickness is in a range from about 500 micrometers to about 2 mm, and the second thickness is in a range from about 10% to 90% of the first thickness (e.g., from about 10% to about 85%, from about 10% to about 80%, from about 10% to about 75%, from about 10% to about 70%, from about 10% to about 65%, from about 10% to about 60%, from about 10% to about 55%, from about 10% to about 50%, from about 10% to about 45%, from about 20% to about 90%, from about 25% to about 90%, from about 30% to about 90%, from about 35% to about 90%, from about 40% to about 90%, from about 45% to about 90%, from about 50% to about 90%, from about 55% to about 90%, from about 60% to about 90%, or from about 65% to about 90%). In one or more embodiments, the first thickness is in a range from greater than about 500 micrometers to about 2 mm, and the second thickness is in a range from about 300 micrometers to less than 500 micrometers. In some embodiments, the regions of first thickness can have a size having at least one linear dimension of from greater than or equal to one of 5, 10, 20, 50, 100 mm, and like thicknesses, including intermediate values and ranges. The regions of second thickness can have a size having at least one linear dimension of from greater than or equal to one of: 5, 10, 20, 50, 100 mm, and like thicknesses, including intermediate values and ranges. The thickness transition, for example a taper or step(s), between a first thickness and a second thickness can occur with a linear dimension of less than or equal to one of from 1, 10, 20, 50, 100 microns, and 1, 5, 10, 50, 100 mm, and like transition thicknesses, including intermediate values and ranges.
In one or more embodiments, the contoured article (and/or the flat glass sheet that is used to form the contoured glass article) has a, width (W) defined as a first maximum dimension of one of the first or second major surfaces, and a length (L) defined as a second maximum dimension of one of the first or second surfaces orthogonal to the width. The width and/or length of the flat glass sheet may be greater than width and/or length of the same glass sheet after cold bending into the contoured glass article because of the curvature in the contoured glass article.
In one or more embodiments, the contoured glass article (and/or the flat glass sheet that is used to form the contoured glass article) has a width (W) in a range from about 5 cm to about 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm.
In one or more embodiments, the contoured glass article (and/or the flat glass sheet that is used to form the contoured glass article) has a length (L) in a range from about 5 cm to about 250 cm, from about 10 cm to about 250 cm, from about 15 cm to about 250 cm, from about 20 cm to about 250 cm, from about 25 cm to about 250 cm, from about 30 cm to about 250 cm, from about 35 cm to about 250 cm, from about 40 cm to about 250 cm, from about 45 cm to about 250 cm, from about 50 cm to about 250 cm, from about 55 cm to about 250 cm, from about 60 cm to about 250 cm, from about 65 cm to about 250 cm, from about 70 cm to about 250 cm, from about 75 cm to about 250 cm, from about 80 cm to about 250 cm, from about 85 cm to about 250 cm, from about 90 cm to about 250 cm, from about 95 cm to about 250 cm, from about 100 cm to about 250 cm, from about 110 cm to about 250 cm, from about 120 cm to about 250 cm, from about 130 cm to about 250 cm, from about 140 cm to about 250 cm, from about 150 cm to about 250 cm, from about 5 cm to about 240 cm, from about 5 cm to about 230 cm, from about 5 cm to about 220 cm, from about 5 cm to about 210 cm, from about 5 cm to about 200 cm, from about 5 cm to about 190 cm, from about 5 cm to about 180 cm, from about 5 cm to about 170 cm, from about 5 cm to about 160 cm, from about 5 cm to about 150 cm, from about 5 cm to about 140 cm, from about 5 cm to about 130 cm, from about 5 cm to about 120 cm, from about 5 cm to about 110 cm, from about 5 cm to about 110 cm, from about 5 cm to about 100 cm, from about 5 cm to about 90 cm, from about 5 cm to about 80 cm, or from about 5 cm to about 75 cm.
In one or more embodiments, the contoured glass article (and/or the flat glass sheet that is used to form the contoured glass article) has a surface area in a range from about 10 cm2 to about 50,000 cm2.
Suitable glass compositions for use in the contoured glass article (or flat glass sheet used to form the contoured glass article) include soda lime glass, aluminosilicate glass, borosilicate glass, boroaluminosilicate glass, alkali-containing aluminosilicate glass, alkali-containing borosilicate glass, and alkali-containing boroaluminosilicate glass. In one or more embodiments, the contoured glass article (or flat glass sheet used to form the contoured glass article) may be a single composition layer or may include multiple layers of different compositions and thicknesses.
In one or more embodiments, at least one of first major surface 111, and the second major surface 112 may be unstrengthened, annealed or heat strengthened. In embodiments in which at least one of first major surface 111, and the second major surface 112 may be unstrengthened, annealed or heat strengthened, such surface may exhibit a surface compressive stress of less than 120 MPa, less than 100 MPa, less than 75 MPa or less than 50 MPa). In one or more embodiments, at least one of the first major surface 111, and the second major surface 112 may exhibit no ion-exchanged surfaces.
In one or more embodiments, at least one of the first and second major surfaces or both the first and second major surfaces of the contoured glass article is strengthened. In one or more embodiments, the flat glass sheet used to form the contoured glass article may be strengthened before forming into the contoured glass article. Such strength characteristics may be present in the final contoured glass article (with any additional characteristics attributable to cold bending such as the different in surface compressive stress between the first major surface and the second major surface, as described herein).
In one or more embodiments, the strengthened contoured glass article may include a compressive stress that extends from a surface (typically one of or both the first and second major surfaces) to a depth of compression or depth of compressive stress layer (DOC). The compressive stress at the surface is referred to as the surface CS. The CS regions are balanced by a central portion exhibiting a tensile stress. At the DOC, the stress crosses from a compressive stress to a tensile stress. The compressive stress and the tensile stress are provided herein as absolute values.
In one or more embodiments, the contoured glass article may be strengthened by any one or combinations of a thermal strengthening process, a chemical strengthening process and a mechanical strengthening process. In one or more embodiments, the contoured glass article (or flat glass sheet) may be mechanically strengthened by utilizing a mismatch of the coefficient of thermal expansion between portions of the article to create a compressive stress region and a central region exhibiting a tensile stress. In some embodiments, the contoured glass article (or flat glass sheet) may be thermally strengthened by heating the glass to a temperature above the glass transition point and then rapidly quenching.
In one or more embodiments, the contoured glass article (or flat glass sheet) may be chemically strengthened by ion exchange. In the ion exchange process, ions at or near the surface of the contoured glass article (or flat glass sheet) are replaced by—or exchanged with—larger ions having the same valence or oxidation state. In embodiments in which the contoured glass article comprises an alkali aluminosilicate glass, ions in the surface layer of the article and the larger ions are monovalent alkali metal cations, such as Li+, Na+, K+, Rb+, and Cs+. Alternatively, monovalent cations in the surface layer may be replaced with monovalent cations other than alkali metal cations, such as Ag+ or the like. In such embodiments, the monovalent ions (or cations) exchanged into the contoured glass article (or flat glass sheet) generate a stress. It should be understood that any alkali metal oxide containing glass article (or flat glass sheet) can be chemically strengthened by an ion exchange process.
Ion exchange processes are typically carried out by immersing a glass article (or flat glass sheet) in a molten salt bath (or two or more molten salt baths) containing the larger ions to be exchanged with the smaller ions in the glass article (or flat glass sheet). It should be noted that aqueous salt baths may also be utilized. In addition, the composition of the bath(s) may include more than one type of larger ion (e.g., Na+ and K+) or a single larger ion. It will be appreciated by those skilled in the art that parameters for the ion exchange process, including, but not limited to, bath composition and temperature, immersion time, the number of immersions of the glass article in a salt bath (or baths), use of multiple salt baths, additional steps such as annealing, washing, and the like, are generally determined by the composition of the glass article (including the structure of the article and any crystalline phases present) and the desired DOC and CS of the glass article that results from strengthening. Exemplary molten bath composition may include nitrates, sulfates, and chlorides of the larger alkali metal ion. Typical nitrates include KNO3, NaNO3, LiNO3, NaSO4 and combinations thereof. The temperature of the molten salt bath typically is in a range from about 380° C. up to about 450° C., while immersion times range from about 15 minutes up to about 100 hours depending on glass article (or flat glass sheet) thickness, bath temperature and glass (or monovalent ion) diffusivity. However, temperatures and immersion times different from those described above may also be used.
In one or more embodiments, the glass articles (or flat glass sheet) may be immersed in a molten salt bath of 100% NaNO3, 100% KNO3, or a combination of NaNO3 and KNO3 having a temperature from about 370° C. to about 480° C. In some embodiments, the glass article (or flat glass sheet) may be immersed in a molten mixed salt bath including from about 1% to about 99% KNO3 and from about 1% to about 99% NaNO3. In one or more embodiments, the glass article (or flat glass sheet) may be immersed in a second bath, after immersion in a first bath. The first and second baths may have different compositions and/or temperatures from one another. The immersion times in the first and second baths may vary. For example, immersion in the first bath may be longer than the immersion in the second bath.
In one or more embodiments, the glass article (or flat glass sheet) may be immersed in a molten, mixed salt bath including NaNO3 and KNO3 (e.g., 49%/51%, 50%/50%, 51%/49%) having a temperature less than about 420° C. (e.g., about 400° C. or about 380° C.), for less than about 5 hours, or even about 4 hours or less.
Ion exchange conditions can be tailored to provide a “spike” or to increase the slope of the stress profile at or near the surface of the resulting glass article (or flat glass sheet). The spike may result in a greater surface CS value. This spike can be achieved by single bath or multiple baths, with the bath(s) having a single composition or mixed composition, due to the unique properties of the glass compositions used in the glass articles (or flat glass sheet) described herein.
In one or more embodiments, where more than one monovalent ion is exchanged into the glass article (or flat glass sheet), the different monovalent ions may exchange to different depths within the glass article (and generate different magnitudes stresses within the glass article at different depths). The resulting relative depths of the stress-generating ions can be determined and cause different characteristics of the stress profile.
CS is measured using those means known in the art, such as by surface stress meter (FSM) using commercially available instruments such as the FSM-6000, manufactured by Orihara Industrial Co., Ltd. (Japan). Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured by those methods that are known in the art, such as fiber and four point bend methods, both of which are described in ASTM standard C770-98 (2013), entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety, and a bulk cylinder method. As used herein CS may be the “maximum compressive stress” which is the highest compressive stress value measured within the compressive stress layer. In some embodiments, the maximum compressive stress is located at the surface of the glass article. In other embodiments, the maximum compressive stress may occur at a depth below the surface, giving the compressive profile the appearance of a “buried peak.”
DOC may be measured by FSM or by a scattered light polariscope (SCALP) (such as the SCALP-04 scattered light polariscope available from Glasstress Ltd., located in Tallinn Estonia), depending on the strengthening method and conditions. When the glass article is chemically strengthened by an ion exchange treatment, FSM or SCALP may be used depending on which ion is exchanged into the glass article. Where the stress in the glass article is generated by exchanging potassium ions into the glass article, FSM is used to measure DOL. Where the stress is generated by exchanging sodium ions into the glass article, SCALP is used to measure DOL. Where the stress in the glass article is generated by exchanging both potassium and sodium ions into the glass, the DOC is measured by SCALP, since it is believed the exchange depth of sodium indicates the DOC and the exchange depth of potassium ions indicates a change in the magnitude of the compressive stress (but not the change in stress from compressive to tensile); the exchange depth of potassium ions in such glass articles is measured by FSM. Central tension or CT is the maximum tensile stress and is measured by SCALP.
In one or more embodiments, the glass article (or flat glass sheet) maybe strengthened to exhibit a DOC that is described a fraction of the thickness t of the glass article (as described herein). For example, in one or more embodiments, the DOC may be equal to or greater than about 0.05 t, equal to or greater than about 0.1 t, equal to or greater than about 0.11 t, equal to or greater than about 0.12 t, equal to or greater than about 0.13 t, equal to or greater than about 0.14 t, equal to or greater than about 0.15 t, equal to or greater than about 0.16 t, equal to or greater than about 0.17 t, equal to or greater than about 0.18 t, equal to or greater than about 0.19 t, equal to or greater than about 0.2 t, equal to or greater than about 0.21 t. In some embodiments, the DOC may be in a range from about 0.08 t to about 0.25 t, from about 0.09 t to about 0.25 t, from about 0.18 t to about 0.25 t, from about 0.1 It to about 0.25 t, from about 0.12 t to about 0.25 t, from about 0.13 t to about 0.25 t, from about 0.14 t to about 0.25 t, from about 0.15 t to about 0.25 t, from about 0.08 t to about 0.24 t, from about 0.08 t to about 0.23 t, from about 0.08 t to about 0.22 t, from about 0.08 t to about 0.21 t, from about 0.08 t to about 0.2 t, from about 0.08 t to about 0.19 t, from about 0.08 t to about 0.18 t, from about 0.08 t to about 0.17 t, from about 0.08 t to about 0.16 t, or from about 0.08 t to about 0.15 t. In some instances, the DOC may be about 20 μm or less. In one or more embodiments, the DOC may be about 40 μm or greater (e.g., from about 40 μm to about 300 μm, from about 50 μm to about 300 μm, from about 60 μm to about 300 μm, from about 70 μm to about 300 μm, from about 80 μm to about 300 μm, from about 90 μm to about 300 μm, from about 100 μm to about 300 μm, from about 110 μm to about 300 μm, from about 120 μm to about 300 μm, from about 140 μm to about 300 μm, from about 150 μm to about 300 μm, from about 40 μm to about 290 μm, from about 40 μm to about 280 μm, from about 40 μm to about 260 μm, from about 40 μm to about 250 μm, from about 40 μm to about 240 μm, from about 40 μm to about 230 μm, from about 40 μm to about 220 μm, from about 40 μm to about 210 μm, from about 40 μm to about 200 μm, from about 40 μm to about 180 μm, from about 40 μm to about 160 μm, from about 40 μm to about 150 μm, from about 40 μm to about 140 μm, from about 40 μm to about 130 μm, from about 40 μm to about 120 μm, from about 40 μm to about 110 μm, or from about 40 μm to about 100 μm.
In one or more embodiments, the strengthened contoured glass article (or flat glass sheet) may have a CS (which may be found at the surface or a depth within the glass article) of about 200 MPa or greater, 300 MPa or greater, 400 MPa or greater, about 500 MPa or greater, about 600 MPa or greater, about 700 MPa or greater, about 800 MPa or greater, about 900 MPa or greater, about 930 MPa or greater, about 1000 MPa or greater, or about 1050 MPa or greater. In one or more embodiments, the strengthened contoured glass article (or flat glass sheet) may have a CS (which may be found at the surface or a depth within the glass article) from about 200 MPa to about 1500 MPa, from about 250 MPa to about 1500 MPa, from about 300 MPa to about 1500 MPa, from about 350 MPa to about 1500 MPa, from about 400 MPa to about 1500 MPa, from about 450 MPa to about 1500 MPa, from about 500 MPa to about 1500 MPa, from about 550 MPa to about 1500 MPa, from about 600 MPa to about 1500 MPa, from about 200 MPa to about 1400 MPa, from about 200 MPa to about 1300 MPa, from about 200 MPa to about 1200 MPa, from about 200 MPa to about 1100 MPa, from about 200 MPa to about 1050 MPa, from about 200 MPa to about 1000 MPa, from about 200 MPa to about 950 MPa, from about 200 MPa to about 900 MPa, from about 200 MPa to about 850 MPa, from about 200 MPa to about 800 MPa, from about 200 MPa to about 750 MPa, from about 200 MPa to about 700 MPa, from about 200 MPa to about 650 MPa, from about 200 MPa to about 600 MPa, from about 200 MPa to about 550 MPa, or from about 200 MPa to about 500 MPa.
In one or more embodiments, the strengthened contoured glass article (or flat glass sheet) may have a maximum tensile stress or central tension (CT) of about 20 MPa or greater, about 30 MPa or greater, about 40 MPa or greater, about 45 MPa or greater, about 50 MPa or greater, about 60 MPa or greater, about 70 MPa or greater, about 75 MPa or greater, about 80 MPa or greater, or about 85 MPa or greater. In some embodiments, the maximum tensile stress or central tension (CT) may be in a range from about 40 MPa to about 100 MPa, from about 50 MPa to about 100 MPa, from about 60 MPa to about 100 MPa, from about 70 MPa to about 100 MPa, from about 80 MPa to about 100 MPa, from about 40 MPa to about 90 MPa, from about 40 MPa to about 80 MPa, from about 40 MPa to about 70 MPa, or from about 40 MPa to about 60 MPa.
After a strengthening process, the resulting strengthened contoured glass article (or flat glass sheet) can include a symmetric stress profile or an asymmetric stress profile. A symmetric stress profile exists when both major surfaces of the glass article are symmetrically chemical strengthened and exhibit substantially the same surface compressive stress and depth of compressive stress layer. In one or more embodiments, the resulting strengthened glass article can exhibit an asymmetric stress profile exists in which the glass article exhibits different surface compressive stress on one major surface compared to the opposing major surface, at locations on each major surface that are directly opposite from one another. In one or more embodiments, an asymmetric stress profile may be generated or an existing asymmetric stress profile may be enhanced (to have greater asymmetry) from cold-bending the flat glass sheet, as described herein.
In one or more embodiments, the contoured glass article may include a plurality of regions having the second thickness. For example, in
In one or more embodiments, the contoured glass article may include at least one bend region below a plane and at least one bend region above the plane. The plane in such embodiments is defined by as a midpoint of a maximum cross-sectional dimension.
In one or more embodiments, the at least one bend region has a bend radius (measured at the concave surface) of about 20 mm or greater, 40 mm or greater, 50 mm or greater, 60 mm or greater, 100 mm or greater, 250 mm or greater or 500 mm or greater. In one or more embodiments, the bend radius is in a range from about 50 mm to about 10,000 mm. For example, the bend radius may be in a range from about 20 mm to about 1500 mm, from about 30 mm to about 1500 mm, from about 40 mm to about 1500 mm, from about 50 mm to about 1500 mm, 60 mm to about 1500 mm, from about 70 mm to about 1500 mm, from about 80 mm to about 1500 mm, from about 90 mm to about 1500 mm, from about 100 mm to about 1500 mm, from about 120 mm to about 1500 mm, from about 140 mm to about 1500 mm, from about 150 mm to about 1500 mm, from about 160 mm to about 1500 mm, from about 180 mm to about 1500 mm, from about 200 mm to about 1500 mm, from about 220 mm to about 1500 mm, from about 240 mm to about 1500 mm, from about 250 mm to about 1500 mm, from about 260 mm to about 1500 mm, from about 270 mm to about 1500 mm, from about 280 mm to about 1500 mm, from about 290 mm to about 1500 mm, from about 300 mm to about 1500 mm, from about 350 mm to about 1500 mm, from about 400 mm to about 1500 mm, from about 450 mm to about 1500 mm, from about 500 mm to about 1500 mm, from about 550 mm to about 1500 mm, from about 600 mm to about 1500 mm, from about 650 mm to about 1500 mm, from about 700 mm to about 1500 mm, from about 750 mm to about 1500 mm, from about 800 mm to about 1500 mm, from about 900 mm to about 1500 mm, from about 950 mm to about 1500 mm, from about 1000 mm to about 1500 mm, from about 1250 mm to about 1500 mm, from about 20 mm to about 1400 mm, from about 20 mm to about 1300 mm, from about 20 mm to about 1200 mm, from about 20 mm to about 1100 mm, from about 20 mm to about 1000 mm, from about 20 mm to about 950 mm, from about 20 mm to about 900 mm, from about 20 mm to about 850 mm, from about 20 mm to about 800 mm, from about 20 mm to about 750 mm, from about 20 mm to about 700 mm, from about 20 mm to about 650 mm, from about 20 mm to about 200 mm, from about 20 mm to about 550 mm, from about 20 mm to about 500 mm, from about 20 mm to about 450 mm, from about 20 mm to about 400 mm, from about 20 mm to about 350 mm, from about 20 mm to about 300 mm, from about 20 mm to about 250 mm, from about 20 mm to about 200 mm, from about 20 mm to about 150 mm, from about 20 mm to about 100 mm, from about 20 mm to about 50 mm, from about 60 mm to about 1400 mm, from about 60 mm to about 1300 mm, from about 60 mm to about 1200 mm, from about 60 mm to about 1100 mm, from about 60 mm to about 1000 mm, from about 60 mm to about 950 mm, from about 60 mm to about 900 mm, from about 60 mm to about 850 mm, from about 60 mm to about 800 mm, from about 60 mm to about 750 mm, from about 60 mm to about 700 mm, from about 60 mm to about 650 mm, from about 60 mm to about 600 mm, from about 60 mm to about 550 mm, from about 60 mm to about 500 mm, from about 60 mm to about 450 mm, from about 60 mm to about 400 mm, from about 60 mm to about 350 mm, from about 60 mm to about 300 mm, or from about 60 mm to about 250 mm. In one or more embodiments, glass articles having a first thickness or second thickness of less than about 0.4 mm may exhibit a bend radius that is less than about 100 mm, or less than about 60 mm.
As shown in
In one or more embodiments, the contoured glass article is a window glass, a structural glass, a glass component of a vehicle, or a combination thereof.
A second aspect of this disclosure pertains to a method of making a contoured glass article.
In or more embodiments of the method of making a contoured glass article comprises cold bending a flat glass sheet 100. In one or more embodiments, as shown in
In one or more embodiments, the method includes restraining the cold bent glass sheet to produce the contoured glass article, which still exhibits the first thickness that is greater than the second thickness. In one or more embodiments, restraining the cold bent glass sheet includes placing the cold bent glass sheet in a retaining frame that retains the cold bent glass sheet in a curved configuration or maintains the at least one bend in the cold bent glass sheet. The cold bent glass sheet may be placed in a retaining frame under tension. An adhesive or mechanical fasteners may be used to place and maintain the cold bent glass in the retaining frame. In one or more embodiments, restraining the cold bent glass sheet includes contacting the cold bent glass sheet with a pre-formed shape and an adhesive to bond the cold bent glass sheet to the pre-formed shape resulting in the contoured glass article.
In one or more embodiments, cold bending the glass sheet and the retaining the cold bent glass sheet (e.g., placing the cold bent glass sheet in the retaining frame) can be accomplished sequentially or simultaneously.
In one or more embodiments, the method includes strengthening the flat glass sheet before cold bending. For example, The flat glass sheet may be strengthened by any one or combinations of a thermal strengthening process, a chemical strengthening process and a mechanical strengthening process as described above with respect to the contoured glass article.
In one or more embodiments, the method may include strengthening at least one major surface of the cold bent glass sheet. For example, the at least one major surface or both major surfaces of the cold bent glass sheet may be strengthened thermally, mechanically or chemically as described herein.
In one or more embodiments, the flat glass sheet has a plurality of regions having the second thickness. In one or embodiments, the cold bent glass sheet may include a single bend region or a plurality of bend regions.
In one or more embodiments, the cold bent glass sheet can have, for example, at least one bend below a plane and at least one bend above a plane, the plane being defined by the plane of the first flat glass sheet.
In embodiments, the method includes thinning the flat glass sheet locally. For example, the method includes localized thinning of the flat glass sheet during or after formation of the glass article or a cover glass. In one or more embodiments, localized thinning of the flat glass sheet occurs during forming of the flat glass sheet and includes local stretching or drawing of the flat glass sheet. As used herein, this forming step is not used to create a bend. Instead, by thinning during the forming step, glass is locally heated and drawn (or stretched) so that the localized region is thinner than unheated and undrawn regions of the sheet. In one or more embodiments, the method may include strengthening the flat glass sheet with the locally thinned region formed by drawing and then subsequently cold bending the sheet with the bending occurring primarily in the thinner, more flexible region.
Examples of thinning after forming of the glass sheet include subtractive processes such as wet etching, dry etching, and sandblasting, which removes portions of the flat glass sheet to thin localized regions.
In one or more embodiments, the method of making a contoured glass article includes: localized thinning of a flat glass sheet in one or more regions or areas where a high bend or biaxial stress will occur. In one or more embodiments, after thinning, the flat glass sheet can be cold bent at or near the thinned region to a desired shape. The disclosed thinning and bending method produces lower stress in the cold bent glass sheet and/or the contoured glass article compared cold bent glass sheets or contoured glass articles having a constant thickness (which are shown in
The embodiments described herein have the following exemplary advantages:
Referring to the Figures,
A locally thinned glass sheets can have displays (or other devices) integrated in the flat, thicker regions. The glass sheet can be locally thinned on either one or on both major surfaces. If the glass sheet is thinned on both surfaces, the thinned regions on each surface can be either aligned (i.e., coincident or co-located) or offset from each other.
In embodiments, the disclosure provides a method of making a display where a 3D glass form is selected and avoids excess stress on a display surface. In embodiments, the method provides for cold bending a flat glass sheet, having at least one region with a first thickness and at least one region with a second thickness, which leaves thicker or flatter areas situated between the bends for the display region.
In one or embodiments, the embodiments, the disclosure provides a contoured glass article, a display, and methods of making the same. In embodiments, the disclosure provides a contoured glass article and the integrated display (or other device). The contoured glass article can be an ion exchanged glass or another glass that can serve as a mechanical cover sheet for the display or device below it. In embodiments, the first thickness can be 3 mm or thinner including, for example, less than 1 mm, less than 0.7 mm, less than 0.5 mm, and less than 0.3 mm. The displays that may be integrated or combined with the contoured glass article include: LC displays, OLED displays, microLED displays, OLED lighting, touch sensors, speakers, instrument displays, and like other electronic devices.
In addition to display applications, the disclosed method and articles can be used in non-display applications that call for a shaped glass article that has bends or curves, for example, automotive lighting, instrument panels, touch sensors, mobile phone bodies, and like structures and uses.
In one or more alternative embodiments, instead of thinning the flat glass sheet in a simple single zone across its width, the method includes thinning the flat glass sheet in more complex patterns permits reduction of bend and biaxial stress as the glass article is subsequently cold bent in more complex 3D curvatures (thinning in this instance can be accomplished in the cover glass specifically where high stress would occur in the complex curvature). Such embodiments enable a reduction of stresses when the glass sheet is bent and mechanically isolates bends in different directions. Specific portions of the glass sheet can remain thicker where flatness, stiffness, or both properties are important. Thinning can be located in specific regions where local 2D or 3D bending or mechanical isolation is desired.).
In one or more alternative embodiments, instead of just locally thinning the flat glass sheet or contoured glass article, the display (or other device) can also be locally thinned. This enables cold bending of the display (or other device) in shapes that match the cover glass.
In one or more embodiments, local thinning can also be used to create a pocket, groove, shallow, or like thinned region, for the display (or other device) to be positioned into and as shown schematically in
In embodiments, local thinning can also be used on glass sheets or articles having both hot formed and cold formed shapes to improve reliability and reduce system integration costs for complex surface designs.
In embodiments of the present process, local thinning of a display can be accomplished on the flat glass sheet either before or after the device fabrication has been completed. In one or more embodiments, local thinning of a flat glass sheet can occur before strengthening (e.g., by ion exchange) has been accomplished. In this instance, the flat glass sheet can be uniformly strengthened at a constant depth in regions both with and without local thinning. In this example, the ion exchange process can occur on locally thinned individual glass sheets or on a larger sized glass sheet. If individual glass sheets are used, they can be ion exchanged while flat or while held in complex shapes (i.e., as a cold bent glass sheet).
In embodiments, local thinning of the flat glass sheet can occur after an ion exchange step has been accomplished. In this instance, the areas of local thinning create an asymmetric stress profile assuming it is primarily etched on a single side. If the glass sheet is etched on both sides, the DOC and/or surface CS may still remain symmetric. This asymmetric etching highlights the possibility that a locally thinned part need not be uniformly ion exchanged across its surface.
In embodiments, local thinning can be accomplished by etching, and the etching can also be used to produce, for example, anti-glare or other effects.
In embodiments, local thinning can be accomplished after the cold bent glass sheet has been restrained (e.g., by placing in a frame). After the cold bent glass is in a frame, the glass can then be locally thinned by, for example, a subtractive process. A reason for this order of events is that it can be easier to handle the glass when it is in a frame.
In embodiments, local thinning can be applied to glass articles that contain both hot formed and cold formed shapes. The thinning can be accomplished as part of the hot forming process or as a post-process treatment for a hot formed part. In embodiments, local thinning can also be accomplished with parts having both hot formed and cold formed regions.
In embodiments, local thinning of sheets can be accomplished by etching or re-drawing. In the instance of re-drawing, this can also occur while hot forming processes are performed to shape the part.
In embodiments, any etching used for local thinning can be accomplished during processes that also produce through-hole vias.
In embodiments, local thinning of sheets can be accomplished on individual parts or on larger size panels.
In embodiments, local thinning of sheets can have a different ion exchange or composition profile compared to the other areas of the glass.
In embodiments, locally thinned regions or sections can have an etched surface on either face of the article, or on both faces of the article.
The following Examples demonstrate making, use, and analysis of the disclosed methods in accordance with the above general procedures.
Sequential Processing A flat glass sheet, having at least one region having a first thickness and at least one region having a second thickness (the first thickness is greater than the second thickness), is cold bent to produce a second glass sheet having at least one bend. The cold bent glass sheet having the at least one bend is placed in or restrained in a fixture to produce a contoured glass article held in a fixture.
Simultaneous Processing A first flat glass sheet, having at least one region having a first thickness and at least one region having a second thickness (the first thickness is greater than the second thickness), is simultaneously placed in or restrained in a fixture and cold bent to simultaneously produce a cold bent glass sheet having at least one bend and a contoured glass article held in a fixture.
A flat glass sheet, having at least one region having a first thickness and at least one region having a second thickness, the first thickness is greater than the second thickness, is integrated with another element besides the frame, and cold bent. This cold bending can occur either before or after integration of the additional element. The integrated element can be, for example, an electronic display, another electronic or opto-electronic device, or optical element such as a mirror or element having a visual pattern.
A flat glass sheet, having at least one region having a first thickness and at least one region having a second thickness (the first thickness is greater than the second thickness), integrated with an automotive application such as dashboard, console, door, within the automotive interior, on the automotive exterior, or other.
Aspect (1) of this disclosure pertains to a method of making a contoured glass article comprising: cold bending a flat glass sheet having first and second opposing major surfaces, at least one region having a first thickness, and at least one region having a second thickness, to produce cold bent glass sheet having at least one bend region along a portion of the at least one region having the second thickness; and restraining the cold bent glass sheet to produce the contoured glass article, wherein the first thickness is greater than the second thickness.
Aspect (2) of this disclosure pertains to the method of Aspect (1), wherein the cold bending and the retaining the cold bent glass sheet are accomplished sequentially or simultaneously.
Aspect (3) of this disclosure pertains to the method of Aspect (1) or Aspect (2), wherein at least one of the first and second major surfaces of the flat glass sheet is unstrengthened, annealed or heat strengthened.
Aspect (4) of this disclosure pertains to the method of any one of Aspects (1) through (3), wherein at least one of the first and second major surfaces of the flat glass sheet is strengthened.
Aspect (5) of this disclosure pertains to the method of Aspects (1) through (4), further comprising strengthening at least one of the first and second major surfaces of cold bent glass sheet.
Aspect (6) of this disclosure pertains to the method of Aspects (1) through (5), wherein the flat glass sheet has a plurality of regions having the second thickness.
Aspect (7) of this disclosure pertains to the method of Aspects (1) through (6), wherein the cold bent glass sheet has a single bend region or a plurality of bend regions.
Aspect (8) of this disclosure pertains to the method of Aspects (1) through (7), wherein the cold bent glass sheet has at least one bend below a plane and at least one bend above the plane, the plane being defined by the plane of the flat glass sheet.
Aspect (9) of this disclosure pertains to the method of Aspects (1) through (8), wherein the first thickness is in a range from about 500 micrometers to about 2 mm, and the second thickness is in a range from about 10% to 90% of the first thickness.
Aspect (10) of this disclosure pertains to the method of Aspects (1) through (9), wherein the first thickness is in a range from greater than about 500 micrometers to about 2 mm, and the second thickness is in a range from about 300 micrometers to less than 500 micrometers.
Aspect (11) of this disclosure pertains to the method of Aspects (1) through (10), wherein the at least one bend region has a bend radius in a range from about 50 mm to about 10,000 mm.
Aspect (12) of this disclosure pertains to the method of Aspects (1) through (11), further comprising disposing the contoured glass article over a display or touch panel, wherein the display or touch panel is positioned behind the at least one region having the first thickness.
Aspect (13) of this disclosure pertains to the method of Aspects (1) through (10), further comprising attaching a display or touch panel to the at least one region having the first thickness.
Aspect (14) of this disclosure pertains to a contoured glass article comprising:
a cold bent glass sheet having first and second opposing major surfaces, at least one region having a first thickness, at least one region having a second thickness, and at least one bend region along a portion of the at least one region having the second thickness, wherein the first thickness is greater than the second thickness.
Aspect (15) of this disclosure pertains to the contoured glass article of Aspect (14), further comprising a frame attached to the second major surface to retain the at least one bend region.
Aspect (16) of this disclosure pertains to the contoured glass article of Aspect (14) or Aspect (15), wherein at least one of the first and second major surfaces is unstrengthened, annealed or heat strengthened.
Aspect (17) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (16), wherein at least one of the first and second major surfaces is strengthened.
Aspect (18) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (17), comprising a plurality of regions having the second thickness.
Aspect (19) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (18), further comprising a plurality of bend regions.
Aspect (20) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (19), further comprising at least one bend region below a plane and at least one bend region above the plane, the plane being defined by as a midpoint of a maximum cross-sectional dimension.
Aspect (21) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (20), wherein the first thickness is in a range from about 500 micrometers to about 2 mm, and the second thickness is in a range from about 10% to 90% of the first thickness.
Aspect (22) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (21), wherein the first thickness is ion a range from greater than about 500 micrometers to about 2 mm, and the second thickness is in a range from about 300 micrometers to less than 500 micrometers.
Aspect (23) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (22), wherein the at least one bend region has a bend radius in a range from about 50 mm to about 10,000 mm.
Aspect 24) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (23), further comprising a display or touch panel disposed behind the at least one region having the second thickness.
Aspect (25) of this disclosure pertains to the contoured glass article of any one of Aspects (14) through (24), wherein the contoured glass article is a window glass, a structural glass, a glass component of a vehicle, or a combination thereof.
The disclosure has been described with reference to various specific embodiments and techniques. However, it should be understood that many variations and modifications are possible while remaining within the scope of the disclosure.
This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2018/032700, filed on May 15, 2018, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/506,024 filed on May 15, 2017, the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/032700 | 5/15/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/213267 | 11/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2068030 | Lieser | Jan 1937 | A |
2608030 | Jendrisak | Aug 1952 | A |
3197903 | Walley | Aug 1965 | A |
3338696 | Dockerty | Aug 1967 | A |
3582456 | Stolki | Jun 1971 | A |
3682609 | Dockerty | Aug 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3778335 | Boyd | Dec 1973 | A |
3790430 | Mochel | Feb 1974 | A |
3799817 | Laethem | Mar 1974 | A |
4081263 | Mestre | Mar 1978 | A |
4147527 | Bystrov et al. | Apr 1979 | A |
4238265 | Deminet | Dec 1980 | A |
4289520 | Bolton | Sep 1981 | A |
4445953 | Hawk | May 1984 | A |
4455338 | Henne | Jun 1984 | A |
4859636 | Aratani et al. | Aug 1989 | A |
4899507 | Mairlot | Feb 1990 | A |
4969966 | Norman | Nov 1990 | A |
4985099 | Mertens et al. | Jan 1991 | A |
5108480 | Sugiyama | Apr 1992 | A |
5154117 | Didelot et al. | Oct 1992 | A |
5173102 | Weber et al. | Dec 1992 | A |
5245468 | Demiryont et al. | Sep 1993 | A |
5250146 | Horvath | Oct 1993 | A |
5264058 | Hoagland et al. | Nov 1993 | A |
5279635 | Flaugher | Jan 1994 | A |
5300184 | Masunaga | Apr 1994 | A |
5589248 | Tomozane | Dec 1996 | A |
5711119 | Cornils et al. | Jan 1998 | A |
5897937 | Cornils et al. | Apr 1999 | A |
6044662 | Morin | Apr 2000 | A |
6086983 | Yoshizawa | Jul 2000 | A |
6101748 | Cass et al. | Aug 2000 | A |
6242931 | Hembree et al. | Jun 2001 | B1 |
6265054 | Bravet et al. | Jul 2001 | B1 |
6270605 | Doerfler | Aug 2001 | B1 |
6274219 | Schuster et al. | Aug 2001 | B1 |
6287674 | Verlinden et al. | Sep 2001 | B1 |
6302985 | Takahashi et al. | Oct 2001 | B1 |
6332690 | Murofushi | Dec 2001 | B1 |
6387515 | Joret et al. | May 2002 | B1 |
6420800 | Levesque et al. | Jul 2002 | B1 |
6426138 | Narushima et al. | Jul 2002 | B1 |
6582799 | Brown et al. | Jun 2003 | B1 |
6620365 | Odoi et al. | Sep 2003 | B1 |
6816225 | Colgan et al. | Nov 2004 | B2 |
6903871 | Page | Jun 2005 | B2 |
7297040 | Chang et al. | Nov 2007 | B2 |
7375782 | Yamazaki et al. | May 2008 | B2 |
7478930 | Choi | Jan 2009 | B2 |
7489303 | Pryor | Feb 2009 | B1 |
7542302 | Curnalia et al. | Jun 2009 | B1 |
7750821 | Taborisskiy et al. | Jul 2010 | B1 |
7955470 | Kapp et al. | Jun 2011 | B2 |
8298431 | Chwu et al. | Oct 2012 | B2 |
8344369 | Yamazaki et al. | Jan 2013 | B2 |
8521955 | Arulambalam et al. | Aug 2013 | B2 |
8549885 | Dannoux et al. | Oct 2013 | B2 |
8586492 | Barefoot et al. | Nov 2013 | B2 |
8652978 | Dejneka et al. | Feb 2014 | B2 |
8692787 | Imazeki | Apr 2014 | B2 |
8702253 | Lu et al. | Apr 2014 | B2 |
8765262 | Gross | Jul 2014 | B2 |
8814372 | Vandal et al. | Aug 2014 | B2 |
8833106 | Dannoux et al. | Sep 2014 | B2 |
8912447 | Leong et al. | Dec 2014 | B2 |
8923693 | Yeates | Dec 2014 | B2 |
8962084 | Brackley et al. | Feb 2015 | B2 |
8967834 | Timmerman et al. | Mar 2015 | B2 |
8969226 | Dejneka et al. | Mar 2015 | B2 |
8978418 | Balduin et al. | Mar 2015 | B2 |
9007226 | Chang | Apr 2015 | B2 |
9061934 | Bisson et al. | Jun 2015 | B2 |
9090501 | Okahata et al. | Jul 2015 | B2 |
9109881 | Roussev et al. | Aug 2015 | B2 |
9140543 | Allan et al. | Sep 2015 | B1 |
9156724 | Gross | Oct 2015 | B2 |
9223162 | Deforest et al. | Dec 2015 | B2 |
9240437 | Shieh et al. | Jan 2016 | B2 |
9278500 | Filipp | Mar 2016 | B2 |
9278655 | Jones et al. | Mar 2016 | B2 |
9290413 | Dejneka et al. | Mar 2016 | B2 |
9346703 | Bookbinder et al. | May 2016 | B2 |
9346706 | Bazemore et al. | May 2016 | B2 |
9357638 | Lee et al. | May 2016 | B2 |
9376337 | Odani | Jun 2016 | B2 |
9442028 | Roussev et al. | Sep 2016 | B2 |
9446723 | Stepanski | Sep 2016 | B2 |
9469561 | Kladias et al. | Oct 2016 | B2 |
9517967 | Dejneka et al. | Dec 2016 | B2 |
9522837 | Afzal | Dec 2016 | B2 |
9573843 | Keegan et al. | Feb 2017 | B2 |
9593042 | Hu et al. | Mar 2017 | B2 |
9595960 | Wilford | Mar 2017 | B2 |
9606625 | Levesque et al. | Mar 2017 | B2 |
9617180 | Bookbinder et al. | Apr 2017 | B2 |
9663396 | Miyasaka et al. | May 2017 | B2 |
9688562 | Ukrainczyk | Jun 2017 | B2 |
9694570 | Levasseur et al. | Jul 2017 | B2 |
9700985 | Kashima et al. | Jul 2017 | B2 |
9701564 | Bookbinder et al. | Jul 2017 | B2 |
9720450 | Choi et al. | Aug 2017 | B2 |
9724727 | Domey | Aug 2017 | B2 |
9802485 | Masuda et al. | Oct 2017 | B2 |
9815730 | Marjanovic et al. | Nov 2017 | B2 |
9821509 | Kastell | Nov 2017 | B2 |
9895975 | Lee et al. | Feb 2018 | B2 |
9902640 | Dannoux et al. | Feb 2018 | B2 |
9931817 | Rickerl | Apr 2018 | B2 |
9933820 | Helot et al. | Apr 2018 | B2 |
9947882 | Zhang et al. | Apr 2018 | B2 |
9955602 | Wildner et al. | Apr 2018 | B2 |
9957190 | Finkeldey et al. | May 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
9972645 | Kim | May 2018 | B2 |
9975801 | Maschmeyer et al. | May 2018 | B2 |
9992888 | Moon et al. | Jun 2018 | B2 |
10005246 | Stepanski | Jun 2018 | B2 |
10017033 | Fisher et al. | Jul 2018 | B2 |
10042391 | Yun et al. | Aug 2018 | B2 |
10074824 | Han et al. | Sep 2018 | B2 |
10086762 | Uhm | Oct 2018 | B2 |
10131118 | Kang et al. | Nov 2018 | B2 |
10140018 | Kim et al. | Nov 2018 | B2 |
10153337 | Lee et al. | Dec 2018 | B2 |
10175802 | Boggs et al. | Jan 2019 | B2 |
10211416 | Jin et al. | Feb 2019 | B2 |
10222825 | Wang et al. | Mar 2019 | B2 |
10273184 | Garner et al. | Apr 2019 | B2 |
10303223 | Park et al. | May 2019 | B2 |
10303315 | Jeong et al. | May 2019 | B2 |
10326101 | Oh et al. | Jun 2019 | B2 |
10328865 | Jung | Jun 2019 | B2 |
10343377 | Levasseur et al. | Jul 2019 | B2 |
10343944 | Jones | Jul 2019 | B2 |
10347700 | Yang et al. | Jul 2019 | B2 |
10377656 | Dannoux et al. | Aug 2019 | B2 |
10421683 | Schillinger et al. | Sep 2019 | B2 |
10427383 | Levasseur et al. | Oct 2019 | B2 |
10444427 | Bookbinder et al. | Oct 2019 | B2 |
10483210 | Gross et al. | Nov 2019 | B2 |
10500958 | Cho et al. | Dec 2019 | B2 |
10556818 | Fujii | Feb 2020 | B2 |
10606395 | Boggs et al. | Mar 2020 | B2 |
11192815 | Fujii | Dec 2021 | B2 |
11292343 | Kumar | Apr 2022 | B2 |
11331886 | Brennan | May 2022 | B2 |
20020039229 | Hirose et al. | Apr 2002 | A1 |
20040026021 | Groh et al. | Feb 2004 | A1 |
20040069770 | Cary et al. | Apr 2004 | A1 |
20040107731 | Doehring et al. | Jun 2004 | A1 |
20040258929 | Glaubitt et al. | Dec 2004 | A1 |
20050178158 | Moulding et al. | Aug 2005 | A1 |
20060227125 | Wong et al. | Oct 2006 | A1 |
20070188871 | Fleury et al. | Aug 2007 | A1 |
20070195419 | Tsuda et al. | Aug 2007 | A1 |
20070210621 | Barton et al. | Sep 2007 | A1 |
20070221313 | Franck et al. | Sep 2007 | A1 |
20070223121 | Franck et al. | Sep 2007 | A1 |
20070291384 | Wang | Dec 2007 | A1 |
20080031991 | Choi et al. | Feb 2008 | A1 |
20080093753 | Schuetz | Apr 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080303976 | Nishizawa et al. | Dec 2008 | A1 |
20090096937 | Bauer et al. | Apr 2009 | A1 |
20090101208 | Vandal et al. | Apr 2009 | A1 |
20090117332 | Ellsworth et al. | May 2009 | A1 |
20090179840 | Tanaka | Jul 2009 | A1 |
20090185127 | Tanaka et al. | Jul 2009 | A1 |
20090201443 | Sasaki et al. | Aug 2009 | A1 |
20090311497 | Aoki | Dec 2009 | A1 |
20100000259 | Ukrainczyk et al. | Jan 2010 | A1 |
20100031590 | Buchwald et al. | Feb 2010 | A1 |
20100065342 | Shaikh | Mar 2010 | A1 |
20100103138 | Huang et al. | Apr 2010 | A1 |
20100182143 | Lynam | Jul 2010 | A1 |
20100245253 | Rhyu et al. | Sep 2010 | A1 |
20110057465 | Beau et al. | Mar 2011 | A1 |
20110148267 | McDaniel et al. | Jun 2011 | A1 |
20110176236 | Lu | Jul 2011 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120111056 | Prest | May 2012 | A1 |
20120128952 | Miwa et al. | May 2012 | A1 |
20120134025 | Hart | May 2012 | A1 |
20120144866 | Liu et al. | Jun 2012 | A1 |
20120152897 | Cheng et al. | Jun 2012 | A1 |
20120196110 | Murata et al. | Aug 2012 | A1 |
20120202030 | Kondo et al. | Aug 2012 | A1 |
20120218640 | Gollier et al. | Aug 2012 | A1 |
20120263945 | Yoshikawa | Oct 2012 | A1 |
20120280368 | Garner et al. | Nov 2012 | A1 |
20120320509 | Kim et al. | Dec 2012 | A1 |
20130020007 | Niiyama et al. | Jan 2013 | A1 |
20130033885 | Oh et al. | Feb 2013 | A1 |
20130070340 | Shelestak et al. | Mar 2013 | A1 |
20130081428 | Liu et al. | Apr 2013 | A1 |
20130086948 | Bisson | Apr 2013 | A1 |
20130088441 | Chung et al. | Apr 2013 | A1 |
20130120850 | Lambert et al. | May 2013 | A1 |
20130186141 | Henry | Jul 2013 | A1 |
20130209824 | Sun et al. | Aug 2013 | A1 |
20130279188 | Entenmann et al. | Oct 2013 | A1 |
20130298608 | Langsdorf | Nov 2013 | A1 |
20130314642 | Timmerman et al. | Nov 2013 | A1 |
20130329346 | Dannoux et al. | Dec 2013 | A1 |
20130330495 | Maatta et al. | Dec 2013 | A1 |
20140014260 | Chowdhury et al. | Jan 2014 | A1 |
20140036428 | Seng et al. | Feb 2014 | A1 |
20140065374 | Tsuchiya et al. | Mar 2014 | A1 |
20140141206 | Gillard et al. | May 2014 | A1 |
20140146538 | Zenker et al. | May 2014 | A1 |
20140153234 | Knoche et al. | Jun 2014 | A1 |
20140153894 | Jenkins et al. | Jun 2014 | A1 |
20140168153 | Deichmann et al. | Jun 2014 | A1 |
20140168546 | Magnusson et al. | Jun 2014 | A1 |
20140234581 | Immerman | Aug 2014 | A1 |
20140308464 | Levasseur | Oct 2014 | A1 |
20140312518 | Levasseur et al. | Oct 2014 | A1 |
20140333848 | Chen | Nov 2014 | A1 |
20140340609 | Taylor et al. | Nov 2014 | A1 |
20150000341 | Bisson | Jan 2015 | A1 |
20150015807 | Franke et al. | Jan 2015 | A1 |
20150072129 | Okahata et al. | Mar 2015 | A1 |
20150077429 | Eguchi et al. | Mar 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150168768 | Nagatani | Jun 2015 | A1 |
20150177443 | Faecke et al. | Jun 2015 | A1 |
20150210588 | Chang | Jul 2015 | A1 |
20150246424 | Venkatachalam et al. | Sep 2015 | A1 |
20150246507 | Brown et al. | Sep 2015 | A1 |
20150274570 | Wada | Oct 2015 | A1 |
20150274572 | Wada | Oct 2015 | A1 |
20150274585 | Rogers et al. | Oct 2015 | A1 |
20150321940 | Dannoux | Nov 2015 | A1 |
20150322270 | Amin et al. | Nov 2015 | A1 |
20150336357 | Kang et al. | Nov 2015 | A1 |
20150351272 | Wildner | Dec 2015 | A1 |
20150357387 | Lee et al. | Dec 2015 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160009068 | Garner | Jan 2016 | A1 |
20160016849 | Allan | Jan 2016 | A1 |
20160031737 | Hoppe | Feb 2016 | A1 |
20160039705 | Kato et al. | Feb 2016 | A1 |
20160052241 | Zhang | Feb 2016 | A1 |
20160066463 | Yang et al. | Mar 2016 | A1 |
20160081204 | Park et al. | Mar 2016 | A1 |
20160083282 | Jouanno et al. | Mar 2016 | A1 |
20160083292 | Tabe et al. | Mar 2016 | A1 |
20160091645 | Birman et al. | Mar 2016 | A1 |
20160102015 | Yasuda et al. | Apr 2016 | A1 |
20160113135 | Kim et al. | Apr 2016 | A1 |
20160137550 | Murata | May 2016 | A1 |
20160145148 | Imakita | May 2016 | A1 |
20160176746 | Hunzinger | Jun 2016 | A1 |
20160207290 | Cleary | Jul 2016 | A1 |
20160214889 | Garner et al. | Jul 2016 | A1 |
20160216434 | Shih et al. | Jul 2016 | A1 |
20160250982 | Fisher et al. | Sep 2016 | A1 |
20160252656 | Waldschmidt et al. | Sep 2016 | A1 |
20160259365 | Wang et al. | Sep 2016 | A1 |
20160272529 | Hong et al. | Sep 2016 | A1 |
20160297176 | Rickerl | Oct 2016 | A1 |
20160306451 | Isoda et al. | Oct 2016 | A1 |
20160313494 | Hamilton et al. | Oct 2016 | A1 |
20160354996 | Alder | Dec 2016 | A1 |
20160355091 | Lee | Dec 2016 | A1 |
20160355901 | Isozaki et al. | Dec 2016 | A1 |
20160375808 | Etienne et al. | Dec 2016 | A1 |
20170008377 | Fisher et al. | Jan 2017 | A1 |
20170021661 | Pelucchi | Jan 2017 | A1 |
20170059749 | Wakatsuki | Mar 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170081238 | Jones et al. | Mar 2017 | A1 |
20170088454 | Fukushima et al. | Mar 2017 | A1 |
20170094039 | Lu | Mar 2017 | A1 |
20170115944 | Oh et al. | Apr 2017 | A1 |
20170158551 | Bookbinder et al. | Jun 2017 | A1 |
20170160434 | Hart et al. | Jun 2017 | A1 |
20170185289 | Kim et al. | Jun 2017 | A1 |
20170190152 | Notsu et al. | Jul 2017 | A1 |
20170197561 | McFarland | Jul 2017 | A1 |
20170213872 | Jinbo et al. | Jul 2017 | A1 |
20170217290 | Yoshizumi et al. | Aug 2017 | A1 |
20170217815 | Dannoux | Aug 2017 | A1 |
20170240772 | Dohner et al. | Aug 2017 | A1 |
20170247291 | Hatano et al. | Aug 2017 | A1 |
20170262057 | Knittl et al. | Sep 2017 | A1 |
20170263690 | Lee et al. | Sep 2017 | A1 |
20170274627 | Chang et al. | Sep 2017 | A1 |
20170283295 | Immerman | Oct 2017 | A1 |
20170285227 | Chen et al. | Oct 2017 | A1 |
20170305786 | Roussev et al. | Oct 2017 | A1 |
20170327402 | Fujii et al. | Nov 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170349473 | Moriya et al. | Dec 2017 | A1 |
20180009197 | Gross et al. | Jan 2018 | A1 |
20180014420 | Amin et al. | Jan 2018 | A1 |
20180031743 | Wakatsuki et al. | Feb 2018 | A1 |
20180050948 | Faik | Feb 2018 | A1 |
20180069053 | Bok | Mar 2018 | A1 |
20180072022 | Tsai et al. | Mar 2018 | A1 |
20180103132 | Prushinskiy et al. | Apr 2018 | A1 |
20180111569 | Faik | Apr 2018 | A1 |
20180112903 | Celik | Apr 2018 | A1 |
20180122863 | Bok | May 2018 | A1 |
20180125228 | Porter et al. | May 2018 | A1 |
20180134232 | Helot | May 2018 | A1 |
20180141850 | Dejneka et al. | May 2018 | A1 |
20180147985 | Brown et al. | May 2018 | A1 |
20180149777 | Brown | May 2018 | A1 |
20180149907 | Gahagan et al. | May 2018 | A1 |
20180164850 | Sim et al. | Jun 2018 | A1 |
20180186674 | Kumar | Jul 2018 | A1 |
20180188869 | Boggs et al. | Jul 2018 | A1 |
20180208131 | Mattelet et al. | Jul 2018 | A1 |
20180208494 | Mattelet et al. | Jul 2018 | A1 |
20180210118 | Gollier et al. | Jul 2018 | A1 |
20180215125 | Gahagan | Aug 2018 | A1 |
20180245125 | Tsai et al. | Aug 2018 | A1 |
20180282207 | Fujii | Oct 2018 | A1 |
20180304825 | Mattelet et al. | Oct 2018 | A1 |
20180319144 | Faik | Nov 2018 | A1 |
20180324964 | Yoo et al. | Nov 2018 | A1 |
20180345644 | Kang et al. | Dec 2018 | A1 |
20180354988 | Tezcan | Dec 2018 | A1 |
20180364760 | Ahn et al. | Dec 2018 | A1 |
20180374906 | Everaerts et al. | Dec 2018 | A1 |
20190034017 | Boggs et al. | Jan 2019 | A1 |
20190039352 | Zhao et al. | Feb 2019 | A1 |
20190039935 | Couillard | Feb 2019 | A1 |
20190069451 | Myers et al. | Feb 2019 | A1 |
20190077262 | Benjamin | Mar 2019 | A1 |
20190077337 | Gervelmeyer | Mar 2019 | A1 |
20190135677 | Fukushi | May 2019 | A1 |
20190152831 | An et al. | May 2019 | A1 |
20190223309 | Amin et al. | Jul 2019 | A1 |
20190295494 | Wang et al. | Sep 2019 | A1 |
20190315648 | Kumar | Oct 2019 | A1 |
20190329531 | Brennan et al. | Oct 2019 | A1 |
20200064535 | Haan et al. | Feb 2020 | A1 |
20200115272 | Li | Apr 2020 | A1 |
20200123050 | Black | Apr 2020 | A1 |
20200171952 | Couillard | Jun 2020 | A1 |
20200239351 | Bhatia | Jul 2020 | A1 |
20200262744 | Fenton | Aug 2020 | A1 |
20200325057 | Burdette | Oct 2020 | A1 |
20210031493 | Benjamin | Feb 2021 | A1 |
20210101820 | Frebourg | Apr 2021 | A1 |
20210122661 | Ogawa | Apr 2021 | A1 |
20210308953 | Kim | Oct 2021 | A1 |
20210323270 | Weikel | Oct 2021 | A1 |
20220001650 | Dave | Jan 2022 | A1 |
20220009201 | Kumar | Jan 2022 | A1 |
20220017400 | Harris | Jan 2022 | A1 |
20220024798 | Galgalikar | Jan 2022 | A1 |
20220169554 | Du Moulinet D'Hardemare | Jun 2022 | A1 |
20220185718 | Renaud | Jun 2022 | A1 |
20220204381 | Layouni | Jun 2022 | A1 |
20220227664 | Lambright | Jul 2022 | A1 |
20220274368 | Burdette | Sep 2022 | A1 |
20220306523 | Horn | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
1587132 | Mar 2005 | CN |
1860081 | Nov 2006 | CN |
101600846 | Dec 2009 | CN |
101684032 | Mar 2010 | CN |
201989544 | Sep 2011 | CN |
102341356 | Feb 2012 | CN |
102464456 | May 2012 | CN |
103136490 | Jun 2013 | CN |
103587161 | Feb 2014 | CN |
203825589 | Sep 2014 | CN |
204111583 | Jan 2015 | CN |
102566841 | Apr 2015 | CN |
104656999 | May 2015 | CN |
104679341 | Jun 2015 | CN |
204463066 | Jul 2015 | CN |
104843976 | Aug 2015 | CN |
105118391 | Dec 2015 | CN |
105511127 | Apr 2016 | CN |
205239166 | May 2016 | CN |
105705330 | Jun 2016 | CN |
106256794 | Dec 2016 | CN |
205905907 | Jan 2017 | CN |
106458683 | Feb 2017 | CN |
206114596 | Apr 2017 | CN |
206114956 | Apr 2017 | CN |
107613809 | Jan 2018 | CN |
107757516 | Mar 2018 | CN |
108519831 | Sep 2018 | CN |
108550587 | Sep 2018 | CN |
108725350 | Nov 2018 | CN |
109135605 | Jan 2019 | CN |
109690662 | Apr 2019 | CN |
109743421 | May 2019 | CN |
4415787 | Nov 1995 | DE |
4415878 | Nov 1995 | DE |
69703490 | May 2001 | DE |
102004022008 | Dec 2004 | DE |
102004002208 | Aug 2005 | DE |
102009021938 | Nov 2010 | DE |
102010007204 | Aug 2011 | DE |
102013214108 | Feb 2015 | DE |
102014116798 | May 2016 | DE |
0076924 | Apr 1983 | EP |
0316224 | May 1989 | EP |
0347049 | Dec 1989 | EP |
0418700 | Mar 1991 | EP |
0423698 | Apr 1991 | EP |
0525970 | Feb 1993 | EP |
0664210 | Jul 1995 | EP |
1013622 | Jun 2000 | EP |
1031409 | Aug 2000 | EP |
1046493 | Oct 2000 | EP |
0910721 | Nov 2000 | EP |
1647663 | Apr 2006 | EP |
2236281 | Oct 2010 | EP |
2385630 | Nov 2011 | EP |
2521118 | Nov 2012 | EP |
2852502 | Apr 2015 | EP |
2933718 | Oct 2015 | EP |
3093181 | Nov 2016 | EP |
3100854 | Dec 2016 | EP |
3118174 | Jan 2017 | EP |
3118175 | Jan 2017 | EP |
3144141 | Mar 2017 | EP |
3156286 | Apr 2017 | EP |
3189965 | Jul 2017 | EP |
3288791 | Mar 2018 | EP |
3426614 | Jan 2019 | EP |
3532442 | Sep 2019 | EP |
2750075 | Dec 1997 | FR |
2918411 | Jan 2009 | FR |
3012073 | Apr 2015 | FR |
0805770 | Dec 1958 | GB |
0991867 | May 1965 | GB |
1319846 | Jun 1973 | GB |
2011316 | Dec 1977 | GB |
2281542 | Mar 1995 | GB |
55-154329 | Dec 1980 | JP |
57-048082 | Mar 1982 | JP |
58-073681 | May 1983 | JP |
58-194751 | Nov 1983 | JP |
59-076561 | May 1984 | JP |
63-089317 | Apr 1988 | JP |
63-190730 | Aug 1988 | JP |
3059337 | Jun 1991 | JP |
03-228840 | Oct 1991 | JP |
04-119931 | Apr 1992 | JP |
05-116972 | May 1993 | JP |
06-340029 | Dec 1994 | JP |
10-218630 | Aug 1998 | JP |
11-001349 | Jan 1999 | JP |
11-006029 | Jan 1999 | JP |
11-060293 | Mar 1999 | JP |
2000-260330 | Sep 2000 | JP |
2002-255574 | Sep 2002 | JP |
2003-500260 | Jan 2003 | JP |
2003-276571 | Oct 2003 | JP |
2003-321257 | Nov 2003 | JP |
2004-101712 | Apr 2004 | JP |
2004-284839 | Oct 2004 | JP |
2005-097109 | Apr 2005 | JP |
2006-181936 | Jul 2006 | JP |
2007-188035 | Jul 2007 | JP |
2007-197288 | Aug 2007 | JP |
2010-145731 | Jul 2010 | JP |
2012-111661 | Jun 2012 | JP |
2013-084269 | May 2013 | JP |
2014-126564 | Jul 2014 | JP |
2015-502901 | Jan 2015 | JP |
2015092422 | May 2015 | JP |
5748082 | Jul 2015 | JP |
2015-527946 | Sep 2015 | JP |
5796561 | Oct 2015 | JP |
2016-500458 | Jan 2016 | JP |
2016031696 | Mar 2016 | JP |
2016-517380 | Jun 2016 | JP |
2016-130810 | Jul 2016 | JP |
2016-144008 | Aug 2016 | JP |
05976561 | Aug 2016 | JP |
2016-530204 | Sep 2016 | JP |
2016173794 | Sep 2016 | JP |
2016-207200 | Dec 2016 | JP |
2016-539067 | Dec 2016 | JP |
2016203609 | Dec 2016 | JP |
6281825 | Feb 2018 | JP |
6340029 | Jun 2018 | JP |
2002-0019045 | Mar 2002 | KR |
10-0479282 | Aug 2005 | KR |
10-2008-0023888 | Mar 2008 | KR |
10-2013-0005776 | Jan 2013 | KR |
10-2014-0111403 | Sep 2014 | KR |
10-2015-0026911 | Mar 2015 | KR |
10-2015-0033969 | Apr 2015 | KR |
10-2015-0051458 | May 2015 | KR |
10-1550833 | Sep 2015 | KR |
10-2015-0121101 | Oct 2015 | KR |
10-2016-0118746 | Oct 2016 | KR |
10-1674060 | Nov 2016 | KR |
10-2016-0144008 | Dec 2016 | KR |
10-2017-0000208 | Jan 2017 | KR |
10-2017-0106263 | Sep 2017 | KR |
10-2017-0107124 | Sep 2017 | KR |
10-2017-0113822 | Oct 2017 | KR |
10-2017-0121674 | Nov 2017 | KR |
10-2018-0028597 | Mar 2018 | KR |
10-2018-0049484 | May 2018 | KR |
10-2018-0049780 | May 2018 | KR |
10-2019-0001864 | Jan 2019 | KR |
10-2019-0081264 | Jul 2019 | KR |
200704268 | Jan 2007 | TW |
201438895 | Oct 2014 | TW |
201546006 | Dec 2015 | TW |
201636309 | Oct 2016 | TW |
201637857 | Nov 2016 | TW |
58334 | Jul 2018 | VN |
9425272 | Nov 1994 | WO |
9739074 | Oct 1997 | WO |
9801649 | Jan 1998 | WO |
0073062 | Dec 2000 | WO |
2006095005 | Sep 2006 | WO |
2007108861 | Sep 2007 | WO |
2008042731 | Apr 2008 | WO |
2008153484 | Dec 2008 | WO |
2009072530 | Jun 2009 | WO |
2011029852 | Mar 2011 | WO |
2011144359 | Nov 2011 | WO |
2011155403 | Dec 2011 | WO |
2012005307 | Jan 2012 | WO |
2012058084 | May 2012 | WO |
2012166343 | Dec 2012 | WO |
2013072611 | May 2013 | WO |
2013072612 | May 2013 | WO |
2013174715 | Nov 2013 | WO |
2013175106 | Nov 2013 | WO |
2014085663 | Jun 2014 | WO |
2014107640 | Jul 2014 | WO |
2014172237 | Oct 2014 | WO |
2014175371 | Oct 2014 | WO |
2015031594 | Mar 2015 | WO |
2015055583 | Apr 2015 | WO |
2015057552 | Apr 2015 | WO |
2015084902 | Jun 2015 | WO |
2015085283 | Jun 2015 | WO |
2015141966 | Sep 2015 | WO |
2016007815 | Jan 2016 | WO |
2016007843 | Jan 2016 | WO |
2016010947 | Jan 2016 | WO |
2016010949 | Jan 2016 | WO |
2016044360 | Mar 2016 | WO |
2016069113 | May 2016 | WO |
2016070974 | May 2016 | WO |
2016115311 | Jul 2016 | WO |
2016125713 | Aug 2016 | WO |
2016136758 | Sep 2016 | WO |
2016173699 | Nov 2016 | WO |
2016183059 | Nov 2016 | WO |
2016195301 | Dec 2016 | WO |
2016202605 | Dec 2016 | WO |
2016196531 | Dec 2016 | WO |
2016196546 | Dec 2016 | WO |
2017015392 | Jan 2017 | WO |
2017019851 | Feb 2017 | WO |
2017023673 | Feb 2017 | WO |
2017106081 | Jun 2017 | WO |
2017146866 | Aug 2017 | WO |
2017158031 | Sep 2017 | WO |
2017155932 | Sep 2017 | WO |
2018015392 | Jan 2018 | WO |
2018005646 | Jan 2018 | WO |
2018009504 | Jan 2018 | WO |
2018075853 | Apr 2018 | WO |
2018081068 | May 2018 | WO |
2018102332 | Jun 2018 | WO |
2018125683 | Jul 2018 | WO |
2018160812 | Sep 2018 | WO |
2018200454 | Nov 2018 | WO |
2018200807 | Nov 2018 | WO |
2018213267 | Nov 2018 | WO |
2019055469 | Mar 2019 | WO |
2019055652 | Mar 2019 | WO |
2019075065 | Apr 2019 | WO |
2019074800 | Apr 2019 | WO |
2019151618 | Aug 2019 | WO |
Entry |
---|
Miika Äppelqvist Curved glass, an obstacle or opportunity in glass architecture (2015) (Year: 2015). |
Datsiou K. C. (2017) Design and Performance of Cold Bent Glass (Year: 2017). |
Japanese Patent Application No. 2019-563525, Office Action, dated Jan. 26, 2022, 8 pages (4 pages of English Translation and 5 pages of Original Copy); Japanese Patent Office. |
“Stainless Steel—Grade 410 (UNS S41000)”, available online at <https://www.azom.com/article.aspx?ArticleID=970>, Oct. 23, 2001, 5 pages. |
“Standard Test Method for Measurement of Glass Stress—Optical Coefficient”, ASTM International, Designation C770-16, 2016. |
Ashley Klamer, “Dead front overlays”, Marking Systems, Inc., Jul. 8, 2013, 2 pages. |
ASTM C1279-13 “Standard Test Method for Non-Destructive Photoelastic Measurement of Edge and Surface Stresses in Annealed, Heat-Strengthened, and Fully Tempered Flat Glass”; Downloaded Jan. 24, 2018; 11 Pages. |
ASTM C1422/C1422M-10 “Standard Specification for Chemically Strengthened Flat Glass”; Downloaded Jan. 24, 2018; 5 pages. |
ASTM Standard C770-98 (2013), “Standard Test Method for Measurement of Glass Stress-Optical Coefficient”. |
Burchardt et al., (Editorial Team), Elastic Bonding: The basic principles of adhesive technology and a guide to its cost-effective use in industry, 2006, 71 pages. |
Datsiou et al., “Behaviour of cold bent glass plates during the shaping process”, Engineered Transparency. International Conference atglasstec, Dusseldorf, Germany, Oct. 21 and 22, 2014, 9 pages. |
Engineering ToolBox, “Coefficients of Linear Thermal Expansion”, available online at <https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html>, 2003, 9 pages. |
Fauercia “Intuitive HMI for a Smart Life on Board” (2018); 8 Pages http://www.faurecia.com/en/innovation/smart-life-board/intuitive-HMI. |
Faurecia: Smart Pebbles, Nov. 10, 2016 (Nov. 10, 2016), XP055422209, Retrieved from the Internet: URL:https://web.archive.org/web/20171123002248/http://www.faurecia.com/en/innovation/discover-our-innovations/smart-pebbles [retrieved on Nov. 23, 2017]. |
Ferwerda et al., “Perception of sparkle in anti-glare display screens”, Journal of the SID, vol. 22, Issue 2, 2014, pp. 129-136. |
Galuppi et al; “Buckling Phenomena in Double Curved Cold-Bent Glass;” Intl. J. Non-Linear Mechanics 64 (2014) pp. 70-84. |
Galuppi L et al: “Optimal cold bending of laminated glass”, Jan. 1, 2007 vol. 52, No. 1/2 Jan. 1, 2007 (Jan. 1, 2007), pp. 123-146. |
Gollier et al., “Display Sparkle Measurement and Human Response”, SID Symposium Digest of Technical Papers, vol. 44, Issue 1, 2013, pp. 295-297. |
Indian Patent Application No. 201917031293 Office Action dated May 24, 2021; 6 pages; Indian Patent Office. |
Jalopnik, “This Touch Screen Car Interior is a Realistic Vision of the Near Future”, jalopnik.com, Nov. 19, 2014, https://jalopnik.com/this-touch-screen-car-interior-is-a-realistic-vision-of-1660846024 (Year: 2014). |
Li et al., “Effective Surface Treatment on the Cover Glass for Autointerior Applications”, SID Symposium Digest of Technical Papers, vol. 47, 2016, pp. 467-469. |
Pambianchi et al; “Corning Incorporated: Designing a New Future With Glass and Optics” Chapter 1 In “Materials Research for Manufacturing: an Industrial Perspective of Turning Materials Into New Products”; Springer Series Material Science 224, p. 12 (2016). |
Pegatron Corp. “Pegaton Navigate the Future”; Ecockpit/Center CNSOLE Work Premiere; Automotive World; Downloaded Jul. 12, 2017; 2 Pages. |
Photodon, “Screen Protectors For Your Car's Navi System That You're Gonna Love”, photodon.com, Nov. 6, 2015, https://www.photodon.com/blog/archives/screen-protectors-for-your-cars-navi-system-that-youre-gonna-love) (Year: 2015). |
Product Information Sheet: Coming® Gorilla® Glass 3 with Native Damage Resistance™, Coming Incorporated, 2015, Rev: F_090315, 2 pages. |
Scholze, H., “Glass-Water Interactions”, Journal of Non-Crystalline Solids vol. 102, Issues 1-3, Jun. 1, 1988, pp. 1-10. |
Stattler; “New Wave-Curved Glass Shapes Design”; Glass Magazine; (2013); 2 Pages. |
Stiles Custom Metal, Inc., Installation Recommendations, 2010 https://stilesdoors.com/techdata/pdf/Installation%20Recommendations%20HM%20Windows,%20Transoms%20&%>OSidelites%200710.pdf) (Year: 2010). |
Tomozawa et al., “Hydrogen-to-Alkali Ratio in Hydrated Alkali Aluminosilicate Glass Surfaces”, Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 15, 2012, pp. 3546-3550. |
Zhixin Wang, Polydimethylsiloxane mechanical properties measured by macroscopic compression and nanoindentation techniques, Graduate Theses and Dissertations, University of South Florida, 2011, 79 pages. |
Author Unknown; “Stress Optics Laboratory Practice Guide” 2012; 11 Pages. |
Belis et al; “Cold Bending of Laminated Glass Panels”; Heron vol. 52 (2007) No. 1/2; 24 Pages. |
Doyle et al; “Manual on Experimental Stress Analysis; Fifth Edition, Society for Experimental Mechanics; Unknown Year; 31 Pages”. |
Elziere; “Laminated Glass: Dynamic Rupture of Adhesion”; Polymers; Universite Pierre Et Marie Curie—Paris VI, 2016. English; 181 Pages. |
Fildhuth et al; “Considerations Using Curved, Heat or Cold Bent Glass for Assembling Full Glass Shells”, Engineered Transparency, International Conference at Glasstec, Dusseldorf, Germany, Oct. 25 and 26, 2012; 11 Pages. |
Fildhuth et al; “Interior Stress Monitoring of Laminated Cold Bent Glass With Fibre Bragg Sensors”, Challenging Glass 4 & Cost Action TU0905 Final Conference Louter, Bos & Belis (Eds), 2014; 8 Pages. |
Fildhuth et al; “Layout Strategies and Optimisation of Joint Patterns in Full Glass Shells”, Challenging Glass 3—Conference on Architectural and Structural Applications of Glass, Bos, Louter, Nijsse, Veer (Eds.), Tu Delft, Jun. 2012; 13 Pages. |
Fildhuth et al; “Recovery Behaviour of Laminated Cold Bent Glass—Numerical Analysis and Testing”; Challenging Glass 4 & Cost Action TU0905 Final Conference—Louter, Bos & Beus (Eds) (2014); 9 Pages. |
Fildhuth; “Design and Monitoring of Cold Bent Lamination—Stabilised Glass”; ITKE 39 (2015) 270 Pages. |
Galuppi et al; “Cold-Lamination-Bending of Glass: Sinusoidal is Better Than Circular”, Composites Part B 79 (2015) 285-300. |
Galuppi et al; “Optical Cold Bending of Laminated Glass”; Internaitonal Journal of Solids and Structures, 67-68 (2015) pp. 231-243. |
Millard; “Bending Glass in the Parametric Age”; Enclos; (2015); pp. 1-6; http://www.enclos.com/site-info/news/bending-glass-in-the-parametric-age. |
Neugebauer et al; “Let Thin Glass in the Faade Move Thin Glass-New Possibilities for Glass in the Faade”, Conference Paper Jun. 2018; 12 Pages. |
Vakar et al; “Cold Bendable, Laminated Glass—New Possibilities in Design”; Structural Engineering International; Feb. 2004; Structural Design in Glass; pp. 95-97. |
Weide; “Graduation Plan”; Jan. 2017; 30 Pages. |
Werner; “Display Materials and Processes,” Information Display; May 2015; 8 Pages. |
Byun et al; “A Novel Route for Thinning of LCD Glass Substrates”; SID 06 Digest; pp. 1786-1788, v37, 2006. |
Galuppi et al; “Large Deformations and Snap-Through Instability of Cold-Bent Glass”; Challenging Glass 4 & Cost Action TU0905 Final Conference; (2014) pp. 681-689. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/032700; dated Aug. 14, 2018; 12 Pages; European Patent Office. |
Number | Date | Country | |
---|---|---|---|
20210188685 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62506024 | May 2017 | US |